organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo­acetyl-3-phenyl­sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 2 June 2012; accepted 8 June 2012; online 16 June 2012)

In the title compound (systematic name: 4-bromoacetyl-1,2,3-oxadiazol-3-ylium-5-olate), C10H7BrN2O3, the 1,2,3-oxadiazole ring and bromo­acetyl group are essentially planar [maximum deviation = 0.010 (4) and 0.013 (3) Å respectively] and form dihedral angles of 59.31 (19) and 67.96 (11)°, respectively, with the phenyl ring. The 1,2,3-oxadiazole ring is twisted slightly from the mean plane of the bromo­acetyl group, forming a dihedral angle of 9.16 (24)°. In the crystal, mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds into inversion dimers with R22(12) ring motifs. The dimers are further connected by weak C—H⋯O hydrogen bonds into an infinite tape parallel to the b axis. In addition, ππ stacking inter­actions [centroid–centroid distance = 3.6569 (19) Å] and short inter­molecular contacts [O⋯O = 2.827 (3) and C⋯C = 3.088 (5) Å] are observed.

Related literature

For the biological activity of sydnones, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Hegde et al. (2008[Hegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]). For electrophilic substitution reaction on sydnones, see: Kalluraya & Rahiman (1997[Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049-1052.]); Kalluraya et al. (2002[Kalluraya, B., Rahiman, M. A. & Banji, D. (2002). Indian J. Chem. Sect. B, 41, 1712-1717.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7BrN2O3

  • Mr = 283.09

  • Monoclinic, P 21 /c

  • a = 7.2030 (2) Å

  • b = 5.8778 (1) Å

  • c = 25.1133 (5) Å

  • β = 91.104 (2)°

  • V = 1063.04 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.86 mm−1

  • T = 100 K

  • 0.50 × 0.26 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.248, Tmax = 0.720

  • 11985 measured reflections

  • 3710 independent reflections

  • 3041 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.133

  • S = 1.23

  • 3710 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.95 2.56 3.490 (5) 167
C10—H10A⋯O2ii 0.99 2.27 3.227 (5) 162
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well-defined class of mesoionic compounds consisting of the 1,2,3-oxadiazole ring system. The study of sydnones remains a field of interest because of their electronic structure and also because of the varied types of biological activities displayed by some of them (Rai et al., 2008). Sydnone derivatives were found to exhibit promising anti-microbial properties (Hegde et al., 2008). Sydnones are synthesized by the cyclodehydration of N-nitroso-N-substituted amino acids using acetic anhydride. The sydnones unsubstituted in the 4-position readily undergo typical electrophilic substitution reaction namely formylation (Kalluraya & Rahiman, 1997) and acetylation (Kalluraya et al., 2002).

The asymmetric unit of the title compound is shown in Fig. 1. The 1,2,3-oxadiazole ring (O1/N1/N2/C7/C8) and bromoacetyl group (Br1/O3/C9/C10) are almost planar [maximum deviation = 0.010 (4) and 0.013 (3) Å, respectively] and make dihedral angles of 59.31 (19) and 67.96 (11)°, respectively, with the C1–C6 benzene ring. The 1,2,3-oxadiazole ring is slightly twisted from the bromoacetyl group as indicated by the dihedral angle of 9.16 (24)°.

In the crystal (Fig. 2), molecules are linked by a pair of intermolecular C10—H10A···O2ii hydrogen bonds (Table 1) into inversion dimers with an R22(12) ring motif (Bernstein et al., 1995). The dimers are further connected by intermolecular C5—H5A···O3i hydrogen bonds (Table 1) into an infinite tape parallel to the b axis. The crystal is further stabilized by π···π interactions with a Cg1..Cg1 distance of 3.6569 (19) Å [symmetry code = 1-x,2-y,-z], where Cg1 is the centroid of O1/N1/N2/C7/C8 ring. Short intermolecular O1···O1(1-x, 3-y, -z) and C7···C7 (1-x, 2-y, -z) contacts of 2.827 (3) and 3.088 (5) Å, respectively, are also observed.

Related literature top

For the biological activity of sydnones, see: Rai et al. (2008); Hegde et al. (2008). For electrophilic substitution reaction on sydnones, see: Kalluraya & Rahiman (1997); Kalluraya et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 4-acetyl-3-arylsydnone (0.01 mol) in chloroform, bromine (0.01 mol) was added under visible light irradiation. The solvent was then removed under vacuum and the residue was recrystallized from ethanol. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were positioned geometrically [C—H = 0.95 and 0.99 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

Sydnones constitute a well-defined class of mesoionic compounds consisting of the 1,2,3-oxadiazole ring system. The study of sydnones remains a field of interest because of their electronic structure and also because of the varied types of biological activities displayed by some of them (Rai et al., 2008). Sydnone derivatives were found to exhibit promising anti-microbial properties (Hegde et al., 2008). Sydnones are synthesized by the cyclodehydration of N-nitroso-N-substituted amino acids using acetic anhydride. The sydnones unsubstituted in the 4-position readily undergo typical electrophilic substitution reaction namely formylation (Kalluraya & Rahiman, 1997) and acetylation (Kalluraya et al., 2002).

The asymmetric unit of the title compound is shown in Fig. 1. The 1,2,3-oxadiazole ring (O1/N1/N2/C7/C8) and bromoacetyl group (Br1/O3/C9/C10) are almost planar [maximum deviation = 0.010 (4) and 0.013 (3) Å, respectively] and make dihedral angles of 59.31 (19) and 67.96 (11)°, respectively, with the C1–C6 benzene ring. The 1,2,3-oxadiazole ring is slightly twisted from the bromoacetyl group as indicated by the dihedral angle of 9.16 (24)°.

In the crystal (Fig. 2), molecules are linked by a pair of intermolecular C10—H10A···O2ii hydrogen bonds (Table 1) into inversion dimers with an R22(12) ring motif (Bernstein et al., 1995). The dimers are further connected by intermolecular C5—H5A···O3i hydrogen bonds (Table 1) into an infinite tape parallel to the b axis. The crystal is further stabilized by π···π interactions with a Cg1..Cg1 distance of 3.6569 (19) Å [symmetry code = 1-x,2-y,-z], where Cg1 is the centroid of O1/N1/N2/C7/C8 ring. Short intermolecular O1···O1(1-x, 3-y, -z) and C7···C7 (1-x, 2-y, -z) contacts of 2.827 (3) and 3.088 (5) Å, respectively, are also observed.

For the biological activity of sydnones, see: Rai et al. (2008); Hegde et al. (2008). For electrophilic substitution reaction on sydnones, see: Kalluraya & Rahiman (1997); Kalluraya et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
4-Bromoacetyl-1,2,3-oxadiazol-3-ylium-5-olate top
Crystal data top
C10H7BrN2O3F(000) = 560
Mr = 283.09Dx = 1.769 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4277 reflections
a = 7.2030 (2) Åθ = 3.2–31.7°
b = 5.8778 (1) ŵ = 3.86 mm1
c = 25.1133 (5) ÅT = 100 K
β = 91.104 (2)°Plate, yellow
V = 1063.04 (4) Å30.50 × 0.26 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3710 independent reflections
Radiation source: fine-focus sealed tube3041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 32.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 107
Tmin = 0.248, Tmax = 0.720k = 88
11985 measured reflectionsl = 3736
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0334P)2 + 3.1942P]
where P = (Fo2 + 2Fc2)/3
3710 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
C10H7BrN2O3V = 1063.04 (4) Å3
Mr = 283.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2030 (2) ŵ = 3.86 mm1
b = 5.8778 (1) ÅT = 100 K
c = 25.1133 (5) Å0.50 × 0.26 × 0.09 mm
β = 91.104 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3710 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3041 reflections with I > 2σ(I)
Tmin = 0.248, Tmax = 0.720Rint = 0.035
11985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.23Δρmax = 0.95 e Å3
3710 reflectionsΔρmin = 0.96 e Å3
145 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.99194 (5)0.42975 (6)0.098694 (16)0.02954 (12)
O10.5816 (4)1.3028 (4)0.02259 (10)0.0249 (5)
O20.7743 (4)1.0452 (5)0.01567 (9)0.0252 (5)
O30.7030 (4)0.7452 (5)0.14346 (10)0.0286 (6)
N10.4819 (4)1.3224 (5)0.06815 (12)0.0250 (6)
N20.5218 (4)1.1415 (5)0.09563 (11)0.0195 (5)
C10.3074 (5)0.9238 (7)0.14915 (14)0.0269 (7)
H1A0.29920.81270.12170.032*
C20.2059 (6)0.9026 (8)0.19541 (16)0.0322 (8)
H2A0.12610.77570.19990.039*
C30.2213 (6)1.0680 (8)0.23529 (15)0.0321 (8)
H3A0.15191.05190.26690.038*
C40.3365 (6)1.2553 (7)0.22939 (15)0.0305 (8)
H4A0.34551.36650.25680.037*
C50.4388 (6)1.2797 (6)0.18323 (14)0.0259 (7)
H5A0.51821.40690.17850.031*
C60.4213 (5)1.1132 (6)0.14450 (13)0.0213 (6)
C70.6843 (5)1.0981 (6)0.02248 (13)0.0215 (6)
C80.6438 (5)0.9965 (6)0.07241 (13)0.0187 (6)
C90.7339 (5)0.8024 (6)0.09781 (13)0.0203 (6)
C100.8754 (5)0.6855 (6)0.06322 (14)0.0240 (7)
H10A0.97210.79670.05340.029*
H10B0.81330.63220.03000.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02838 (18)0.02301 (17)0.0372 (2)0.00214 (16)0.00027 (14)0.00141 (16)
O10.0304 (13)0.0241 (12)0.0203 (11)0.0022 (11)0.0046 (10)0.0053 (10)
O20.0260 (12)0.0311 (14)0.0188 (11)0.0056 (11)0.0069 (9)0.0033 (10)
O30.0391 (15)0.0261 (13)0.0210 (12)0.0044 (11)0.0120 (11)0.0071 (10)
N10.0297 (15)0.0222 (14)0.0232 (14)0.0000 (12)0.0066 (12)0.0026 (11)
N20.0209 (13)0.0187 (12)0.0190 (12)0.0024 (10)0.0035 (10)0.0001 (10)
C10.0294 (17)0.0287 (17)0.0230 (16)0.0062 (16)0.0079 (13)0.0050 (14)
C20.0300 (18)0.037 (2)0.0297 (18)0.0072 (17)0.0112 (15)0.0026 (16)
C30.0342 (19)0.038 (2)0.0242 (17)0.0076 (18)0.0109 (14)0.0005 (16)
C40.044 (2)0.0258 (17)0.0221 (17)0.0039 (16)0.0078 (15)0.0050 (14)
C50.0344 (18)0.0199 (15)0.0236 (16)0.0016 (14)0.0036 (14)0.0001 (13)
C60.0269 (16)0.0197 (15)0.0174 (14)0.0003 (12)0.0062 (12)0.0005 (11)
C70.0229 (14)0.0209 (15)0.0208 (15)0.0053 (12)0.0030 (12)0.0028 (12)
C80.0213 (14)0.0178 (13)0.0172 (14)0.0053 (12)0.0049 (11)0.0008 (11)
C90.0229 (15)0.0180 (14)0.0201 (14)0.0044 (12)0.0054 (12)0.0008 (12)
C100.0258 (16)0.0197 (15)0.0269 (17)0.0006 (13)0.0091 (13)0.0026 (13)
Geometric parameters (Å, º) top
Br1—C101.931 (4)C2—H2A0.9500
O1—N11.368 (4)C3—C41.388 (6)
O1—C71.412 (4)C3—H3A0.9500
O2—C71.208 (4)C4—C51.393 (5)
O3—C91.219 (4)C4—H4A0.9500
N1—N21.297 (4)C5—C61.384 (5)
N2—C81.363 (4)C5—H5A0.9500
N2—C61.446 (4)C7—C81.424 (4)
C1—C61.390 (5)C8—C91.454 (5)
C1—C21.390 (5)C9—C101.517 (5)
C1—H1A0.9500C10—H10A0.9900
C2—C31.399 (6)C10—H10B0.9900
N1—O1—C7110.9 (3)C4—C5—H5A121.0
N2—N1—O1105.2 (3)C5—C6—C1123.6 (3)
N1—N2—C8115.0 (3)C5—C6—N2118.4 (3)
N1—N2—C6115.9 (3)C1—C6—N2118.0 (3)
C8—N2—C6128.9 (3)O2—C7—O1120.7 (3)
C6—C1—C2117.6 (3)O2—C7—C8135.4 (3)
C6—C1—H1A121.2O1—C7—C8103.9 (3)
C2—C1—H1A121.2N2—C8—C7105.0 (3)
C1—C2—C3120.1 (4)N2—C8—C9126.1 (3)
C1—C2—H2A120.0C7—C8—C9128.2 (3)
C3—C2—H2A120.0O3—C9—C8122.7 (3)
C4—C3—C2120.9 (3)O3—C9—C10123.4 (3)
C4—C3—H3A119.5C8—C9—C10113.8 (3)
C2—C3—H3A119.5C9—C10—Br1112.3 (2)
C3—C4—C5119.8 (3)C9—C10—H10A109.1
C3—C4—H4A120.1Br1—C10—H10A109.1
C5—C4—H4A120.1C9—C10—H10B109.1
C6—C5—C4118.0 (3)Br1—C10—H10B109.1
C6—C5—H5A121.0H10A—C10—H10B107.9
C7—O1—N1—N20.9 (4)N1—O1—C7—C81.7 (4)
O1—N1—N2—C80.3 (4)N1—N2—C8—C71.3 (4)
O1—N1—N2—C6175.4 (3)C6—N2—C8—C7173.7 (3)
C6—C1—C2—C30.3 (6)N1—N2—C8—C9169.6 (3)
C1—C2—C3—C40.3 (7)C6—N2—C8—C915.4 (6)
C2—C3—C4—C50.1 (6)O2—C7—C8—N2176.0 (4)
C3—C4—C5—C60.1 (6)O1—C7—C8—N21.7 (3)
C4—C5—C6—C10.1 (6)O2—C7—C8—C913.4 (7)
C4—C5—C6—N2177.8 (3)O1—C7—C8—C9168.9 (3)
C2—C1—C6—C50.1 (6)N2—C8—C9—O32.4 (6)
C2—C1—C6—N2177.6 (4)C7—C8—C9—O3171.2 (4)
N1—N2—C6—C559.9 (4)N2—C8—C9—C10174.9 (3)
C8—N2—C6—C5125.1 (4)C7—C8—C9—C106.2 (5)
N1—N2—C6—C1117.9 (4)O3—C9—C10—Br12.4 (5)
C8—N2—C6—C157.1 (5)C8—C9—C10—Br1179.8 (2)
N1—O1—C7—O2176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.952.563.490 (5)167
C10—H10A···O2ii0.992.273.227 (5)162
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC10H7BrN2O3
Mr283.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.2030 (2), 5.8778 (1), 25.1133 (5)
β (°) 91.104 (2)
V3)1063.04 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.86
Crystal size (mm)0.50 × 0.26 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.248, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
11985, 3710, 3041
Rint0.035
(sin θ/λ)max1)0.747
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.133, 1.23
No. of reflections3710
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.96

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.95002.56003.490 (5)167.00
C10—H10A···O2ii0.99002.27003.227 (5)162.00
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.  CAS Google Scholar
First citationKalluraya, B., Rahiman, M. A. & Banji, D. (2002). Indian J. Chem. Sect. B, 41, 1712–1717.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds