organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-1-methyl-4-oxo-4,5-di­hydro-1H-imidazol-3-ium chloride

aDepartment of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran, bDepartment of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran, and cInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 4 June 2012; accepted 14 June 2012; online 23 June 2012)

In the crystal structure of the title compound, C4H8N3O+·Cl, N—H⋯Cl hydrogen bonds link the components into chains along [010]. In addition, weak C—H⋯Cl hydrogen bonds link the chains into a two-dimensional network perpendicular to (001).

Related literature

For creatinine (2-amino-1-methyl-5H-imidazol-4-one), which is used in the synthesis of some 1:1 proton-transfer compounds, see; Moghimi et al. (2004[Moghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790-o1792.]); Soleimannejad et al. (2005[Soleimannejad, J., Sharif, M. A., Sheshmani, S., Alizadeh, R., Moghimi, A. & Aghabozorg, H. (2005). Anal. Sci. 21, x49-x50.]). For related structures, see: Tabatabaee et al. (2007[Tabatabaee, M., Ghassemzadeh, M., Jafari, P. & Khavasi, H. R. (2007). Acta Cryst. E63, o1001-o1002.]); Bujak & Zaleski (2002[Bujak, M. & Zaleski, J. (2002). Z. Naturforsch. Teil B, 57, 157-164.]); Tabatabaee, Abbasi et al. (2011[Tabatabaee, M., Abbasi, F., Kukovec, B.-M. & Nasirizadeh, N. (2011). J. Coord. Chem. 64, 1718-1728.]); Tabatabaee, Tahriri et al. (2011[Tabatabaee, M., Tahriri, M., Tahriri, M., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, m769-m770.], 2012[Tabatabaee, M., Tahriri, M., Tahriri, M., Ozawa, Y., Neumüller, B., Fujioka, H. & Toriumi, K. (2012). Polyhedron, 33, 336-340.]); Tabatabaee, Adineh et al. (2012[Tabatabaee, M., Adineh, M., Derikvand, Z. & Attar Gharamaleki, J. (2012). Acta Cryst. E68, m462-m463.]). For background information on weak C—H⋯Cl hydrogen bonds, see: Freytag & Jones (2000[Freytag, M. & Jones, P. G. (2000). Chem. Commun. pp. 277-278.]); Taylor & Kennard (1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N3O+·Cl

  • Mr = 149.58

  • Monoclinic, P 21 /n

  • a = 8.4617 (2) Å

  • b = 7.7073 (2) Å

  • c = 10.2215 (3) Å

  • β = 98.369 (2)°

  • V = 659.52 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.51 mm−1

  • T = 120 K

  • 0.57 × 0.35 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction Ltd. (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.509, Tmax = 1.000

  • 5373 measured reflections

  • 1167 independent reflections

  • 1158 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 1.08

  • 1167 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.86 2.42 3.2714 (12) 169
N1—H2⋯Cl1ii 0.86 2.32 3.1506 (12) 163
N2—H3⋯Cl1 0.89 2.31 3.1808 (11) 165
C2—H4⋯Cl1iii 0.97 2.69 3.6271 (14) 162
C4—H8⋯Cl1i 0.96 2.77 3.7241 (13) 175
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of our research to synthesize transition metal complexes with dicarboxylic acids (especially pyridine-2,6-dicarboxilic acid) in the presence of some amino compounds (Tabatabaee, Abbasi et al., 2011; Tabatabaee, Tahriri et al., 2011; Tabatabaee, Tahriri et al., 2012; Tabatabaee, Adineh et al., 2012), the reaction of zirconium tetrachloride, with pyridine-2,6-dicarboxilic acid in the presence of creatinine was performed. The title compound (I) was fortuitously obtained as a result of this reaction. Creatinine has previously been used as a proton acceptor in the synthesis of some 1:1 proton-transfer compounds (Moghimi et al., 2004; Soleimannejad et al., 2005).

The molecular structure of (I) is shown in Fig. 1. During the reaction a proton was transferred to the ring N atom of the creatinine (2-Amino-1-methyl-5H-imidazol-4-one) molecule. In (I) the C3—N1 bond [1.3094 (18) Å] and C3—N2 bond [1.3647 (17) Å] can be compared to the CN bond [1.3108 (18) Å] and C—N bond [1.3612 (17) Å] in the reported proton transfer compound, bis(creatininium)2,5-dicarboxybenzene-1,4-dicarboxylate (Tabatabaee et al., 2007).

In the crystal, intermolecular N—H···Cl hydrogen bonds link the components into one-dimensional chains along [010]. In addition, weak intermolecular C—H···Cl hydrogen bonds link one-dimensional-chains into a two-dimensional network perpendicular to (001) (Fig. 2). When compared with the crystal structure of 1,2,4-triazolium chloride (Bujak & Zaleski 2002), the N—H···Cl interactions are weaker in the present structure while C—H···Cl interactions are similar. For the weak intermolecular hydrogen bonds the C—H···Cl angles are in the range of those previously reported (Freytag & Jones, 2000; Taylor & Kennard, 1982).

Related literature top

For creatinine (2-amino-1-methyl-5H-imidazol-4-one), which is used in in the synthesis of some 1:1 proton-transfer compounds, see; Moghimi et al. (2004); Soleimannejad et al. (2005). For related structures, see: Tabatabaee et al. (2007); Bujak & Zaleski (2002); Tabatabaee, Abbasi et al. (2011); Tabatabaee, Tahriri et al. (2011, 2012); Tabatabaee, Adineh et al. (2012). For background information on weak C—H···Cl hydrogen bonds, see: Freytag & Jones (2000); Taylor & Kennard (1982).

Experimental top

An aqueous solution of ZrCl4, (0.233 g, 1 mmol) in water (10 ml) was added to a stirring solution of (20 ml) pyridine-2,6-dicarboxylic acid (0.167 g, 1 mmol) and creatinine (0.113 g, 1 mmol). The reaction mixture was stirred at 298K for 4 h. The resulting solid residue was filtered and the colorless crystals of the title compound were obtained after few days at 277K from mother liquor.

Refinement top

H atoms bonded to C atoms were included in calculated positions with C—H = 0.96 and 0.97Å and with Uiso(H) = 1.5Ueq(C). H atoms bonded to N atom were included with N—H 0.86 amd 0.89Å and with Uiso(H) = 1.5Ueq(N).

Structure description top

In continuation of our research to synthesize transition metal complexes with dicarboxylic acids (especially pyridine-2,6-dicarboxilic acid) in the presence of some amino compounds (Tabatabaee, Abbasi et al., 2011; Tabatabaee, Tahriri et al., 2011; Tabatabaee, Tahriri et al., 2012; Tabatabaee, Adineh et al., 2012), the reaction of zirconium tetrachloride, with pyridine-2,6-dicarboxilic acid in the presence of creatinine was performed. The title compound (I) was fortuitously obtained as a result of this reaction. Creatinine has previously been used as a proton acceptor in the synthesis of some 1:1 proton-transfer compounds (Moghimi et al., 2004; Soleimannejad et al., 2005).

The molecular structure of (I) is shown in Fig. 1. During the reaction a proton was transferred to the ring N atom of the creatinine (2-Amino-1-methyl-5H-imidazol-4-one) molecule. In (I) the C3—N1 bond [1.3094 (18) Å] and C3—N2 bond [1.3647 (17) Å] can be compared to the CN bond [1.3108 (18) Å] and C—N bond [1.3612 (17) Å] in the reported proton transfer compound, bis(creatininium)2,5-dicarboxybenzene-1,4-dicarboxylate (Tabatabaee et al., 2007).

In the crystal, intermolecular N—H···Cl hydrogen bonds link the components into one-dimensional chains along [010]. In addition, weak intermolecular C—H···Cl hydrogen bonds link one-dimensional-chains into a two-dimensional network perpendicular to (001) (Fig. 2). When compared with the crystal structure of 1,2,4-triazolium chloride (Bujak & Zaleski 2002), the N—H···Cl interactions are weaker in the present structure while C—H···Cl interactions are similar. For the weak intermolecular hydrogen bonds the C—H···Cl angles are in the range of those previously reported (Freytag & Jones, 2000; Taylor & Kennard, 1982).

For creatinine (2-amino-1-methyl-5H-imidazol-4-one), which is used in in the synthesis of some 1:1 proton-transfer compounds, see; Moghimi et al. (2004); Soleimannejad et al. (2005). For related structures, see: Tabatabaee et al. (2007); Bujak & Zaleski (2002); Tabatabaee, Abbasi et al. (2011); Tabatabaee, Tahriri et al. (2011, 2012); Tabatabaee, Adineh et al. (2012). For background information on weak C—H···Cl hydrogen bonds, see: Freytag & Jones (2000); Taylor & Kennard (1982).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability.
[Figure 2] Fig. 2. Part of the crystal structure with N—H···Cl hydrogen bonds shown as black dashed lines and weak C—H···Cl hydrogen bonds shown as grey dashed lines.
2-Amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium chloride top
Crystal data top
C4H8N3O+·ClF(000) = 312
Mr = 149.58Dx = 1.507 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 5086 reflections
a = 8.4617 (2) Åθ = 4.4–66.9°
b = 7.7073 (2) ŵ = 4.51 mm1
c = 10.2215 (3) ÅT = 120 K
β = 98.369 (2)°Plate, colourless
V = 659.52 (3) Å30.57 × 0.35 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
1167 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1158 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.3784 pixels mm-1θmax = 67.0°, θmin = 6.4°
Rotation method data acquisition using ω scansh = 109
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 99
Tmin = 0.509, Tmax = 1.000l = 1211
5373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.1996P]
where P = (Fo2 + 2Fc2)/3
1167 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C4H8N3O+·ClV = 659.52 (3) Å3
Mr = 149.58Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.4617 (2) ŵ = 4.51 mm1
b = 7.7073 (2) ÅT = 120 K
c = 10.2215 (3) Å0.57 × 0.35 × 0.15 mm
β = 98.369 (2)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
1167 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1158 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 1.000Rint = 0.023
5373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
1167 reflectionsΔρmin = 0.18 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms and the nitrogen atom in amino group were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2 times Ueq of the parent atom). The distance between hydrogen atom H3 and N2 was left unrestrained.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86814 (3)0.71590 (4)0.45236 (3)0.02046 (16)
O10.43618 (13)0.57647 (13)0.32081 (12)0.0358 (3)
N10.79940 (13)0.13245 (15)0.41934 (11)0.0238 (3)
H10.80350.02100.42170.029*
H20.88470.19230.44210.029*
N20.64629 (13)0.38708 (14)0.37714 (11)0.0217 (3)
H30.72270.46460.40310.026*
C10.48933 (16)0.43236 (18)0.33205 (13)0.0234 (3)
C20.40103 (16)0.26312 (17)0.30246 (14)0.0211 (3)
H40.31280.25250.35290.025*
H50.36060.25260.20900.025*
N30.52395 (13)0.13463 (14)0.34360 (11)0.0189 (3)
C30.66330 (16)0.21100 (17)0.38107 (13)0.0184 (3)
C40.49578 (15)0.04876 (17)0.31667 (13)0.0222 (3)
H60.47720.06740.22280.027*
H70.40400.08580.35450.027*
H80.58760.11420.35490.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0170 (2)0.0197 (2)0.0238 (2)0.00117 (10)0.00001 (14)0.00029 (10)
O10.0308 (6)0.0202 (6)0.0562 (7)0.0037 (4)0.0058 (5)0.0023 (5)
N10.0176 (6)0.0207 (6)0.0312 (6)0.0022 (4)0.0029 (5)0.0001 (5)
N20.0203 (6)0.0182 (6)0.0262 (6)0.0030 (4)0.0019 (5)0.0020 (4)
C10.0225 (7)0.0205 (7)0.0279 (7)0.0009 (5)0.0055 (5)0.0006 (5)
C20.0162 (7)0.0191 (6)0.0276 (7)0.0028 (5)0.0021 (5)0.0011 (6)
N30.0166 (5)0.0163 (6)0.0233 (6)0.0002 (4)0.0007 (4)0.0001 (4)
C30.0203 (7)0.0188 (7)0.0163 (6)0.0019 (5)0.0032 (5)0.0007 (4)
C40.0195 (7)0.0175 (6)0.0285 (7)0.0017 (5)0.0002 (5)0.0008 (5)
Geometric parameters (Å, º) top
O1—C11.1976 (18)C2—N31.4533 (16)
N1—C31.3094 (18)C2—H40.9700
N1—H10.8600C2—H50.9700
N1—H20.8600N3—C31.3237 (18)
N2—C31.3647 (17)N3—C41.4530 (17)
N2—C11.3856 (17)C4—H60.9600
N2—H30.8921C4—H70.9600
C1—C21.5118 (19)C4—H80.9600
C3—N1—H1120.0H4—C2—H5109.2
C3—N1—H2120.0C3—N3—C4127.01 (11)
H1—N1—H2120.0C3—N3—C2110.53 (11)
C3—N2—C1110.62 (11)C4—N3—C2121.15 (10)
C3—N2—H3126.1N1—C3—N3126.05 (12)
C1—N2—H3123.3N1—C3—N2123.57 (12)
O1—C1—N2126.44 (13)N3—C3—N2110.36 (11)
O1—C1—C2127.82 (12)N3—C4—H6109.5
N2—C1—C2105.73 (11)N3—C4—H7109.5
N3—C2—C1102.59 (11)H6—C4—H7109.5
N3—C2—H4111.2N3—C4—H8109.5
C1—C2—H4111.2H6—C4—H8109.5
N3—C2—H5111.2H7—C4—H8109.5
C1—C2—H5111.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.862.423.2714 (12)169
N1—H2···Cl1ii0.862.323.1506 (12)163
N2—H3···Cl10.892.313.1808 (11)165
C2—H4···Cl1iii0.972.693.6271 (14)162
C4—H8···Cl1i0.962.773.7241 (13)175
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H8N3O+·Cl
Mr149.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)8.4617 (2), 7.7073 (2), 10.2215 (3)
β (°) 98.369 (2)
V3)659.52 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.51
Crystal size (mm)0.57 × 0.35 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.509, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5373, 1167, 1158
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.08
No. of reflections1167
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.862.423.2714 (12)169
N1—H2···Cl1ii0.862.323.1506 (12)163
N2—H3···Cl10.892.313.1808 (11)165
C2—H4···Cl1iii0.972.693.6271 (14)162
C4—H8···Cl1i0.962.773.7241 (13)175
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

This research was supported by the Islamic Azad University, Yazd Branch (grant No. 50678) and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBujak, M. & Zaleski, J. (2002). Z. Naturforsch. Teil B, 57, 157–164.  CAS Google Scholar
First citationFreytag, M. & Jones, P. G. (2000). Chem. Commun. pp. 277–278.  Web of Science CSD CrossRef Google Scholar
First citationMoghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790–o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationOxford Diffraction Ltd. (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Sharif, M. A., Sheshmani, S., Alizadeh, R., Moghimi, A. & Aghabozorg, H. (2005). Anal. Sci. 21, x49–x50.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Abbasi, F., Kukovec, B.-M. & Nasirizadeh, N. (2011). J. Coord. Chem. 64, 1718–1728.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Adineh, M., Derikvand, Z. & Attar Gharamaleki, J. (2012). Acta Cryst. E68, m462–m463.  CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Jafari, P. & Khavasi, H. R. (2007). Acta Cryst. E63, o1001–o1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Tahriri, M., Tahriri, M., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, m769–m770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Tahriri, M., Tahriri, M., Ozawa, Y., Neumüller, B., Fujioka, H. & Toriumi, K. (2012). Polyhedron, 33, 336–340.  Web of Science CSD CrossRef CAS Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds