organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di-n-propyl-1,1′-(1,3-phenyl­ene­di­methyl­ene)di(1H-imidazol-3-ium) bis­­(hexa­fluorophosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 June 2012; accepted 14 June 2012; online 20 June 2012)

In the title compound, C20H28N42+·2PF6, the dihedral angles between the benzene ring and the imidazole rings are 70.18 (11) and 69.83 (11)°, while the imidazole rings form a dihedral angle of 40.52 (12)°. In the crystal, weak C—H⋯F inter­actions link the mol­ecules into a two-dimensional network parallel to (001). A ππ inter­action with a centroid–centroid distance of 3.601 (1) Å is also observed in the crystal structure.

Related literature

For related structures, see: Haque et al. (2010[Haque, R. A., Washeel, A., Nasri, S. F., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o824-o825.], 2011[Haque, R. A., Nasri, S. F., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1931.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28N42+·2PF6

  • Mr = 614.40

  • Triclinic, [P \overline 1]

  • a = 7.2623 (2) Å

  • b = 11.3926 (3) Å

  • c = 15.9191 (4) Å

  • α = 86.157 (1)°

  • β = 80.917 (2)°

  • γ = 88.946 (2)°

  • V = 1297.61 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.33 × 0.15 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.980

  • 20758 measured reflections

  • 7499 independent reflections

  • 5364 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.126

  • S = 1.04

  • 7499 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F3i 0.95 2.32 3.238 (3) 162
C2—H2A⋯F9ii 0.95 2.46 3.274 (3) 144
C3—H3A⋯F10iii 0.95 2.45 3.291 (2) 148
C3—H3A⋯F11iii 0.95 2.49 3.344 (2) 150
C4—H4B⋯F9i 0.99 2.51 3.195 (2) 126
C10—H10A⋯F11iii 0.95 2.54 3.405 (2) 151
C18—H18B⋯F7iv 0.99 2.43 3.324 (3) 149
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Previously, we have reported crystal structures of para-xylyl linked bis-imidazolium salts with propyl (Haque et al., 2011) and benzyl (Haque et al., 2010) substitutions. As part of our studies in this area, we now describe the structure of meta-xylyl linked bis-imidazolium salts with propyl substitutions (I).

The assymetric unit unit of (I) is shown in Fig. 1. All parameters in (I) are within normal ranges. The central benzene ring (C5—-C10) makes a dihedral angles of 70.18 (11)° and 69.83 (11)° with the N1—N2/C1—C3 and N3—N4/C12—C14 imidazole rings, respectively, while the two imidazole ring make an dihedral angle of 40.52 (12)° with each other.

In the crystal, weak C—H···F interactions link the molecules into a two-dimensional network parallel to (001) (Fig. 2). A ππ interaction where Cg1···Cg1v = 3.601 (1) Å is also observed (Cg1 = C5—C10, symmetry code: (v) 1 - x, 2 - y, 2 - z).

Related literature top

For related structures, see: Haque et al. (2010, 2011).

Experimental top

To a solution of 1,3-bis((1H-imidazol-1-yl)methyl)benzene (2.20 g, 0.009 mol) in 30 ml of acetonitrile, 1-bromopropane (2.25 g, 0.018 mol) was added. The mixture was refluxed at 363 K for 24 h. The resultant yellow thick liquid was decanted, washed with fresh acetonitrile (2 x 5 ml) and converted directly to its hexafluorophosphate counterpart by metathesis reaction using KPF6 (3.31 g, 0.018 mol) in 40 ml of methanol/water. The white precipitates were collected, washed with fresh methanol (2 x 3 ml) to give the product as a white solid (4.02 g, 73%). M.p 418–420 K. Crystals suitable for X-ray diffraction studies were obtained by slow diffusion method of the salt solution by using diethyl ether and acetonitrile at ambient temperature.

Refinement top

All H atoms attached to C atoms were fixed gemoterically and refined as riding with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.

Structure description top

Previously, we have reported crystal structures of para-xylyl linked bis-imidazolium salts with propyl (Haque et al., 2011) and benzyl (Haque et al., 2010) substitutions. As part of our studies in this area, we now describe the structure of meta-xylyl linked bis-imidazolium salts with propyl substitutions (I).

The assymetric unit unit of (I) is shown in Fig. 1. All parameters in (I) are within normal ranges. The central benzene ring (C5—-C10) makes a dihedral angles of 70.18 (11)° and 69.83 (11)° with the N1—N2/C1—C3 and N3—N4/C12—C14 imidazole rings, respectively, while the two imidazole ring make an dihedral angle of 40.52 (12)° with each other.

In the crystal, weak C—H···F interactions link the molecules into a two-dimensional network parallel to (001) (Fig. 2). A ππ interaction where Cg1···Cg1v = 3.601 (1) Å is also observed (Cg1 = C5—C10, symmetry code: (v) 1 - x, 2 - y, 2 - z).

For related structures, see: Haque et al. (2010, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
3,3'-Di-n-propyl-1,1'-(1,3-phenylenedimethylene)di(1H- imidazol-3-ium) bis(hexafluorophosphate) top
Crystal data top
C20H28N42+·2PF6Z = 2
Mr = 614.40F(000) = 628
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2623 (2) ÅCell parameters from 5331 reflections
b = 11.3926 (3) Åθ = 2.6–30.0°
c = 15.9191 (4) ŵ = 0.27 mm1
α = 86.157 (1)°T = 100 K
β = 80.917 (2)°Plate, colourless
γ = 88.946 (2)°0.33 × 0.15 × 0.07 mm
V = 1297.61 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7499 independent reflections
Radiation source: fine-focus sealed tube5364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 109
Tmin = 0.916, Tmax = 0.980k = 1616
20758 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.7762P]
where P = (Fo2 + 2Fc2)/3
7499 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C20H28N42+·2PF6γ = 88.946 (2)°
Mr = 614.40V = 1297.61 (6) Å3
Triclinic, P1Z = 2
a = 7.2623 (2) ÅMo Kα radiation
b = 11.3926 (3) ŵ = 0.27 mm1
c = 15.9191 (4) ÅT = 100 K
α = 86.157 (1)°0.33 × 0.15 × 0.07 mm
β = 80.917 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7499 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5364 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.980Rint = 0.037
20758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
7499 reflectionsΔρmin = 0.47 e Å3
345 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.85664 (7)0.82097 (5)0.31016 (3)0.02059 (12)
F10.7969 (2)0.91353 (17)0.38048 (10)0.0561 (5)
F20.8446 (3)0.71820 (17)0.38131 (13)0.0755 (7)
F30.9150 (2)0.73192 (17)0.23815 (12)0.0654 (6)
F40.8665 (2)0.92672 (15)0.23893 (10)0.0520 (5)
F50.64195 (17)0.80311 (12)0.30128 (8)0.0300 (3)
F61.07061 (17)0.84028 (12)0.31794 (9)0.0319 (3)
P20.81889 (7)0.34677 (4)0.16519 (3)0.01901 (12)
F70.7426 (2)0.22554 (12)0.21327 (9)0.0381 (3)
F80.7654 (2)0.41275 (13)0.25124 (8)0.0371 (3)
F90.89514 (18)0.46793 (11)0.11586 (9)0.0320 (3)
F100.87151 (19)0.28187 (12)0.07852 (8)0.0324 (3)
F110.61511 (16)0.37691 (11)0.14134 (8)0.0248 (3)
F121.02204 (18)0.31796 (11)0.18866 (8)0.0299 (3)
N10.3946 (2)0.60725 (14)1.20589 (10)0.0192 (3)
N20.5531 (2)0.64301 (14)1.08018 (10)0.0189 (3)
N30.6765 (2)0.94445 (15)0.72832 (10)0.0217 (4)
N40.8876 (2)0.85736 (15)0.64240 (11)0.0223 (4)
C10.5623 (3)0.63404 (16)1.16302 (12)0.0184 (4)
H1A0.67120.64501.18760.022*
C20.2740 (3)0.59791 (18)1.14801 (13)0.0238 (4)
H2A0.14540.57891.16090.029*
C30.3726 (3)0.62089 (18)1.06960 (13)0.0242 (4)
H3A0.32620.62171.01700.029*
C40.7093 (3)0.67501 (18)1.01161 (13)0.0243 (4)
H4A0.70010.62960.96150.029*
H4B0.82860.65351.03150.029*
C50.7088 (3)0.80473 (17)0.98537 (12)0.0178 (4)
C60.7713 (3)0.88610 (19)1.03618 (13)0.0230 (4)
H6A0.81160.85991.08830.028*
C70.7746 (3)1.00469 (19)1.01086 (13)0.0245 (4)
H7A0.81551.06001.04590.029*
C80.7182 (3)1.04277 (17)0.93422 (13)0.0233 (4)
H8A0.72411.12400.91620.028*
C90.6531 (3)0.96306 (17)0.88368 (12)0.0199 (4)
C100.6477 (3)0.84405 (17)0.91006 (12)0.0187 (4)
H10A0.60180.78920.87620.022*
C110.5836 (3)1.0054 (2)0.80269 (13)0.0277 (5)
H11A0.44750.99250.80950.033*
H11B0.60561.09110.79220.033*
C120.6042 (3)0.9320 (2)0.65459 (13)0.0274 (5)
H12A0.48410.95670.64370.033*
C130.7359 (3)0.8779 (2)0.60076 (14)0.0272 (5)
H13A0.72610.85770.54470.033*
C140.8479 (3)0.89906 (18)0.71901 (12)0.0224 (4)
H14A0.92880.89690.76050.027*
C150.3498 (3)0.58921 (18)1.29920 (12)0.0249 (4)
H15A0.24610.64271.32000.030*
H15B0.45960.61021.32470.030*
C160.2949 (4)0.4642 (2)1.32888 (14)0.0335 (5)
H16A0.39680.40961.30770.040*
H16B0.18200.44321.30570.040*
C170.2563 (5)0.4522 (2)1.42580 (15)0.0471 (7)
H17A0.21820.37151.44480.071*
H17B0.15620.50691.44650.071*
H17C0.36950.47061.44850.071*
C181.0638 (3)0.7974 (2)0.61052 (14)0.0301 (5)
H18A1.04140.71170.61280.036*
H18B1.15550.81080.64870.036*
C191.1443 (4)0.8377 (2)0.52238 (15)0.0411 (6)
H19A1.15900.92420.51890.049*
H19B1.05700.81900.48340.049*
C201.3308 (3)0.7813 (3)0.49349 (16)0.0404 (6)
H20A1.37430.80620.43360.061*
H20B1.31840.69550.49940.061*
H20C1.42100.80540.52860.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0202 (3)0.0195 (3)0.0224 (2)0.0027 (2)0.00378 (19)0.00144 (19)
F10.0388 (9)0.0833 (13)0.0534 (10)0.0118 (9)0.0134 (7)0.0463 (9)
F20.0605 (12)0.0671 (12)0.1003 (15)0.0310 (10)0.0419 (11)0.0612 (11)
F30.0311 (9)0.0775 (13)0.0976 (14)0.0128 (8)0.0164 (9)0.0670 (11)
F40.0490 (10)0.0548 (10)0.0547 (10)0.0246 (8)0.0270 (8)0.0303 (8)
F50.0203 (6)0.0327 (7)0.0374 (7)0.0052 (5)0.0051 (5)0.0030 (6)
F60.0229 (7)0.0327 (7)0.0425 (7)0.0033 (6)0.0115 (5)0.0046 (6)
P20.0217 (3)0.0146 (2)0.0211 (2)0.00125 (19)0.00516 (19)0.00024 (18)
F70.0439 (9)0.0262 (7)0.0438 (8)0.0106 (6)0.0115 (6)0.0153 (6)
F80.0394 (8)0.0464 (9)0.0287 (7)0.0076 (7)0.0103 (6)0.0165 (6)
F90.0267 (7)0.0213 (6)0.0476 (8)0.0056 (5)0.0100 (6)0.0115 (6)
F100.0344 (7)0.0357 (8)0.0292 (7)0.0097 (6)0.0080 (5)0.0126 (6)
F110.0209 (6)0.0239 (6)0.0311 (6)0.0015 (5)0.0071 (5)0.0041 (5)
F120.0274 (7)0.0274 (7)0.0376 (7)0.0037 (5)0.0147 (5)0.0006 (5)
N10.0229 (9)0.0153 (8)0.0190 (8)0.0028 (7)0.0024 (6)0.0009 (6)
N20.0243 (9)0.0137 (7)0.0181 (7)0.0001 (6)0.0023 (6)0.0007 (6)
N30.0218 (9)0.0200 (8)0.0220 (8)0.0009 (7)0.0010 (6)0.0031 (6)
N40.0200 (9)0.0221 (9)0.0230 (8)0.0010 (7)0.0001 (6)0.0038 (7)
C10.0206 (10)0.0156 (9)0.0192 (9)0.0025 (7)0.0031 (7)0.0008 (7)
C20.0214 (10)0.0200 (10)0.0311 (10)0.0023 (8)0.0077 (8)0.0013 (8)
C30.0281 (11)0.0202 (10)0.0267 (10)0.0014 (8)0.0114 (8)0.0023 (8)
C40.0310 (12)0.0180 (10)0.0207 (9)0.0036 (8)0.0045 (8)0.0020 (7)
C50.0182 (9)0.0151 (9)0.0187 (8)0.0012 (7)0.0013 (7)0.0012 (7)
C60.0177 (10)0.0292 (11)0.0221 (9)0.0033 (8)0.0023 (7)0.0055 (8)
C70.0182 (10)0.0232 (10)0.0321 (11)0.0033 (8)0.0003 (8)0.0108 (8)
C80.0200 (10)0.0142 (9)0.0324 (11)0.0032 (8)0.0065 (8)0.0025 (8)
C90.0189 (10)0.0183 (9)0.0204 (9)0.0020 (8)0.0019 (7)0.0001 (7)
C100.0210 (10)0.0149 (9)0.0194 (9)0.0019 (7)0.0008 (7)0.0032 (7)
C110.0309 (12)0.0260 (11)0.0234 (10)0.0098 (9)0.0008 (8)0.0040 (8)
C120.0218 (11)0.0329 (12)0.0277 (10)0.0001 (9)0.0056 (8)0.0014 (9)
C130.0247 (11)0.0310 (12)0.0259 (10)0.0023 (9)0.0046 (8)0.0004 (9)
C140.0232 (10)0.0203 (10)0.0220 (9)0.0013 (8)0.0013 (8)0.0047 (7)
C150.0329 (12)0.0213 (10)0.0185 (9)0.0059 (9)0.0024 (8)0.0010 (7)
C160.0472 (15)0.0238 (11)0.0272 (11)0.0086 (10)0.0006 (10)0.0018 (9)
C170.075 (2)0.0334 (14)0.0272 (12)0.0120 (14)0.0062 (12)0.0060 (10)
C180.0268 (12)0.0320 (12)0.0282 (11)0.0085 (9)0.0027 (9)0.0029 (9)
C190.0433 (15)0.0446 (15)0.0290 (12)0.0090 (12)0.0103 (10)0.0050 (11)
C200.0320 (13)0.0547 (17)0.0333 (12)0.0028 (12)0.0037 (10)0.0140 (12)
Geometric parameters (Å, º) top
P1—F21.5672 (16)C6—C71.383 (3)
P1—F31.5842 (15)C6—H6A0.9500
P1—F41.5926 (15)C7—C81.388 (3)
P1—F11.5942 (15)C7—H7A0.9500
P1—F61.5985 (13)C8—C91.389 (3)
P1—F51.6054 (13)C8—H8A0.9500
P2—F81.5973 (13)C9—C101.392 (3)
P2—F71.5976 (13)C9—C111.504 (3)
P2—F101.5988 (13)C10—H10A0.9500
P2—F121.6012 (13)C11—H11A0.9900
P2—F91.6044 (13)C11—H11B0.9900
P2—F111.6104 (13)C12—C131.348 (3)
N1—C11.329 (2)C12—H12A0.9500
N1—C21.378 (3)C13—H13A0.9500
N1—C151.471 (2)C14—H14A0.9500
N2—C11.328 (2)C15—C161.511 (3)
N2—C31.378 (3)C15—H15A0.9900
N2—C41.477 (2)C15—H15B0.9900
N3—C141.329 (3)C16—C171.521 (3)
N3—C121.376 (3)C16—H16A0.9900
N3—C111.477 (3)C16—H16B0.9900
N4—C141.326 (3)C17—H17A0.9800
N4—C131.382 (3)C17—H17B0.9800
N4—C181.473 (3)C17—H17C0.9800
C1—H1A0.9500C18—C191.478 (3)
C2—C31.349 (3)C18—H18A0.9900
C2—H2A0.9500C18—H18B0.9900
C3—H3A0.9500C19—C201.507 (4)
C4—C51.509 (3)C19—H19A0.9900
C4—H4A0.9900C19—H19B0.9900
C4—H4B0.9900C20—H20A0.9800
C5—C101.387 (3)C20—H20B0.9800
C5—C61.397 (3)C20—H20C0.9800
F2—P1—F391.17 (13)C6—C7—C8119.91 (18)
F2—P1—F4179.03 (12)C6—C7—H7A120.0
F3—P1—F489.73 (11)C8—C7—H7A120.0
F2—P1—F190.50 (12)C7—C8—C9120.51 (19)
F3—P1—F1178.29 (11)C7—C8—H8A119.7
F4—P1—F188.60 (10)C9—C8—H8A119.7
F2—P1—F690.08 (8)C8—C9—C10119.28 (18)
F3—P1—F690.72 (8)C8—C9—C11120.31 (19)
F4—P1—F690.28 (8)C10—C9—C11120.39 (18)
F1—P1—F689.63 (8)C5—C10—C9120.63 (17)
F2—P1—F590.75 (8)C5—C10—H10A119.7
F3—P1—F589.25 (8)C9—C10—H10A119.7
F4—P1—F588.89 (8)N3—C11—C9112.25 (17)
F1—P1—F590.37 (8)N3—C11—H11A109.2
F6—P1—F5179.16 (8)C9—C11—H11A109.2
F8—P2—F790.62 (8)N3—C11—H11B109.2
F8—P2—F10179.39 (8)C9—C11—H11B109.2
F7—P2—F1089.82 (8)H11A—C11—H11B107.9
F8—P2—F1290.01 (7)C13—C12—N3107.08 (19)
F7—P2—F1290.40 (7)C13—C12—H12A126.5
F10—P2—F1290.41 (7)N3—C12—H12A126.5
F8—P2—F990.01 (8)C12—C13—N4107.17 (19)
F7—P2—F9179.32 (8)C12—C13—H13A126.4
F10—P2—F989.55 (8)N4—C13—H13A126.4
F12—P2—F989.86 (7)N4—C14—N3108.95 (18)
F8—P2—F1189.88 (7)N4—C14—H14A125.5
F7—P2—F1190.08 (7)N3—C14—H14A125.5
F10—P2—F1189.70 (7)N1—C15—C16113.01 (17)
F12—P2—F11179.50 (8)N1—C15—H15A109.0
F9—P2—F1189.65 (7)C16—C15—H15A109.0
C1—N1—C2108.30 (16)N1—C15—H15B109.0
C1—N1—C15124.94 (17)C16—C15—H15B109.0
C2—N1—C15126.75 (17)H15A—C15—H15B107.8
C1—N2—C3108.44 (16)C15—C16—C17109.66 (19)
C1—N2—C4125.44 (17)C15—C16—H16A109.7
C3—N2—C4126.10 (17)C17—C16—H16A109.7
C14—N3—C12108.51 (17)C15—C16—H16B109.7
C14—N3—C11125.94 (18)C17—C16—H16B109.7
C12—N3—C11125.42 (18)H16A—C16—H16B108.2
C14—N4—C13108.28 (18)C16—C17—H17A109.5
C14—N4—C18124.28 (18)C16—C17—H17B109.5
C13—N4—C18127.43 (18)H17A—C17—H17B109.5
N2—C1—N1108.94 (17)C16—C17—H17C109.5
N2—C1—H1A125.5H17A—C17—H17C109.5
N1—C1—H1A125.5H17B—C17—H17C109.5
C3—C2—N1107.23 (18)N4—C18—C19113.54 (19)
C3—C2—H2A126.4N4—C18—H18A108.9
N1—C2—H2A126.4C19—C18—H18A108.9
C2—C3—N2107.09 (17)N4—C18—H18B108.9
C2—C3—H3A126.5C19—C18—H18B108.9
N2—C3—H3A126.5H18A—C18—H18B107.7
N2—C4—C5111.85 (16)C18—C19—C20112.5 (2)
N2—C4—H4A109.2C18—C19—H19A109.1
C5—C4—H4A109.2C20—C19—H19A109.1
N2—C4—H4B109.2C18—C19—H19B109.1
C5—C4—H4B109.2C20—C19—H19B109.1
H4A—C4—H4B107.9H19A—C19—H19B107.8
C10—C5—C6119.44 (18)C19—C20—H20A109.5
C10—C5—C4120.15 (17)C19—C20—H20B109.5
C6—C5—C4120.41 (18)H20A—C20—H20B109.5
C7—C6—C5120.19 (19)C19—C20—H20C109.5
C7—C6—H6A119.9H20A—C20—H20C109.5
C5—C6—H6A119.9H20B—C20—H20C109.5
C3—N2—C1—N10.1 (2)C8—C9—C10—C50.9 (3)
C4—N2—C1—N1178.13 (17)C11—C9—C10—C5178.95 (18)
C2—N1—C1—N20.5 (2)C14—N3—C11—C928.5 (3)
C15—N1—C1—N2179.56 (17)C12—N3—C11—C9156.03 (19)
C1—N1—C2—C30.6 (2)C8—C9—C11—N3126.7 (2)
C15—N1—C2—C3179.71 (19)C10—C9—C11—N355.2 (3)
N1—C2—C3—N20.5 (2)C14—N3—C12—C130.1 (2)
C1—N2—C3—C20.3 (2)C11—N3—C12—C13176.22 (19)
C4—N2—C3—C2178.50 (18)N3—C12—C13—N40.3 (2)
C1—N2—C4—C595.3 (2)C14—N4—C13—C120.5 (2)
C3—N2—C4—C582.7 (2)C18—N4—C13—C12178.2 (2)
N2—C4—C5—C10103.8 (2)C13—N4—C14—N30.5 (2)
N2—C4—C5—C676.8 (2)C18—N4—C14—N3178.18 (18)
C10—C5—C6—C70.9 (3)C12—N3—C14—N40.4 (2)
C4—C5—C6—C7178.52 (18)C11—N3—C14—N4176.51 (18)
C5—C6—C7—C80.9 (3)C1—N1—C15—C16114.1 (2)
C6—C7—C8—C91.9 (3)C2—N1—C15—C1664.8 (3)
C7—C8—C9—C101.0 (3)N1—C15—C16—C17178.4 (2)
C7—C8—C9—C11177.10 (19)C14—N4—C18—C19135.0 (2)
C6—C5—C10—C91.8 (3)C13—N4—C18—C1946.6 (3)
C4—C5—C10—C9177.64 (18)N4—C18—C19—C20176.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F3i0.952.323.238 (3)162
C2—H2A···F9ii0.952.463.274 (3)144
C3—H3A···F10iii0.952.453.291 (2)148
C3—H3A···F11iii0.952.493.344 (2)150
C4—H4B···F9i0.992.513.195 (2)126
C10—H10A···F11iii0.952.543.405 (2)151
C18—H18B···F7iv0.992.433.324 (3)149
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H28N42+·2PF6
Mr614.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2623 (2), 11.3926 (3), 15.9191 (4)
α, β, γ (°)86.157 (1), 80.917 (2), 88.946 (2)
V3)1297.61 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.33 × 0.15 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.916, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
20758, 7499, 5364
Rint0.037
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.126, 1.04
No. of reflections7499
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F3i0.95002.32003.238 (3)162.00
C2—H2A···F9ii0.95002.46003.274 (3)144.00
C3—H3A···F10iii0.95002.45003.291 (2)148.00
C3—H3A···F11iii0.95002.49003.344 (2)150.00
C4—H4B···F9i0.99002.51003.195 (2)126.00
C10—H10A···F11iii0.95002.54003.405 (2)151.00
C18—H18B···F7iv0.99002.43003.324 (3)149.00
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH and SFN thank Universiti Sains Malaysia (USM) for the short-term grant (304/PKIMIA/6311123) and RU grants (1001/PKIMIA/811157 and 1001/PKIMIA/813023). HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaque, R. A., Nasri, S. F., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1931.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaque, R. A., Washeel, A., Nasri, S. F., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o824–o825.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds