metal-organic compounds
catena-Poly[{μ3-4,4′,6,6′-tetrachloro-2,2′-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato}{μ2-4,4′,6,6′-tetrachloro-2,2′-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato}dicopper(II)]
aDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, bStructural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, cDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com
The 2(C18H14Cl4N2O2)2]n, contains two independent CuII ions which are bridged by a pair of 4,4′,6,6′-tetrachloro-2,2′-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolate ligands, forming a dinuclear unit. One of the CuII ions is coordinated in a distorted square-planar environment and the other is coordinated in a distorted square-pyramidal environment. The long apical Cu—O bond of the square-pyramidal coordinated CuII ion is formed by a symmetry-related O atom, creating a one-dimensional polymer along [010]. In addition, short intermolecular Cl⋯Cl distances [3.444 (2) Å] and weak π–π interactions [centroid–centroid distances = 3.736 (2)–3.875 (3) Å] are observed. The crystal studied was an with a refined twin component ratio of 0.60 (1):0.40 (1).
of the title compound, [CuRelated literature
For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006). For bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000). For related structures, see: Kargar & Kia (2011a,b).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812028462/lh5494sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812028462/lh5494Isup2.hkl
The title complex was synthesized by an methanolic solution (50 ml) of bis(3,5-chlorosalicylaldeyde)-1,4-butanediimine (2 mmol) and CuCl2.4H2O (2 mmol). After stirring at reflux conditions for 2 h, the solution was filtered and the resulting dark-red powder was crystallized from DMF, giving single crystals suitable for X-ray diffraction.
All H atoms were positioned geometrically and constrained to refine with the parents atoms using the riding-model approximation, with C—H = 0.93 - 0.97Å and Uiso(H) = 1.2 Ueq(C). The crystal used was an
with refined twin components ratio of 0.60 (1)/0.40 (1).The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand,
are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).The π–π interactions [Cg1···Cg2i = 3.736 (2)Å, (i) x, -1+y, z; Cg3···Cg4ii = 3.875 (3) Å, (ii) x, 1+y, z; Cg1,Cg2, Cg3 and Cg4 are the centroids of the (C1–C6), (C6–C8), (C13–C18) and (C31–C36) rings respectively].
of the title complex is shown in Fig. 1. The bond lengths and angles are comparable to those in related structures (Kargar & Kia, 2011a,b). The long apical Cu—O bond is shorter than the sum of the van der Waals (vdW) radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964] and is formed by a symmetry related O atom creating a one-dimenional polymer along [010] (Fig. 2). In the crystal there are intermolecular Cl4···Cl6(1/2 - x, y, -1/2 + z) [3.444 (2)Å] distances which are shorter than the sum of the van der Waals radii for Cl [3.50Å] atoms (Bondi, 1964; Fig. 3). In addition, intermolecularFor van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006). For bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000). For related structures, see: Kargar & Kia (2011a,b).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Cu2(C18H14Cl4N2O2)2] | Z = 4 |
Mr = 990.30 | F(000) = 1988 |
Orthorhombic, Pca21 | Dx = 1.697 Mg m−3 |
Hall symbol: P 2c -2ac | Mo Kα radiation, λ = 0.71073 Å |
a = 26.6927 (16) Å | µ = 1.70 mm−1 |
b = 7.7775 (4) Å | T = 291 K |
c = 18.6689 (9) Å | Needle, dark-red |
V = 3875.7 (4) Å3 | 0.36 × 0.18 × 0.16 mm |
Bruker SMART APEXII CCD diffractometer | 8990 independent reflections |
Radiation source: fine-focus sealed tube | 6793 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
φ and ω scans | θmax = 27.9°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −35→34 |
Tmin = 0.581, Tmax = 0.773 | k = −10→10 |
18623 measured reflections | l = −24→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0355P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.001 |
8990 reflections | Δρmax = 0.43 e Å−3 |
488 parameters | Δρmin = −0.35 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 4247 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.605 (10) |
[Cu2(C18H14Cl4N2O2)2] | V = 3875.7 (4) Å3 |
Mr = 990.30 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 26.6927 (16) Å | µ = 1.70 mm−1 |
b = 7.7775 (4) Å | T = 291 K |
c = 18.6689 (9) Å | 0.36 × 0.18 × 0.16 mm |
Bruker SMART APEXII CCD diffractometer | 8990 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 6793 reflections with I > 2σ(I) |
Tmin = 0.581, Tmax = 0.773 | Rint = 0.034 |
18623 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.085 | Δρmax = 0.43 e Å−3 |
S = 0.99 | Δρmin = −0.35 e Å−3 |
8990 reflections | Absolute structure: Flack (1983), 4247 Friedel pairs |
488 parameters | Absolute structure parameter: 0.605 (10) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.337328 (15) | 0.58203 (6) | 0.49568 (2) | 0.03303 (11) | |
Cu2 | 0.372623 (16) | 1.16823 (6) | 0.50686 (2) | 0.03338 (11) | |
Cl1 | 0.16981 (4) | 0.56157 (19) | 0.41600 (6) | 0.0637 (4) | |
Cl2 | 0.10357 (4) | 0.81832 (18) | 0.66592 (6) | 0.0630 (3) | |
Cl3 | 0.62687 (5) | 0.9809 (2) | 0.39111 (8) | 0.0819 (5) | |
Cl4 | 0.44901 (4) | 1.14708 (19) | 0.27711 (5) | 0.0632 (4) | |
Cl5 | 0.30179 (5) | 1.27744 (18) | 0.73675 (6) | 0.0610 (3) | |
Cl6 | 0.11528 (5) | 1.28198 (19) | 0.62737 (8) | 0.0720 (4) | |
Cl7 | 0.57210 (5) | 0.5842 (2) | 0.30261 (8) | 0.0873 (5) | |
Cl8 | 0.50484 (4) | 0.49330 (18) | 0.57186 (6) | 0.0551 (3) | |
O1 | 0.26712 (9) | 0.5760 (4) | 0.48373 (13) | 0.0397 (7) | |
O2 | 0.41409 (10) | 1.1451 (4) | 0.42485 (13) | 0.0409 (7) | |
O3 | 0.33216 (9) | 1.2300 (4) | 0.58740 (14) | 0.0403 (7) | |
O4 | 0.40552 (9) | 0.5174 (3) | 0.50582 (15) | 0.0408 (6) | |
N1 | 0.33065 (11) | 0.6318 (4) | 0.60038 (16) | 0.0339 (8) | |
N2 | 0.42848 (12) | 1.1052 (4) | 0.57284 (16) | 0.0334 (7) | |
N3 | 0.31196 (12) | 1.1706 (4) | 0.44287 (17) | 0.0357 (8) | |
N4 | 0.34356 (12) | 0.6048 (4) | 0.38931 (17) | 0.0338 (8) | |
C1 | 0.23262 (14) | 0.6340 (5) | 0.5258 (2) | 0.0345 (9) | |
C2 | 0.18203 (13) | 0.6377 (5) | 0.5021 (2) | 0.0386 (8) | |
C3 | 0.14355 (15) | 0.6947 (6) | 0.5433 (2) | 0.0435 (10) | |
H3 | 0.1111 | 0.6963 | 0.5253 | 0.052* | |
C4 | 0.15322 (15) | 0.7505 (6) | 0.6124 (2) | 0.0411 (10) | |
C5 | 0.20089 (14) | 0.7489 (5) | 0.6389 (2) | 0.0389 (9) | |
H5 | 0.2070 | 0.7873 | 0.6853 | 0.047* | |
C6 | 0.24090 (14) | 0.6895 (5) | 0.5963 (2) | 0.0326 (8) | |
C7 | 0.28933 (14) | 0.6746 (5) | 0.6297 (2) | 0.0370 (9) | |
H7 | 0.2906 | 0.6990 | 0.6785 | 0.044* | |
C8 | 0.37456 (14) | 0.6148 (6) | 0.6481 (2) | 0.0368 (10) | |
H8A | 0.3928 | 0.5111 | 0.6357 | 0.044* | |
H8B | 0.3632 | 0.6036 | 0.6972 | 0.044* | |
C9 | 0.40930 (13) | 0.7679 (5) | 0.6423 (2) | 0.0364 (9) | |
H9A | 0.4388 | 0.7461 | 0.6713 | 0.044* | |
H9B | 0.4202 | 0.7788 | 0.5930 | 0.044* | |
C10 | 0.38622 (14) | 0.9362 (5) | 0.6657 (2) | 0.0368 (9) | |
H10A | 0.3795 | 0.9313 | 0.7167 | 0.044* | |
H10B | 0.3544 | 0.9511 | 0.6413 | 0.044* | |
C11 | 0.41906 (15) | 1.0905 (5) | 0.65037 (19) | 0.0371 (9) | |
H11A | 0.4027 | 1.1940 | 0.6675 | 0.045* | |
H11B | 0.4506 | 1.0785 | 0.6756 | 0.045* | |
C12 | 0.47348 (15) | 1.0699 (6) | 0.5522 (2) | 0.0369 (10) | |
H12 | 0.4964 | 1.0428 | 0.5880 | 0.044* | |
C13 | 0.49213 (14) | 1.0681 (5) | 0.47969 (19) | 0.0357 (9) | |
C14 | 0.54318 (16) | 1.0277 (6) | 0.4704 (2) | 0.0485 (12) | |
H14 | 0.5629 | 1.0001 | 0.5099 | 0.058* | |
C15 | 0.56376 (17) | 1.0291 (6) | 0.4032 (2) | 0.0527 (12) | |
C16 | 0.53470 (17) | 1.0663 (6) | 0.3442 (2) | 0.0484 (11) | |
H16 | 0.5490 | 1.0660 | 0.2988 | 0.058* | |
C17 | 0.48514 (15) | 1.1036 (6) | 0.3521 (2) | 0.0406 (10) | |
C18 | 0.46083 (16) | 1.1077 (5) | 0.4208 (2) | 0.0377 (10) | |
C19 | 0.28383 (14) | 1.2284 (5) | 0.5951 (2) | 0.0339 (9) | |
C20 | 0.26211 (15) | 1.2550 (6) | 0.6637 (2) | 0.0410 (10) | |
C21 | 0.21145 (17) | 1.2690 (6) | 0.6737 (2) | 0.0476 (11) | |
H21 | 0.1986 | 1.2889 | 0.7193 | 0.057* | |
C22 | 0.17914 (16) | 1.2535 (6) | 0.6154 (2) | 0.0472 (11) | |
C23 | 0.19810 (15) | 1.2208 (6) | 0.5491 (2) | 0.0445 (11) | |
H23 | 0.1764 | 1.2078 | 0.5105 | 0.053* | |
C24 | 0.24970 (15) | 1.2066 (5) | 0.5385 (2) | 0.0381 (10) | |
C25 | 0.26634 (15) | 1.1856 (5) | 0.4653 (2) | 0.0378 (10) | |
H25 | 0.2415 | 1.1826 | 0.4304 | 0.045* | |
C26 | 0.31740 (15) | 1.1496 (5) | 0.36388 (19) | 0.0365 (9) | |
H26A | 0.3446 | 1.2217 | 0.3471 | 0.044* | |
H26B | 0.2869 | 1.1879 | 0.3406 | 0.044* | |
C27 | 0.32770 (15) | 0.9657 (5) | 0.3430 (2) | 0.0374 (10) | |
H27A | 0.3576 | 0.9276 | 0.3679 | 0.045* | |
H27B | 0.3348 | 0.9623 | 0.2920 | 0.045* | |
C28 | 0.28539 (14) | 0.8383 (5) | 0.3588 (2) | 0.0396 (10) | |
H28A | 0.2754 | 0.8507 | 0.4085 | 0.048* | |
H28B | 0.2567 | 0.8669 | 0.3293 | 0.048* | |
C29 | 0.29957 (15) | 0.6540 (5) | 0.3455 (2) | 0.0371 (10) | |
H29 | 0.2830 | 0.5809 | 0.3140 | 0.045* | |
C30 | 0.38488 (16) | 0.5911 (6) | 0.3557 (2) | 0.0408 (10) | |
H30 | 0.3831 | 0.5974 | 0.3060 | 0.049* | |
C31 | 0.43377 (14) | 0.5672 (6) | 0.3857 (2) | 0.0397 (10) | |
C32 | 0.47492 (17) | 0.5804 (6) | 0.3381 (2) | 0.0497 (11) | |
H32 | 0.4693 | 0.5975 | 0.2895 | 0.060* | |
C33 | 0.52243 (17) | 0.5682 (6) | 0.3633 (3) | 0.0536 (12) | |
C34 | 0.53194 (16) | 0.5446 (6) | 0.4350 (2) | 0.0489 (11) | |
H34 | 0.5648 | 0.5399 | 0.4516 | 0.059* | |
C35 | 0.49241 (14) | 0.5279 (5) | 0.4820 (2) | 0.0403 (10) | |
C36 | 0.44190 (14) | 0.5369 (5) | 0.4595 (2) | 0.0365 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0270 (2) | 0.0393 (2) | 0.0328 (2) | 0.0001 (2) | 0.0010 (2) | 0.0004 (2) |
Cu2 | 0.0324 (2) | 0.0408 (3) | 0.0269 (2) | 0.0028 (2) | −0.0005 (2) | −0.0008 (2) |
Cl1 | 0.0383 (6) | 0.1084 (11) | 0.0443 (6) | −0.0003 (7) | −0.0076 (5) | −0.0216 (7) |
Cl2 | 0.0434 (6) | 0.0912 (10) | 0.0544 (7) | 0.0174 (6) | 0.0098 (5) | −0.0116 (7) |
Cl3 | 0.0438 (7) | 0.1340 (15) | 0.0678 (8) | 0.0229 (8) | 0.0065 (6) | −0.0041 (9) |
Cl4 | 0.0514 (7) | 0.1088 (11) | 0.0296 (5) | −0.0003 (7) | −0.0031 (5) | −0.0046 (6) |
Cl5 | 0.0560 (7) | 0.0944 (10) | 0.0324 (5) | −0.0004 (7) | 0.0039 (5) | −0.0003 (6) |
Cl6 | 0.0393 (6) | 0.0929 (10) | 0.0837 (9) | 0.0038 (7) | 0.0194 (6) | 0.0158 (8) |
Cl7 | 0.0457 (7) | 0.1407 (15) | 0.0755 (9) | 0.0138 (8) | 0.0286 (7) | 0.0277 (9) |
Cl8 | 0.0365 (6) | 0.0757 (9) | 0.0529 (6) | 0.0033 (6) | −0.0062 (5) | 0.0012 (6) |
O1 | 0.0267 (13) | 0.0592 (18) | 0.0333 (14) | −0.0012 (13) | 0.0027 (11) | −0.0040 (13) |
O2 | 0.0325 (15) | 0.061 (2) | 0.0297 (14) | 0.0029 (14) | −0.0006 (11) | −0.0028 (13) |
O3 | 0.0297 (15) | 0.0592 (19) | 0.0321 (14) | 0.0018 (13) | 0.0018 (12) | −0.0064 (14) |
O4 | 0.0253 (13) | 0.0590 (16) | 0.0382 (14) | 0.0055 (12) | 0.0033 (13) | 0.0037 (16) |
N1 | 0.0323 (18) | 0.036 (2) | 0.0333 (17) | −0.0036 (15) | −0.0036 (14) | 0.0023 (15) |
N2 | 0.0380 (19) | 0.037 (2) | 0.0248 (15) | −0.0019 (16) | −0.0042 (14) | 0.0008 (14) |
N3 | 0.0372 (19) | 0.039 (2) | 0.0306 (16) | 0.0060 (16) | −0.0023 (15) | −0.0020 (15) |
N4 | 0.0338 (18) | 0.0336 (19) | 0.0340 (17) | 0.0033 (16) | −0.0009 (14) | −0.0018 (15) |
C1 | 0.032 (2) | 0.034 (2) | 0.038 (2) | −0.0024 (17) | 0.0021 (16) | 0.0034 (17) |
C2 | 0.0291 (17) | 0.052 (2) | 0.0345 (19) | −0.0034 (16) | −0.0023 (19) | −0.003 (2) |
C3 | 0.029 (2) | 0.057 (3) | 0.045 (2) | 0.000 (2) | −0.0037 (18) | 0.000 (2) |
C4 | 0.035 (2) | 0.051 (3) | 0.037 (2) | 0.003 (2) | 0.0070 (18) | −0.002 (2) |
C5 | 0.037 (2) | 0.048 (2) | 0.0319 (19) | 0.003 (2) | 0.0021 (18) | −0.0021 (19) |
C6 | 0.0289 (19) | 0.035 (2) | 0.0341 (19) | −0.0013 (17) | 0.0013 (16) | 0.0026 (18) |
C7 | 0.035 (2) | 0.048 (3) | 0.0278 (19) | −0.003 (2) | 0.0014 (17) | 0.0032 (19) |
C8 | 0.032 (2) | 0.045 (3) | 0.033 (2) | 0.0002 (19) | −0.0099 (17) | 0.0078 (19) |
C9 | 0.0267 (19) | 0.044 (2) | 0.038 (2) | 0.0003 (19) | −0.0029 (16) | 0.0020 (19) |
C10 | 0.035 (2) | 0.048 (2) | 0.0269 (18) | −0.0002 (19) | −0.0026 (16) | 0.0021 (18) |
C11 | 0.036 (2) | 0.048 (3) | 0.0275 (19) | −0.004 (2) | −0.0003 (16) | −0.0010 (18) |
C12 | 0.032 (2) | 0.048 (3) | 0.0303 (19) | −0.0076 (19) | −0.0091 (17) | 0.0041 (19) |
C13 | 0.035 (2) | 0.036 (2) | 0.036 (2) | −0.0020 (18) | 0.0018 (16) | 0.0000 (18) |
C14 | 0.037 (2) | 0.064 (3) | 0.045 (2) | 0.004 (2) | 0.0009 (19) | −0.003 (2) |
C15 | 0.039 (2) | 0.070 (3) | 0.049 (3) | 0.010 (2) | 0.004 (2) | −0.006 (2) |
C16 | 0.043 (3) | 0.065 (3) | 0.036 (2) | −0.002 (2) | 0.0077 (19) | −0.006 (2) |
C17 | 0.040 (2) | 0.053 (3) | 0.0287 (19) | −0.003 (2) | −0.0015 (17) | −0.0042 (19) |
C18 | 0.041 (2) | 0.039 (3) | 0.033 (2) | −0.005 (2) | −0.0012 (18) | −0.0049 (18) |
C19 | 0.037 (2) | 0.030 (2) | 0.035 (2) | 0.0015 (18) | −0.0003 (17) | 0.0061 (17) |
C20 | 0.040 (2) | 0.049 (3) | 0.035 (2) | 0.001 (2) | 0.0070 (18) | 0.003 (2) |
C21 | 0.049 (3) | 0.052 (3) | 0.041 (2) | 0.000 (2) | 0.014 (2) | 0.006 (2) |
C22 | 0.035 (2) | 0.048 (3) | 0.059 (3) | −0.001 (2) | 0.016 (2) | 0.014 (2) |
C23 | 0.036 (2) | 0.050 (3) | 0.047 (2) | −0.002 (2) | −0.001 (2) | 0.004 (2) |
C24 | 0.036 (2) | 0.036 (2) | 0.042 (2) | 0.0010 (19) | 0.0015 (19) | 0.0034 (19) |
C25 | 0.034 (2) | 0.041 (3) | 0.039 (2) | 0.002 (2) | −0.0116 (17) | −0.0007 (18) |
C26 | 0.035 (2) | 0.048 (3) | 0.0264 (19) | 0.002 (2) | −0.0018 (16) | −0.0009 (18) |
C27 | 0.038 (2) | 0.042 (3) | 0.032 (2) | −0.0019 (19) | 0.0000 (16) | −0.0052 (18) |
C28 | 0.034 (2) | 0.046 (3) | 0.039 (2) | −0.001 (2) | −0.0068 (17) | −0.002 (2) |
C29 | 0.037 (2) | 0.043 (2) | 0.0307 (19) | −0.001 (2) | −0.0120 (17) | −0.0063 (19) |
C30 | 0.040 (2) | 0.048 (3) | 0.034 (2) | 0.002 (2) | 0.0044 (18) | −0.001 (2) |
C31 | 0.031 (2) | 0.042 (2) | 0.046 (2) | 0.0037 (19) | 0.0032 (18) | 0.003 (2) |
C32 | 0.043 (3) | 0.062 (3) | 0.044 (3) | 0.008 (2) | 0.006 (2) | 0.008 (2) |
C33 | 0.038 (2) | 0.064 (3) | 0.058 (3) | 0.005 (2) | 0.018 (2) | 0.012 (3) |
C34 | 0.032 (2) | 0.054 (3) | 0.060 (3) | −0.003 (2) | 0.010 (2) | 0.008 (2) |
C35 | 0.032 (2) | 0.040 (2) | 0.049 (2) | 0.0047 (18) | 0.0009 (18) | 0.007 (2) |
C36 | 0.028 (2) | 0.036 (2) | 0.046 (2) | 0.0055 (18) | 0.0040 (17) | −0.0001 (18) |
Cu1—O1 | 1.888 (2) | C10—C11 | 1.513 (5) |
Cu1—O4 | 1.898 (2) | C10—H10A | 0.9700 |
Cu1—N4 | 2.000 (3) | C10—H10B | 0.9700 |
Cu1—N1 | 2.001 (3) | C11—H11A | 0.9700 |
Cu2—O2 | 1.898 (3) | C11—H11B | 0.9700 |
Cu2—O3 | 1.913 (3) | C12—C13 | 1.443 (5) |
Cu2—N2 | 1.995 (3) | C12—H12 | 0.9300 |
Cu2—N3 | 2.012 (3) | C13—C14 | 1.409 (5) |
Cu2—O4i | 2.854 (3) | C13—C18 | 1.415 (5) |
Cl1—C2 | 1.744 (4) | C14—C15 | 1.369 (6) |
Cl2—C4 | 1.741 (4) | C14—H14 | 0.9300 |
Cl3—C15 | 1.740 (4) | C15—C16 | 1.378 (6) |
Cl4—C17 | 1.733 (4) | C16—C17 | 1.362 (6) |
Cl5—C20 | 1.735 (4) | C16—H16 | 0.9300 |
Cl6—C22 | 1.733 (4) | C17—C18 | 1.437 (5) |
Cl7—C33 | 1.748 (4) | C19—C24 | 1.405 (5) |
Cl8—C35 | 1.730 (4) | C19—C20 | 1.422 (5) |
O1—C1 | 1.292 (4) | C20—C21 | 1.369 (6) |
O2—C18 | 1.283 (5) | C21—C22 | 1.395 (6) |
O3—C19 | 1.298 (4) | C21—H21 | 0.9300 |
O4—C36 | 1.309 (4) | C22—C23 | 1.360 (6) |
N1—C7 | 1.276 (5) | C23—C24 | 1.396 (5) |
N1—C8 | 1.478 (5) | C23—H23 | 0.9300 |
N2—C12 | 1.291 (5) | C24—C25 | 1.447 (5) |
N2—C11 | 1.473 (5) | C25—H25 | 0.9300 |
N3—C25 | 1.293 (5) | C26—C27 | 1.507 (5) |
N3—C26 | 1.491 (5) | C26—H26A | 0.9700 |
N4—C30 | 1.273 (5) | C26—H26B | 0.9700 |
N4—C29 | 1.482 (5) | C27—C28 | 1.532 (5) |
C1—C6 | 1.403 (5) | C27—H27A | 0.9700 |
C1—C2 | 1.421 (5) | C27—H27B | 0.9700 |
C2—C3 | 1.358 (5) | C28—C29 | 1.503 (6) |
C3—C4 | 1.385 (5) | C28—H28A | 0.9700 |
C3—H3 | 0.9300 | C28—H28B | 0.9700 |
C4—C5 | 1.365 (5) | C29—H29 | 0.9300 |
C5—C6 | 1.409 (5) | C30—C31 | 1.432 (6) |
C5—H5 | 0.9300 | C30—H30 | 0.9300 |
C6—C7 | 1.440 (5) | C31—C36 | 1.415 (6) |
C7—H7 | 0.9300 | C31—C32 | 1.417 (6) |
C8—C9 | 1.513 (5) | C32—C33 | 1.356 (6) |
C8—H8A | 0.9700 | C32—H32 | 0.9300 |
C8—H8B | 0.9700 | C33—C34 | 1.375 (6) |
C9—C10 | 1.512 (5) | C34—C35 | 1.379 (5) |
C9—H9A | 0.9700 | C34—H34 | 0.9300 |
C9—H9B | 0.9700 | C35—C36 | 1.414 (5) |
O1—Cu1—O4 | 163.19 (11) | C14—C13—C12 | 116.8 (3) |
O1—Cu1—N4 | 88.14 (12) | C18—C13—C12 | 121.6 (4) |
O4—Cu1—N4 | 92.45 (12) | C15—C14—C13 | 119.9 (4) |
O1—Cu1—N1 | 91.82 (11) | C15—C14—H14 | 120.0 |
O4—Cu1—N1 | 92.25 (12) | C13—C14—H14 | 120.0 |
N4—Cu1—N1 | 163.77 (13) | C14—C15—C16 | 120.5 (4) |
O2—Cu2—O3 | 170.89 (13) | C14—C15—Cl3 | 120.4 (3) |
O2—Cu2—N2 | 92.23 (12) | C16—C15—Cl3 | 119.1 (3) |
O3—Cu2—N2 | 89.91 (12) | C17—C16—C15 | 120.4 (4) |
O2—Cu2—N3 | 89.50 (12) | C17—C16—H16 | 119.8 |
O3—Cu2—N3 | 90.57 (12) | C15—C16—H16 | 119.8 |
N2—Cu2—N3 | 165.95 (14) | C16—C17—C18 | 122.6 (4) |
O2—Cu2—O4i | 84.56 (10) | C16—C17—Cl4 | 119.7 (3) |
O3—Cu2—O4i | 86.56 (10) | C18—C17—Cl4 | 117.7 (3) |
N2—Cu2—O4i | 90.47 (11) | O2—C18—C13 | 125.3 (4) |
N3—Cu2—O4i | 103.57 (11) | O2—C18—C17 | 119.8 (4) |
C1—O1—Cu1 | 128.9 (2) | C13—C18—C17 | 115.0 (4) |
C18—O2—Cu2 | 129.5 (2) | O3—C19—C24 | 124.2 (4) |
C19—O3—Cu2 | 130.2 (2) | O3—C19—C20 | 120.2 (4) |
C36—O4—Cu1 | 128.0 (3) | C24—C19—C20 | 115.5 (4) |
C7—N1—C8 | 116.8 (3) | C21—C20—C19 | 122.5 (4) |
C7—N1—Cu1 | 123.2 (3) | C21—C20—Cl5 | 119.2 (3) |
C8—N1—Cu1 | 120.0 (3) | C19—C20—Cl5 | 118.3 (3) |
C12—N2—C11 | 115.8 (3) | C20—C21—C22 | 119.8 (4) |
C12—N2—Cu2 | 124.3 (3) | C20—C21—H21 | 120.1 |
C11—N2—Cu2 | 119.9 (2) | C22—C21—H21 | 120.1 |
C25—N3—C26 | 115.0 (3) | C23—C22—C21 | 119.8 (4) |
C25—N3—Cu2 | 124.5 (3) | C23—C22—Cl6 | 120.5 (4) |
C26—N3—Cu2 | 120.5 (2) | C21—C22—Cl6 | 119.7 (3) |
C30—N4—C29 | 115.8 (3) | C22—C23—C24 | 120.7 (4) |
C30—N4—Cu1 | 123.6 (3) | C22—C23—H23 | 119.6 |
C29—N4—Cu1 | 120.3 (2) | C24—C23—H23 | 119.6 |
O1—C1—C6 | 124.5 (3) | C23—C24—C19 | 121.6 (4) |
O1—C1—C2 | 119.7 (3) | C23—C24—C25 | 116.5 (4) |
C6—C1—C2 | 115.8 (3) | C19—C24—C25 | 121.6 (4) |
C3—C2—C1 | 123.3 (4) | N3—C25—C24 | 127.3 (4) |
C3—C2—Cl1 | 119.5 (3) | N3—C25—H25 | 116.4 |
C1—C2—Cl1 | 117.2 (3) | C24—C25—H25 | 116.4 |
C2—C3—C4 | 119.3 (4) | N3—C26—C27 | 112.2 (3) |
C2—C3—H3 | 120.4 | N3—C26—H26A | 109.2 |
C4—C3—H3 | 120.4 | C27—C26—H26A | 109.2 |
C5—C4—C3 | 120.5 (4) | N3—C26—H26B | 109.2 |
C5—C4—Cl2 | 120.3 (3) | C27—C26—H26B | 109.2 |
C3—C4—Cl2 | 119.2 (3) | H26A—C26—H26B | 107.9 |
C4—C5—C6 | 120.3 (4) | C26—C27—C28 | 115.4 (3) |
C4—C5—H5 | 119.8 | C26—C27—H27A | 108.4 |
C6—C5—H5 | 119.8 | C28—C27—H27A | 108.4 |
C1—C6—C5 | 120.7 (4) | C26—C27—H27B | 108.4 |
C1—C6—C7 | 121.6 (3) | C28—C27—H27B | 108.4 |
C5—C6—C7 | 117.5 (4) | H27A—C27—H27B | 107.5 |
N1—C7—C6 | 127.6 (4) | C29—C28—C27 | 113.5 (3) |
N1—C7—H7 | 116.2 | C29—C28—H28A | 108.9 |
C6—C7—H7 | 116.2 | C27—C28—H28A | 108.9 |
N1—C8—C9 | 111.9 (3) | C29—C28—H28B | 108.9 |
N1—C8—H8A | 109.2 | C27—C28—H28B | 108.9 |
C9—C8—H8A | 109.2 | H28A—C28—H28B | 107.7 |
N1—C8—H8B | 109.2 | N4—C29—C28 | 110.7 (3) |
C9—C8—H8B | 109.2 | N4—C29—H29 | 124.6 |
H8A—C8—H8B | 107.9 | C28—C29—H29 | 124.6 |
C10—C9—C8 | 114.3 (3) | N4—C30—C31 | 127.4 (4) |
C10—C9—H9A | 108.7 | N4—C30—H30 | 116.3 |
C8—C9—H9A | 108.7 | C31—C30—H30 | 116.3 |
C10—C9—H9B | 108.7 | C36—C31—C32 | 120.3 (4) |
C8—C9—H9B | 108.7 | C36—C31—C30 | 122.9 (4) |
H9A—C9—H9B | 107.6 | C32—C31—C30 | 116.9 (4) |
C9—C10—C11 | 113.3 (3) | C33—C32—C31 | 120.2 (4) |
C9—C10—H10A | 108.9 | C33—C32—H32 | 119.9 |
C11—C10—H10A | 108.9 | C31—C32—H32 | 119.9 |
C9—C10—H10B | 108.9 | C32—C33—C34 | 121.3 (4) |
C11—C10—H10B | 108.9 | C32—C33—Cl7 | 118.7 (4) |
H10A—C10—H10B | 107.7 | C34—C33—Cl7 | 120.0 (4) |
N2—C11—C10 | 110.3 (3) | C33—C34—C35 | 119.4 (4) |
N2—C11—H11A | 109.6 | C33—C34—H34 | 120.3 |
C10—C11—H11A | 109.6 | C35—C34—H34 | 120.3 |
N2—C11—H11B | 109.6 | C34—C35—C36 | 122.4 (4) |
C10—C11—H11B | 109.6 | C34—C35—Cl8 | 119.0 (3) |
H11A—C11—H11B | 108.1 | C36—C35—Cl8 | 118.6 (3) |
N2—C12—C13 | 127.1 (4) | O4—C36—C35 | 120.4 (4) |
N2—C12—H12 | 116.4 | O4—C36—C31 | 123.3 (4) |
C13—C12—H12 | 116.4 | C35—C36—C31 | 116.4 (3) |
C14—C13—C18 | 121.6 (4) | ||
O4—Cu1—O1—C1 | 120.7 (4) | N2—C12—C13—C14 | 179.2 (4) |
N4—Cu1—O1—C1 | −146.9 (3) | N2—C12—C13—C18 | 0.2 (7) |
N1—Cu1—O1—C1 | 16.8 (3) | C18—C13—C14—C15 | 1.2 (7) |
N2—Cu2—O2—C18 | −2.0 (4) | C12—C13—C14—C15 | −177.9 (4) |
N3—Cu2—O2—C18 | −168.1 (4) | C13—C14—C15—C16 | −1.3 (8) |
N2—Cu2—O3—C19 | −151.8 (3) | C13—C14—C15—Cl3 | 179.5 (3) |
N3—Cu2—O3—C19 | 14.2 (3) | C14—C15—C16—C17 | 0.5 (8) |
O1—Cu1—O4—C36 | 108.6 (5) | Cl3—C15—C16—C17 | 179.7 (4) |
N4—Cu1—O4—C36 | 16.9 (3) | C15—C16—C17—C18 | 0.5 (7) |
N1—Cu1—O4—C36 | −147.6 (3) | C15—C16—C17—Cl4 | −179.1 (4) |
O1—Cu1—N1—C7 | −12.0 (3) | Cu2—O2—C18—C13 | 2.5 (6) |
O4—Cu1—N1—C7 | −175.7 (3) | Cu2—O2—C18—C17 | −177.6 (3) |
N4—Cu1—N1—C7 | 77.6 (6) | C14—C13—C18—O2 | 179.7 (4) |
O1—Cu1—N1—C8 | 166.3 (3) | C12—C13—C18—O2 | −1.3 (7) |
O4—Cu1—N1—C8 | 2.6 (3) | C14—C13—C18—C17 | −0.1 (6) |
N4—Cu1—N1—C8 | −104.2 (5) | C12—C13—C18—C17 | 178.8 (4) |
O2—Cu2—N2—C12 | 0.9 (3) | C16—C17—C18—O2 | 179.4 (4) |
O3—Cu2—N2—C12 | −170.2 (4) | Cl4—C17—C18—O2 | −1.0 (6) |
N3—Cu2—N2—C12 | 97.8 (6) | C16—C17—C18—C13 | −0.7 (6) |
O2—Cu2—N2—C11 | −176.9 (3) | Cl4—C17—C18—C13 | 178.9 (3) |
O3—Cu2—N2—C11 | 12.0 (3) | Cu2—O3—C19—C24 | −11.7 (6) |
N3—Cu2—N2—C11 | −80.0 (6) | Cu2—O3—C19—C20 | 170.4 (3) |
O2—Cu2—N3—C25 | −179.5 (3) | O3—C19—C20—C21 | 174.3 (4) |
O3—Cu2—N3—C25 | −8.6 (3) | C24—C19—C20—C21 | −3.8 (6) |
N2—Cu2—N3—C25 | 83.3 (7) | O3—C19—C20—Cl5 | −3.5 (5) |
O2—Cu2—N3—C26 | 2.2 (3) | C24—C19—C20—Cl5 | 178.4 (3) |
O3—Cu2—N3—C26 | 173.1 (3) | C19—C20—C21—C22 | 1.3 (7) |
N2—Cu2—N3—C26 | −95.0 (6) | Cl5—C20—C21—C22 | 179.2 (3) |
O1—Cu1—N4—C30 | −169.2 (4) | C20—C21—C22—C23 | 1.4 (7) |
O4—Cu1—N4—C30 | −6.0 (4) | C20—C21—C22—Cl6 | −176.8 (3) |
N1—Cu1—N4—C30 | 100.7 (5) | C21—C22—C23—C24 | −1.5 (7) |
O1—Cu1—N4—C29 | 16.0 (3) | Cl6—C22—C23—C24 | 176.7 (3) |
O4—Cu1—N4—C29 | 179.2 (3) | C22—C23—C24—C19 | −1.2 (6) |
N1—Cu1—N4—C29 | −74.2 (6) | C22—C23—C24—C25 | −175.2 (4) |
O4i—Cu2—O2—C18 | 88.2 (4) | O3—C19—C24—C23 | −174.4 (4) |
O4i—Cu2—O3—C19 | 117.7 (3) | C20—C19—C24—C23 | 3.7 (6) |
O4i—Cu2—N2—C12 | −83.7 (3) | O3—C19—C24—C25 | −0.7 (7) |
O4i—Cu2—N2—C11 | 98.5 (3) | C20—C19—C24—C25 | 177.3 (4) |
O4i—Cu2—N3—C25 | −95.2 (3) | C26—N3—C25—C24 | 179.6 (4) |
O4i—Cu2—N3—C26 | 86.5 (3) | Cu2—N3—C25—C24 | 1.3 (7) |
Cu1—O1—C1—C6 | −11.3 (5) | C23—C24—C25—N3 | 179.7 (4) |
Cu1—O1—C1—C2 | 171.3 (3) | C19—C24—C25—N3 | 5.7 (8) |
O1—C1—C2—C3 | 179.2 (4) | C25—N3—C26—C27 | −102.5 (4) |
C6—C1—C2—C3 | 1.6 (6) | Cu2—N3—C26—C27 | 75.9 (4) |
O1—C1—C2—Cl1 | 0.1 (5) | N3—C26—C27—C28 | 64.9 (4) |
C6—C1—C2—Cl1 | −177.5 (3) | C26—C27—C28—C29 | −173.0 (3) |
C1—C2—C3—C4 | −0.9 (7) | C30—N4—C29—C28 | −105.5 (4) |
Cl1—C2—C3—C4 | 178.2 (3) | Cu1—N4—C29—C28 | 69.7 (4) |
C2—C3—C4—C5 | 0.3 (7) | C27—C28—C29—N4 | 58.2 (4) |
C2—C3—C4—Cl2 | −178.3 (3) | C29—N4—C30—C31 | 171.4 (4) |
C3—C4—C5—C6 | −0.4 (6) | Cu1—N4—C30—C31 | −3.6 (7) |
Cl2—C4—C5—C6 | 178.2 (3) | N4—C30—C31—C36 | 7.0 (7) |
O1—C1—C6—C5 | −179.2 (4) | N4—C30—C31—C32 | −171.1 (4) |
C2—C1—C6—C5 | −1.7 (5) | C36—C31—C32—C33 | −1.6 (7) |
O1—C1—C6—C7 | −4.4 (6) | C30—C31—C32—C33 | 176.5 (4) |
C2—C1—C6—C7 | 173.0 (3) | C31—C32—C33—C34 | −0.6 (7) |
C4—C5—C6—C1 | 1.2 (6) | C31—C32—C33—Cl7 | 179.7 (4) |
C4—C5—C6—C7 | −173.8 (4) | C32—C33—C34—C35 | 1.9 (7) |
C8—N1—C7—C6 | −175.9 (4) | Cl7—C33—C34—C35 | −178.4 (4) |
Cu1—N1—C7—C6 | 2.4 (6) | C33—C34—C35—C36 | −1.0 (7) |
C1—C6—C7—N1 | 8.7 (7) | C33—C34—C35—Cl8 | 178.5 (4) |
C5—C6—C7—N1 | −176.4 (4) | Cu1—O4—C36—C35 | 161.8 (3) |
C7—N1—C8—C9 | −103.0 (4) | Cu1—O4—C36—C31 | −18.3 (6) |
Cu1—N1—C8—C9 | 78.6 (4) | C34—C35—C36—O4 | 178.8 (4) |
N1—C8—C9—C10 | 63.3 (4) | Cl8—C35—C36—O4 | −0.7 (5) |
C8—C9—C10—C11 | −172.3 (3) | C34—C35—C36—C31 | −1.1 (6) |
C12—N2—C11—C10 | −109.1 (4) | Cl8—C35—C36—C31 | 179.3 (3) |
Cu2—N2—C11—C10 | 68.9 (4) | C32—C31—C36—O4 | −177.5 (4) |
C9—C10—C11—N2 | 60.6 (4) | C30—C31—C36—O4 | 4.4 (7) |
C11—N2—C12—C13 | 177.6 (4) | C32—C31—C36—C35 | 2.4 (6) |
Cu2—N2—C12—C13 | −0.3 (6) | C30—C31—C36—C35 | −175.6 (4) |
Symmetry code: (i) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O3 | 0.97 | 2.46 | 3.073 (5) | 121 |
C27—H27A···O2 | 0.97 | 2.50 | 3.098 (5) | 120 |
C28—H28A···O1 | 0.97 | 2.57 | 3.137 (5) | 118 |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C18H14Cl4N2O2)2] |
Mr | 990.30 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 291 |
a, b, c (Å) | 26.6927 (16), 7.7775 (4), 18.6689 (9) |
V (Å3) | 3875.7 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.70 |
Crystal size (mm) | 0.36 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.581, 0.773 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18623, 8990, 6793 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.085, 0.99 |
No. of reflections | 8990 |
No. of parameters | 488 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.35 |
Absolute structure | Flack (1983), 4247 Friedel pairs |
Absolute structure parameter | 0.605 (10) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
HK and AAA thank PNU for support of this work. RK thanks the Science and Research Branch, Islamic Azad University.
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Hannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024. Web of Science CSD CrossRef Google Scholar
Kargar, H. & Kia, R. (2011a). Acta Cryst. E67, m497–m498. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kargar, H. & Kia, R. (2011b). Acta Cryst. E67, m499–m500. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368. Web of Science CrossRef PubMed CAS Google Scholar
Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667. Web of Science CSD CrossRef Google Scholar
Li, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308–6316. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).
The asymmetric unit of the title complex is shown in Fig. 1. The bond lengths and angles are comparable to those in related structures (Kargar & Kia, 2011a,b). The long apical Cu—O bond is shorter than the sum of the van der Waals (vdW) radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964] and is formed by a symmetry related O atom creating a one-dimenional polymer along [010] (Fig. 2). In the crystal there are intermolecular Cl4···Cl6(1/2 - x, y, -1/2 + z) [3.444 (2)Å] distances which are shorter than the sum of the van der Waals radii for Cl [3.50Å] atoms (Bondi, 1964; Fig. 3). In addition, intermolecular π–π interactions [Cg1···Cg2i = 3.736 (2)Å, (i) x, -1+y, z; Cg3···Cg4ii = 3.875 (3) Å, (ii) x, 1+y, z; Cg1,Cg2, Cg3 and Cg4 are the centroids of the (C1–C6), (C6–C8), (C13–C18) and (C31–C36) rings respectively].