organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1Z)-1-[(2E)-3-(4-Bromo­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-yl­­idene]-2-(2,4-di­nitro­phen­yl)hydrazine

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 11 June 2012; accepted 16 June 2012; online 23 June 2012)

In the title mol­ecule, C21H14BrFN4O4, the mean planes of the two nitro groups form dihedral angles of 3.1 (2) and 7.1 (5)° with the benzene ring to which they are attached. The dinitro-substituted ring forms dihedral angles of 8.6 (2) and 71.9 (2)° with the bromo- and fluoro-substituted benzene rings, respectively. The dihedral angle between the bromo- and fluoro-substituted benzene rings is 80.6 (2)°. There is an intra­molecular N—H⋯O hydrogen bond. In the crystal, pairs of weak C—H⋯O hydrogen bonds form inversion dimers. In addition, ππ stacking inter­actions between the bromo- and dinitro-substituted rings [centroid–centroid separation = 3.768 (2) Å] are observed.

Related literature

For applications of hydrazone derivatives, see: Rollas et al. (2007[Rollas, S. & Güniz Küçükgüzel, S. (2007). Molecules, 12, 1910-1939.]); Singh et al. (1982[Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77-84.]). For the synthesis, see: Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]). For a related structure, see: Yin et al. (2009[Yin, Z.-G., Qian, H.-Y., Zhu, X.-W. & Zhang, C.-X. (2009). Acta Cryst. E65, o2491.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14BrFN4O4

  • Mr = 485.27

  • Monoclinic, P 21 /c

  • a = 15.0738 (12) Å

  • b = 10.6511 (5) Å

  • c = 14.3353 (8) Å

  • β = 116.010 (9)°

  • V = 2068.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.889, Tmax = 1.000

  • 15619 measured reflections

  • 4058 independent reflections

  • 2232 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.01

  • 4058 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1 0.86 1.95 2.584 (4) 130
C11—H11⋯O4i 0.93 2.45 3.316 (7) 154
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazone derivatives are important biologically active compounds which have received attention from the synthetic community (Rollas et al., 2007). Hydrazone derivatives are also used as analytical reagents (Singh et al., 1982). The crystal structure of 1-(but-2-enylidene)-2-(2-nitrophenyl)hydrazine has been reported (Yin et al., 2009). In order to prepare a pyrazoline derivative, (2E)-3-(4-bromophenyl) -1-(4-fluorophenyl)prop-2-en-1-one was reacted with 2,4-dinitrophenyl hydrazine as for the method of Jasinski et al. (2010). But, instead of a pyrazoline derivative a 2,4-dintrophenylhydrazone compound (I) was obtained and its crystal structure is reported herein.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those which are related in a reported structure (Yin et al., 2009). The two nitro groups form dihedral angles of 3.1 (2) and 7.1 (5)° with the C16-C21 ring. The dinitro substituted ring (C16-C21) forms dihedral angles of 8.6 (2)° and 71.9 (2) ° with bromo (C1-C6) and fluoro (C10-C15) substituted benzene rings, respectively. The dihedral angle between the bromo and fluoro substituted benzene rings is 80.6 (2)°. There is an intramolecular N—H···O hydrogen bond and in the crystal, pairs of weak C—H···O hydrogen bonds form inversion dimers (Table 1, Fig. 2). In addition, ππ stacking interactions between the bromophenyl ring and dinitro phenyl ring are observed [centroid separation = 3.768 (2) Å, interplanar spacing =3.410 Å, centroid shift = 1.60 Å, Symmetry = x, 1 + y, z].

Related literature top

For applications of hydrazone derivatives, see: Rollas et al. (2007); Singh et al. (1982). For the synthesis, see: Jasinski et al. (2010). For a related structure, see: Yin et al. (2009).

Experimental top

A mixture of (2E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (3.05 g, 0.01 mol) and 2,4-dinitrophenylhydrazine (1.98 g, 0.01 mol) in 50 ml of glacial acetic acid was refluxed for 6 hrs. The reaction mixture was cooled to produce red crystals (m.p. 414–416 K). X-ray quality crystals were obtained by slow evaporation of an acetic acid solution of (I) at room temperature.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with N—H distance of 0.86 Å and C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Hydrazone derivatives are important biologically active compounds which have received attention from the synthetic community (Rollas et al., 2007). Hydrazone derivatives are also used as analytical reagents (Singh et al., 1982). The crystal structure of 1-(but-2-enylidene)-2-(2-nitrophenyl)hydrazine has been reported (Yin et al., 2009). In order to prepare a pyrazoline derivative, (2E)-3-(4-bromophenyl) -1-(4-fluorophenyl)prop-2-en-1-one was reacted with 2,4-dinitrophenyl hydrazine as for the method of Jasinski et al. (2010). But, instead of a pyrazoline derivative a 2,4-dintrophenylhydrazone compound (I) was obtained and its crystal structure is reported herein.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those which are related in a reported structure (Yin et al., 2009). The two nitro groups form dihedral angles of 3.1 (2) and 7.1 (5)° with the C16-C21 ring. The dinitro substituted ring (C16-C21) forms dihedral angles of 8.6 (2)° and 71.9 (2) ° with bromo (C1-C6) and fluoro (C10-C15) substituted benzene rings, respectively. The dihedral angle between the bromo and fluoro substituted benzene rings is 80.6 (2)°. There is an intramolecular N—H···O hydrogen bond and in the crystal, pairs of weak C—H···O hydrogen bonds form inversion dimers (Table 1, Fig. 2). In addition, ππ stacking interactions between the bromophenyl ring and dinitro phenyl ring are observed [centroid separation = 3.768 (2) Å, interplanar spacing =3.410 Å, centroid shift = 1.60 Å, Symmetry = x, 1 + y, z].

For applications of hydrazone derivatives, see: Rollas et al. (2007); Singh et al. (1982). For the synthesis, see: Jasinski et al. (2010). For a related structure, see: Yin et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the b axis. The broken lines show intermolecular C—H···O interactions.
(1Z)-1-[(2E)-3-(4-Bromophenyl)-1-(4-fluorophenyl)prop-2-en-1- ylidene]-2-(2,4-dinitrophenyl)hydrazine top
Crystal data top
C21H14BrFN4O4F(000) = 976
Mr = 485.27Dx = 1.558 Mg m3
Monoclinic, P21/cMelting point = 416–414 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.0738 (12) ÅCell parameters from 3762 reflections
b = 10.6511 (5) Åθ = 3.6–29.0°
c = 14.3353 (8) ŵ = 2.03 mm1
β = 116.010 (9)°T = 293 K
V = 2068.5 (2) Å3Plate, red
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4058 independent reflections
Radiation source: fine-focus sealed tube2232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.889, Tmax = 1.000l = 1717
15619 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.8232P]
where P = (Fo2 + 2Fc2)/3
4058 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C21H14BrFN4O4V = 2068.5 (2) Å3
Mr = 485.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0738 (12) ŵ = 2.03 mm1
b = 10.6511 (5) ÅT = 293 K
c = 14.3353 (8) Å0.3 × 0.2 × 0.1 mm
β = 116.010 (9)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4058 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2232 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 1.000Rint = 0.045
15619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
4058 reflectionsΔρmin = 0.40 e Å3
280 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10475 (5)1.47051 (5)0.45912 (4)0.1080 (3)
F10.0359 (3)0.6564 (3)0.06938 (19)0.1523 (14)
N20.3279 (2)0.5513 (3)0.3799 (2)0.0541 (7)
H210.30300.53950.31390.065*
O10.3072 (2)0.3913 (3)0.23628 (19)0.0930 (10)
O20.3459 (3)0.1980 (3)0.2728 (2)0.0946 (10)
O30.4846 (3)0.0425 (4)0.6152 (3)0.1316 (16)
O40.5243 (3)0.1687 (4)0.7432 (3)0.1200 (13)
N30.3419 (3)0.3052 (4)0.2993 (2)0.0700 (9)
N10.3238 (2)0.6688 (3)0.4176 (2)0.0581 (8)
N40.4898 (3)0.1471 (5)0.6501 (4)0.0932 (12)
C10.1384 (3)1.3158 (4)0.4190 (3)0.0624 (10)
C20.1915 (3)1.2297 (4)0.4951 (3)0.0620 (10)
H20.21221.24920.56480.074*
C30.2135 (3)1.1146 (4)0.4666 (3)0.0615 (10)
H30.24901.05590.51730.074*
C40.1829 (3)1.0855 (3)0.3623 (3)0.0574 (9)
C50.1301 (3)1.1750 (4)0.2885 (3)0.0655 (10)
H50.10901.15640.21860.079*
C60.1080 (3)1.2911 (4)0.3162 (3)0.0692 (11)
H60.07321.35070.26600.083*
C70.2021 (3)0.9630 (3)0.3285 (3)0.0621 (10)
H70.16720.94510.25810.074*
C80.2633 (3)0.8747 (3)0.3863 (3)0.0613 (10)
H80.30460.89360.45530.074*
C90.2700 (3)0.7506 (3)0.3489 (3)0.0560 (9)
C100.2108 (3)0.7207 (3)0.2368 (3)0.0523 (9)
C110.2375 (4)0.7628 (4)0.1622 (3)0.0780 (12)
H110.29580.80800.18160.094*
C120.1792 (5)0.7388 (5)0.0598 (4)0.0965 (17)
H120.19810.76590.00950.116*
C130.0950 (5)0.6765 (5)0.0324 (3)0.0895 (16)
C140.0659 (3)0.6315 (5)0.1030 (4)0.0905 (14)
H140.00740.58640.08220.109*
C150.1253 (3)0.6545 (4)0.2068 (3)0.0695 (11)
H150.10680.62460.25660.083*
C160.3702 (2)0.4545 (3)0.4448 (2)0.0495 (8)
C170.4066 (3)0.4703 (4)0.5530 (2)0.0565 (9)
H170.40310.54880.57970.068*
C180.4465 (3)0.3722 (4)0.6188 (3)0.0643 (11)
H180.47050.38400.69000.077*
C190.4517 (3)0.2545 (4)0.5802 (3)0.0614 (10)
C200.4187 (3)0.2341 (4)0.4765 (3)0.0614 (10)
H200.42310.15490.45160.074*
C210.3786 (2)0.3336 (4)0.4092 (2)0.0537 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1532 (6)0.0716 (4)0.1080 (4)0.0292 (3)0.0652 (4)0.0073 (3)
F10.197 (3)0.147 (3)0.0548 (16)0.047 (3)0.0025 (18)0.0091 (17)
N20.0666 (19)0.0520 (18)0.0393 (15)0.0087 (15)0.0193 (14)0.0017 (14)
O10.145 (3)0.077 (2)0.0458 (15)0.027 (2)0.0320 (17)0.0036 (16)
O20.142 (3)0.073 (2)0.079 (2)0.022 (2)0.0581 (19)0.0100 (16)
O30.181 (4)0.087 (3)0.122 (3)0.061 (3)0.062 (3)0.047 (2)
O40.114 (3)0.140 (3)0.074 (2)0.031 (2)0.0118 (19)0.046 (2)
N30.085 (2)0.072 (2)0.058 (2)0.015 (2)0.0360 (18)0.0049 (19)
N10.0656 (19)0.0526 (18)0.0520 (17)0.0019 (16)0.0219 (15)0.0028 (16)
N40.084 (3)0.099 (3)0.086 (3)0.026 (3)0.028 (2)0.040 (3)
C10.072 (3)0.051 (2)0.068 (2)0.001 (2)0.034 (2)0.003 (2)
C20.073 (3)0.060 (2)0.050 (2)0.002 (2)0.025 (2)0.0078 (19)
C30.070 (3)0.054 (2)0.054 (2)0.002 (2)0.0223 (19)0.0022 (19)
C40.066 (2)0.049 (2)0.054 (2)0.0019 (19)0.0235 (19)0.0034 (18)
C50.084 (3)0.055 (2)0.051 (2)0.001 (2)0.024 (2)0.0016 (19)
C60.081 (3)0.062 (3)0.057 (2)0.010 (2)0.023 (2)0.005 (2)
C70.079 (3)0.051 (2)0.055 (2)0.004 (2)0.028 (2)0.0027 (19)
C80.072 (3)0.050 (2)0.056 (2)0.004 (2)0.022 (2)0.0055 (19)
C90.062 (2)0.051 (2)0.057 (2)0.0016 (19)0.0279 (19)0.0011 (19)
C100.066 (2)0.0431 (19)0.050 (2)0.0094 (18)0.0277 (19)0.0034 (16)
C110.102 (3)0.075 (3)0.069 (3)0.005 (3)0.049 (3)0.003 (2)
C120.165 (6)0.078 (3)0.064 (3)0.017 (4)0.066 (4)0.011 (3)
C130.120 (4)0.080 (3)0.042 (3)0.036 (3)0.011 (3)0.003 (2)
C140.073 (3)0.096 (4)0.081 (3)0.009 (3)0.013 (3)0.014 (3)
C150.072 (3)0.077 (3)0.058 (2)0.003 (2)0.026 (2)0.001 (2)
C160.045 (2)0.057 (2)0.0428 (19)0.0024 (17)0.0162 (16)0.0023 (17)
C170.058 (2)0.061 (2)0.046 (2)0.0004 (19)0.0180 (18)0.0017 (18)
C180.051 (2)0.091 (3)0.0410 (19)0.002 (2)0.0110 (17)0.006 (2)
C190.050 (2)0.071 (3)0.058 (2)0.013 (2)0.0180 (19)0.019 (2)
C200.058 (2)0.061 (2)0.065 (2)0.0100 (19)0.0274 (19)0.007 (2)
C210.054 (2)0.062 (2)0.047 (2)0.0077 (19)0.0236 (17)0.0017 (18)
Geometric parameters (Å, º) top
Br1—C11.886 (4)C7—H70.9300
F1—C131.352 (5)C8—C91.447 (5)
N2—C161.347 (4)C8—H80.9300
N2—N11.376 (4)C9—C101.491 (5)
N2—H210.8600C10—C151.363 (5)
O1—N31.231 (4)C10—C111.372 (5)
O2—N31.213 (4)C11—C121.365 (6)
O3—N41.209 (5)C11—H110.9300
O4—N41.223 (5)C12—C131.330 (7)
N3—C211.455 (4)C12—H120.9300
N1—C91.298 (4)C13—C141.356 (7)
N4—C191.463 (5)C14—C151.381 (5)
C1—C61.363 (5)C14—H140.9300
C1—C21.381 (5)C15—H150.9300
C2—C31.378 (5)C16—C211.411 (5)
C2—H20.9300C16—C171.411 (4)
C3—C41.393 (5)C17—C181.359 (5)
C3—H30.9300C17—H170.9300
C4—C51.386 (5)C18—C191.386 (5)
C4—C71.464 (5)C18—H180.9300
C5—C61.384 (5)C19—C201.361 (5)
C5—H50.9300C20—C211.381 (5)
C6—H60.9300C20—H200.9300
C7—C81.324 (5)
C16—N2—N1120.9 (3)C15—C10—C11118.9 (4)
C16—N2—H21119.5C15—C10—C9119.1 (3)
N1—N2—H21119.5C11—C10—C9121.9 (4)
O2—N3—O1122.3 (3)C12—C11—C10120.4 (5)
O2—N3—C21119.1 (3)C12—C11—H11119.8
O1—N3—C21118.6 (3)C10—C11—H11119.8
C9—N1—N2115.6 (3)C13—C12—C11119.6 (4)
O3—N4—O4123.0 (4)C13—C12—H12120.2
O3—N4—C19120.1 (4)C11—C12—H12120.2
O4—N4—C19116.9 (5)C12—C13—F1119.3 (6)
C6—C1—C2122.0 (4)C12—C13—C14122.3 (4)
C6—C1—Br1119.4 (3)F1—C13—C14118.3 (6)
C2—C1—Br1118.6 (3)C13—C14—C15118.2 (5)
C3—C2—C1119.2 (3)C13—C14—H14120.9
C3—C2—H2120.4C15—C14—H14120.9
C1—C2—H2120.4C10—C15—C14120.6 (4)
C2—C3—C4120.5 (3)C10—C15—H15119.7
C2—C3—H3119.8C14—C15—H15119.7
C4—C3—H3119.8N2—C16—C21122.7 (3)
C5—C4—C3118.4 (3)N2—C16—C17120.4 (3)
C5—C4—C7119.4 (3)C21—C16—C17116.9 (3)
C3—C4—C7122.2 (3)C18—C17—C16120.8 (4)
C6—C5—C4121.7 (3)C18—C17—H17119.6
C6—C5—H5119.2C16—C17—H17119.6
C4—C5—H5119.2C17—C18—C19120.3 (3)
C1—C6—C5118.3 (4)C17—C18—H18119.9
C1—C6—H6120.9C19—C18—H18119.9
C5—C6—H6120.9C20—C19—C18121.5 (3)
C8—C7—C4127.6 (3)C20—C19—N4118.0 (4)
C8—C7—H7116.2C18—C19—N4120.5 (4)
C4—C7—H7116.2C19—C20—C21118.6 (4)
C7—C8—C9124.0 (3)C19—C20—H20120.7
C7—C8—H8118.0C21—C20—H20120.7
C9—C8—H8118.0C20—C21—C16122.0 (3)
N1—C9—C8116.9 (3)C20—C21—N3116.1 (3)
N1—C9—C10123.7 (3)C16—C21—N3121.9 (3)
C8—C9—C10119.3 (3)
C16—N2—N1—C9171.1 (3)F1—C13—C14—C15178.6 (4)
C6—C1—C2—C30.8 (6)C11—C10—C15—C140.8 (6)
Br1—C1—C2—C3177.7 (3)C9—C10—C15—C14176.3 (4)
C1—C2—C3—C40.3 (6)C13—C14—C15—C100.0 (6)
C2—C3—C4—C50.0 (6)N1—N2—C16—C21178.0 (3)
C2—C3—C4—C7178.1 (4)N1—N2—C16—C173.5 (5)
C3—C4—C5—C60.3 (6)N2—C16—C17—C18177.9 (3)
C7—C4—C5—C6178.4 (4)C21—C16—C17—C180.7 (5)
C2—C1—C6—C51.1 (6)C16—C17—C18—C190.3 (5)
Br1—C1—C6—C5177.4 (3)C17—C18—C19—C201.0 (6)
C4—C5—C6—C10.9 (6)C17—C18—C19—N4176.7 (3)
C5—C4—C7—C8168.4 (4)O3—N4—C19—C205.6 (6)
C3—C4—C7—C813.6 (6)O4—N4—C19—C20175.9 (4)
C4—C7—C8—C9172.9 (4)O3—N4—C19—C18172.3 (5)
N2—N1—C9—C8179.3 (3)O4—N4—C19—C186.3 (6)
N2—N1—C9—C103.5 (5)C18—C19—C20—C210.6 (6)
C7—C8—C9—N1171.1 (4)N4—C19—C20—C21177.2 (3)
C7—C8—C9—C104.9 (6)C19—C20—C21—C160.5 (5)
N1—C9—C10—C1575.0 (5)C19—C20—C21—N3178.2 (3)
C8—C9—C10—C15100.7 (4)N2—C16—C21—C20177.4 (3)
N1—C9—C10—C11108.0 (4)C17—C16—C21—C201.1 (5)
C8—C9—C10—C1176.3 (5)N2—C16—C21—N30.2 (5)
C15—C10—C11—C120.1 (6)C17—C16—C21—N3178.7 (3)
C9—C10—C11—C12176.9 (4)O2—N3—C21—C201.9 (5)
C10—C11—C12—C131.4 (7)O1—N3—C21—C20178.6 (3)
C11—C12—C13—F1177.9 (4)O2—N3—C21—C16175.8 (4)
C11—C12—C13—C142.3 (8)O1—N3—C21—C163.7 (5)
C12—C13—C14—C151.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O10.861.952.584 (4)130
C11—H11···O4i0.932.453.316 (7)154
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H14BrFN4O4
Mr485.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.0738 (12), 10.6511 (5), 14.3353 (8)
β (°) 116.010 (9)
V3)2068.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.889, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15619, 4058, 2232
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.01
No. of reflections4058
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.40

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O10.861.952.584 (4)130
C11—H11···O4i0.932.453.316 (7)154
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. BN thanks the UGC, New Delhi, Government of India, for the purchase of chemicals through the SAP–DRS–Phase 1 programme. MS thanks the DST, New Delhi, for providing financial help for this research work through the INSPIRE Research Fellowship scheme.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRollas, S. & Güniz Küçükgüzel, S. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, Z.-G., Qian, H.-Y., Zhu, X.-W. & Zhang, C.-X. (2009). Acta Cryst. E65, o2491.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds