organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Amino­bi­cyclo­[2.2.1]heptan-2-yl)-4-methyl­benzene­sulfonamide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, cDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 1 June 2012; accepted 5 June 2012; online 13 June 2012)

In the title compound, C14H20N2O2S, the sulfonamide O atoms lie to one side of the benzene ring and the amino­bicyclo­hepta­nyl to the other side [Car—S—N—C torsion angle = −57.93 (11)°; ar = aromatic]. An intra­molecular N—H⋯N hydrogen bond is formed. In the crystal, a supra­molecular chain is formed along the b axis via N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For chiral ligands in asymmetric catalytic reactions, see: Seo et al. (2001[Seo, R., Ishizuka, T., Abdel-Aziz, A. A.-M. & Kunieda, T. (2001). Tetrahedron Lett. 42, 6353-6355.]); Abdel-Aziz et al. (2004[Abdel-Aziz, A. A.-M., El Bialy, S. A. A., Goda, F. E. & Kunieda, T. (2004). Tetrahedron Lett. 45, 8073-8077.]); Matsunaga et al. (2005[Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron Lett. 46, 3645-3648.]); Yamakuchi et al. (2005[Yamakuchi, M., Matsunaga, H., Tokuda, R., Ishizuka, T., Nakajima, M. & Kuniedab, T. (2005). Tetrahedron Lett. 46, 4019-4022.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2O2S

  • Mr = 280.38

  • Monoclinic, P 21

  • a = 10.1715 (2) Å

  • b = 6.1169 (1) Å

  • c = 11.5150 (3) Å

  • β = 110.332 (2)°

  • V = 671.80 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.14 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.566, Tmax = 0.814

  • 4721 measured reflections

  • 2750 independent reflections

  • 2731 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.066

  • S = 1.03

  • 2750 reflections

  • 185 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1217 Friedel pairs

  • Flack parameter: −0.001 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.88 (1) 2.20 (1) 2.976 (2) 148 (2)
N1—H2n⋯N2 0.87 (1) 2.39 (2) 2.752 (2) 105 (2)
N2—H3n⋯N1i 0.89 (1) 2.04 (1) 2.907 (2) 166 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) was synthesized in the context of the development of chiral ligands for asymmetric catalytic reactions (Seo et al., 2001; Abdel-Aziz et al., 2004; Matsunaga et al., 2005; Yamakuchi et al. 2005).

In (I), Fig. 1, the two S-bound O atoms lie to one side of the adjacent benzene ring with the O1 and O2 atoms lying -0.466 (1) and -0.771 (1) Å out of the plane, respectively, and the aminobicycloheptanyl residue lying to the other side, the C8—S1—N2—C2 torsion being -57.93 (11)°. An intramolecular N—H···N hydrogen bond is noted, Table 1.

Molecules are connected into a supramolecular chain along the b axis via N—H···O and N—H···N hydrogen bonds that generate 12-membered {···HNC2NH···OSNC2N} synthons, Fig. 2 and Table 1. The chains pack into a three-dimensional architecture without specific interactions between them, Fig. 3.

Related literature top

For chiral ligands in asymmetric catalytic reactions, see: Seo et al. (2001); Abdel-Aziz et al. (2004); Matsunaga et al. (2005); Yamakuchi et al. (2005).

Experimental top

To the mixture of 2-imidazolidinone (2.0 ml), water (2 ml), ethanol (6 ml) and Ba(OH)2.8H2O (20 ml) were added. This was heated at 413 K in a glass sealed tube for 24 h. The solvents were evaporated and the precipitate extracted three times with chloroform (10 ml × 3). The organic extract was dried and crystallized from ethanol to afford the title compound.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were refined with N—H = 0.88±0.01 Å.

Structure description top

The title compound (I) was synthesized in the context of the development of chiral ligands for asymmetric catalytic reactions (Seo et al., 2001; Abdel-Aziz et al., 2004; Matsunaga et al., 2005; Yamakuchi et al. 2005).

In (I), Fig. 1, the two S-bound O atoms lie to one side of the adjacent benzene ring with the O1 and O2 atoms lying -0.466 (1) and -0.771 (1) Å out of the plane, respectively, and the aminobicycloheptanyl residue lying to the other side, the C8—S1—N2—C2 torsion being -57.93 (11)°. An intramolecular N—H···N hydrogen bond is noted, Table 1.

Molecules are connected into a supramolecular chain along the b axis via N—H···O and N—H···N hydrogen bonds that generate 12-membered {···HNC2NH···OSNC2N} synthons, Fig. 2 and Table 1. The chains pack into a three-dimensional architecture without specific interactions between them, Fig. 3.

For chiral ligands in asymmetric catalytic reactions, see: Seo et al. (2001); Abdel-Aziz et al. (2004); Matsunaga et al. (2005); Yamakuchi et al. (2005).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular helical chain along the b axis in (I). The N—H···O and N—H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I). The N—H···O and N—H···N (obscured) hydrogen bonds are shown as orange and blue dashed lines, respectively.
N-(3-Aminobicyclo[2.2.1]heptan-2-yl)-4-methylbenzenesulfonamide top
Crystal data top
C14H20N2O2SF(000) = 300
Mr = 280.38Dx = 1.386 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 3574 reflections
a = 10.1715 (2) Åθ = 4.1–76.4°
b = 6.1169 (1) ŵ = 2.14 mm1
c = 11.5150 (3) ÅT = 100 K
β = 110.332 (2)°Prism, colourless
V = 671.80 (2) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2750 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2731 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.014
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.1°
ω scanh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 77
Tmin = 0.566, Tmax = 0.814l = 1412
4721 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.049P)2 + 0.0858P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2750 reflectionsΔρmax = 0.22 e Å3
185 parametersΔρmin = 0.26 e Å3
4 restraintsAbsolute structure: Flack (1983), 1217 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (10)
Crystal data top
C14H20N2O2SV = 671.80 (2) Å3
Mr = 280.38Z = 2
Monoclinic, P21Cu Kα radiation
a = 10.1715 (2) ŵ = 2.14 mm1
b = 6.1169 (1) ÅT = 100 K
c = 11.5150 (3) Å0.30 × 0.20 × 0.10 mm
β = 110.332 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2750 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2731 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.814Rint = 0.014
4721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.26 e Å3
2750 reflectionsAbsolute structure: Flack (1983), 1217 Friedel pairs
185 parametersAbsolute structure parameter: 0.001 (10)
4 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26041 (3)0.50378 (5)0.72818 (2)0.01602 (9)
O10.26695 (10)0.73734 (17)0.71708 (9)0.0218 (2)
N10.52705 (11)0.5254 (2)1.10027 (10)0.0184 (2)
N20.32587 (11)0.44016 (18)0.87334 (10)0.0160 (2)
O20.32988 (10)0.36603 (18)0.66642 (9)0.0215 (2)
C10.38324 (13)0.5685 (2)1.09495 (11)0.0168 (3)
H10.37900.72461.11920.020*
C20.26899 (13)0.5369 (2)0.96230 (11)0.0153 (2)
H20.22860.68320.93040.018*
C30.15457 (14)0.4000 (2)0.98927 (13)0.0190 (3)
H30.05870.41490.92560.023*
C40.16743 (13)0.4842 (3)1.11857 (12)0.0224 (3)
H4A0.10850.40151.15590.027*
H4B0.14860.64291.11960.027*
C50.32467 (14)0.4279 (2)1.17705 (12)0.0198 (3)
H50.36660.46041.26760.024*
C60.32835 (14)0.1852 (2)1.14384 (13)0.0213 (3)
H6A0.31380.09011.20790.026*
H6B0.41870.14701.13450.026*
C70.20485 (14)0.1631 (2)1.01838 (13)0.0220 (3)
H7A0.23730.10240.95330.026*
H7B0.12960.06871.02680.026*
C80.07959 (14)0.4382 (2)0.67418 (11)0.0164 (2)
C90.01687 (14)0.6042 (2)0.66650 (12)0.0200 (3)
H90.01440.74880.69120.024*
C100.15935 (14)0.5562 (2)0.62230 (12)0.0205 (3)
H100.22530.66910.61700.025*
C110.20671 (13)0.3446 (2)0.58568 (12)0.0185 (3)
C120.10771 (14)0.1807 (2)0.59531 (12)0.0190 (3)
H120.13870.03560.57150.023*
C130.03540 (14)0.2258 (2)0.63911 (12)0.0180 (3)
H130.10170.11310.64490.022*
C140.36173 (14)0.2973 (3)0.53354 (14)0.0244 (3)
H14A0.40590.39110.46150.037*
H14B0.40360.32640.59690.037*
H14C0.37650.14360.50830.037*
H1n0.5811 (16)0.480 (3)1.1733 (11)0.025 (4)*
H2n0.530 (2)0.412 (2)1.0552 (16)0.033 (5)*
H3n0.357 (2)0.3032 (19)0.882 (2)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01351 (14)0.01864 (15)0.01503 (14)0.00197 (11)0.00386 (10)0.00003 (11)
O10.0213 (5)0.0204 (5)0.0199 (5)0.0048 (4)0.0026 (4)0.0027 (4)
N10.0138 (5)0.0199 (5)0.0187 (5)0.0012 (5)0.0021 (4)0.0008 (5)
N20.0140 (5)0.0182 (5)0.0151 (5)0.0023 (4)0.0040 (4)0.0002 (4)
O20.0177 (5)0.0296 (5)0.0185 (4)0.0000 (4)0.0081 (4)0.0028 (4)
C10.0169 (6)0.0155 (6)0.0161 (6)0.0013 (4)0.0032 (4)0.0005 (4)
C20.0141 (5)0.0153 (6)0.0160 (5)0.0026 (4)0.0046 (4)0.0002 (5)
C30.0133 (6)0.0223 (6)0.0217 (6)0.0008 (5)0.0064 (5)0.0013 (5)
C40.0201 (6)0.0266 (7)0.0240 (6)0.0055 (6)0.0122 (5)0.0031 (6)
C50.0196 (6)0.0226 (6)0.0176 (6)0.0041 (5)0.0069 (5)0.0024 (5)
C60.0198 (6)0.0204 (7)0.0259 (7)0.0021 (5)0.0106 (5)0.0057 (5)
C70.0180 (6)0.0197 (6)0.0306 (7)0.0037 (5)0.0113 (5)0.0006 (6)
C80.0151 (6)0.0188 (6)0.0141 (6)0.0009 (5)0.0036 (4)0.0007 (4)
C90.0195 (6)0.0174 (6)0.0216 (6)0.0002 (5)0.0053 (5)0.0012 (5)
C100.0178 (6)0.0217 (7)0.0216 (6)0.0033 (5)0.0063 (5)0.0020 (5)
C110.0155 (6)0.0247 (7)0.0146 (6)0.0006 (5)0.0041 (5)0.0001 (5)
C120.0189 (6)0.0183 (6)0.0177 (6)0.0022 (5)0.0037 (5)0.0010 (5)
C130.0171 (6)0.0182 (6)0.0175 (6)0.0023 (5)0.0046 (5)0.0003 (5)
C140.0154 (6)0.0326 (8)0.0238 (7)0.0015 (5)0.0049 (5)0.0024 (6)
Geometric parameters (Å, º) top
S1—O21.4367 (10)C5—H51.0000
S1—O11.4380 (11)C6—C71.556 (2)
S1—N21.6172 (11)C6—H6A0.9900
S1—C81.7707 (13)C6—H6B0.9900
N1—C11.4665 (16)C7—H7A0.9900
N1—H1n0.875 (9)C7—H7B0.9900
N1—H2n0.873 (9)C8—C131.3884 (18)
N2—C21.4649 (16)C8—C91.3930 (19)
N2—H3n0.888 (9)C9—C101.3902 (18)
C1—C51.5425 (18)C9—H90.9500
C1—C21.5771 (16)C10—C111.394 (2)
C1—H11.0000C10—H100.9500
C2—C31.5502 (18)C11—C121.3977 (19)
C2—H21.0000C11—C141.5076 (18)
C3—C71.5347 (19)C12—C131.3925 (19)
C3—C41.5376 (19)C12—H120.9500
C3—H31.0000C13—H130.9500
C4—C51.5432 (18)C14—H14A0.9800
C4—H4A0.9900C14—H14B0.9800
C4—H4B0.9900C14—H14C0.9800
C5—C61.537 (2)
O2—S1—O1119.52 (6)C6—C5—H5114.4
O2—S1—N2105.89 (6)C1—C5—H5114.4
O1—S1—N2108.41 (6)C4—C5—H5114.4
O2—S1—C8108.84 (6)C5—C6—C7103.51 (11)
O1—S1—C8105.56 (6)C5—C6—H6A111.1
N2—S1—C8108.23 (6)C7—C6—H6A111.1
C1—N1—H1n112.5 (12)C5—C6—H6B111.1
C1—N1—H2n111.1 (13)C7—C6—H6B111.1
H1n—N1—H2n100.2 (18)H6A—C6—H6B109.0
C2—N2—S1120.32 (9)C3—C7—C6102.75 (11)
C2—N2—H3n120.9 (14)C3—C7—H7A111.2
S1—N2—H3n110.2 (14)C6—C7—H7A111.2
N1—C1—C5117.79 (10)C3—C7—H7B111.2
N1—C1—C2114.02 (10)C6—C7—H7B111.2
C5—C1—C2102.34 (10)H7A—C7—H7B109.1
N1—C1—H1107.4C13—C8—C9120.92 (13)
C5—C1—H1107.4C13—C8—S1120.39 (10)
C2—C1—H1107.4C9—C8—S1118.69 (11)
N2—C2—C3115.36 (10)C10—C9—C8119.41 (13)
N2—C2—C1112.93 (10)C10—C9—H9120.3
C3—C2—C1102.95 (10)C8—C9—H9120.3
N2—C2—H2108.4C9—C10—C11120.88 (13)
C3—C2—H2108.4C9—C10—H10119.6
C1—C2—H2108.4C11—C10—H10119.6
C7—C3—C4101.26 (11)C10—C11—C12118.56 (12)
C7—C3—C2109.72 (11)C10—C11—C14120.16 (13)
C4—C3—C2101.29 (10)C12—C11—C14121.25 (13)
C7—C3—H3114.4C13—C12—C11121.36 (13)
C4—C3—H3114.4C13—C12—H12119.3
C2—C3—H3114.4C11—C12—H12119.3
C3—C4—C594.26 (10)C8—C13—C12118.85 (12)
C3—C4—H4A112.9C8—C13—H13120.6
C5—C4—H4A112.9C12—C13—H13120.6
C3—C4—H4B112.9C11—C14—H14A109.5
C5—C4—H4B112.9C11—C14—H14B109.5
H4A—C4—H4B110.3H14A—C14—H14B109.5
C6—C5—C1109.75 (11)C11—C14—H14C109.5
C6—C5—C4102.60 (11)H14A—C14—H14C109.5
C1—C5—C499.82 (10)H14B—C14—H14C109.5
O2—S1—N2—C2174.49 (10)C1—C5—C6—C774.78 (12)
O1—S1—N2—C256.10 (11)C4—C5—C6—C730.64 (13)
C8—S1—N2—C257.93 (11)C4—C3—C7—C639.25 (12)
S1—N2—C2—C393.87 (12)C2—C3—C7—C667.22 (13)
S1—N2—C2—C1148.11 (9)C5—C6—C7—C35.12 (13)
N1—C1—C2—N28.26 (15)O2—S1—C8—C1332.18 (13)
C5—C1—C2—N2120.07 (12)O1—S1—C8—C13161.63 (11)
N1—C1—C2—C3133.32 (11)N2—S1—C8—C1382.46 (12)
C5—C1—C2—C35.00 (12)O2—S1—C8—C9147.16 (10)
N2—C2—C3—C749.21 (14)O1—S1—C8—C917.71 (12)
C1—C2—C3—C774.26 (12)N2—S1—C8—C998.19 (11)
N2—C2—C3—C4155.65 (10)C13—C8—C9—C100.4 (2)
C1—C2—C3—C432.18 (12)S1—C8—C9—C10178.91 (10)
C7—C3—C4—C556.71 (12)C8—C9—C10—C110.0 (2)
C2—C3—C4—C556.28 (12)C9—C10—C11—C120.5 (2)
N1—C1—C5—C658.83 (14)C9—C10—C11—C14177.73 (12)
C2—C1—C5—C667.07 (12)C10—C11—C12—C130.68 (19)
N1—C1—C5—C4166.13 (11)C14—C11—C12—C13177.57 (12)
C2—C1—C5—C440.23 (12)C9—C8—C13—C120.3 (2)
C3—C4—C5—C653.44 (12)S1—C8—C13—C12179.03 (10)
C3—C4—C5—C159.52 (12)C11—C12—C13—C80.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.88 (1)2.20 (1)2.976 (2)148 (2)
N1—H2n···N20.87 (1)2.39 (2)2.752 (2)105 (2)
N2—H3n···N1i0.89 (1)2.04 (1)2.907 (2)166 (2)
Symmetry code: (i) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC14H20N2O2S
Mr280.38
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)10.1715 (2), 6.1169 (1), 11.5150 (3)
β (°) 110.332 (2)
V3)671.80 (2)
Z2
Radiation typeCu Kα
µ (mm1)2.14
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.566, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
4721, 2750, 2731
Rint0.014
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.03
No. of reflections2750
No. of parameters185
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.26
Absolute structureFlack (1983), 1217 Friedel pairs
Absolute structure parameter0.001 (10)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.88 (1)2.20 (1)2.976 (2)148 (2)
N1—H2n···N20.87 (1)2.39 (2)2.752 (2)105 (2)
N2—H3n···N1i0.89 (1)2.04 (1)2.907 (2)166 (2)
Symmetry code: (i) x+1, y1/2, z+2.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Research Center of Pharmacy, King Saud University, for funding this work. They also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).

References

First citationAbdel-Aziz, A. A.-M., El Bialy, S. A. A., Goda, F. E. & Kunieda, T. (2004). Tetrahedron Lett. 45, 8073–8077.  CAS Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron Lett. 46, 3645–3648.  Web of Science CrossRef CAS Google Scholar
First citationSeo, R., Ishizuka, T., Abdel-Aziz, A. A.-M. & Kunieda, T. (2001). Tetrahedron Lett. 42, 6353–6355.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamakuchi, M., Matsunaga, H., Tokuda, R., Ishizuka, T., Nakajima, M. & Kuniedab, T. (2005). Tetrahedron Lett. 46, 4019–4022.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds