metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[{μ3-4,4′,6,6′-tetra­chloro-2,2′-[butane-1,4-diylbis(nitrilo­methanyl­yl­­idene)]diphenolato}{μ2-4,4′,6,6′-tetra­chloro-2,2′-[butane-1,4-diylbis(nitrilo­methanylyl­­idene)]diphenolato}dicopper(II)]

aDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, bStructural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, cDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 17 June 2012; accepted 23 June 2012; online 30 June 2012)

The asymmetric unit of the title compound, [Cu2(C18H14Cl4N2O2)2]n, contains two independent CuII ions which are bridged by a pair of 4,4′,6,6′-tetra­chloro-2,2′-[butane-1,4-diylbis(nitrilo­methanylyl­idene)]diphenolate ligands, forming a dinuclear unit. One of the CuII ions is coordinated in a distorted square-planar environment and the other is coordinated in a distorted square-pyramidal environment. The long apical Cu—O bond of the square-pyramidal coordinated CuII ion is formed by a symmetry-related O atom, creating a one-dimensional polymer along [010]. In addition, short inter­molecular Cl⋯Cl distances [3.444 (2) Å] and weak ππ inter­actions [centroid–centroid distances = 3.736 (2)–3.875 (3) Å] are observed. The crystal studied was an inversion twin with a refined twin component ratio of 0.60 (1):0.40 (1).

Related literature

For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For background to coordination polymers, see: Kido & Okamoto (2002[Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357-2368.]); Li et al. (2006[Li, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308-6316.]). For bis-bidentate Schiff base complexes, see: Hannon et al. (1999[Hannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023-2024.]); Lavalette et al. (2003[Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666-2667.]). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Elmali et al. (2000[Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302-1304.]). For related structures, see: Kargar & Kia (2011a[Kargar, H. & Kia, R. (2011a). Acta Cryst. E67, m497-m498.],b[Kargar, H. & Kia, R. (2011b). Acta Cryst. E67, m499-m500.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C18H14Cl4N2O2)2]

  • Mr = 990.30

  • Orthorhombic, P c a 21

  • a = 26.6927 (16) Å

  • b = 7.7775 (4) Å

  • c = 18.6689 (9) Å

  • V = 3875.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 291 K

  • 0.36 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.581, Tmax = 0.773

  • 18623 measured reflections

  • 8990 independent reflections

  • 6793 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.085

  • S = 0.99

  • 8990 reflections

  • 488 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4247 Friedel pairs

  • Flack parameter: 0.605 (10)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).

The asymmetric unit of the title complex is shown in Fig. 1. The bond lengths and angles are comparable to those in related structures (Kargar & Kia, 2011a,b). The long apical Cu—O bond is shorter than the sum of the van der Waals (vdW) radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964] and is formed by a symmetry related O atom creating a one-dimenional polymer along [010] (Fig. 2). In the crystal there are intermolecular Cl4···Cl6(1/2 - x, y, -1/2 + z) [3.444 (2)Å] distances which are shorter than the sum of the van der Waals radii for Cl [3.50Å] atoms (Bondi, 1964; Fig. 3). In addition, intermolecular ππ interactions [Cg1···Cg2i = 3.736 (2)Å, (i) x, -1+y, z; Cg3···Cg4ii = 3.875 (3) Å, (ii) x, 1+y, z; Cg1,Cg2, Cg3 and Cg4 are the centroids of the (C1–C6), (C6–C8), (C13–C18) and (C31–C36) rings respectively].

Related literature top

For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006). For bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000). For related structures, see: Kargar & Kia (2011a,b).

Experimental top

The title complex was synthesized by an methanolic solution (50 ml) of bis(3,5-chlorosalicylaldeyde)-1,4-butanediimine (2 mmol) and CuCl2.4H2O (2 mmol). After stirring at reflux conditions for 2 h, the solution was filtered and the resulting dark-red powder was crystallized from DMF, giving single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and constrained to refine with the parents atoms using the riding-model approximation, with C—H = 0.93 - 0.97Å and Uiso(H) = 1.2 Ueq(C). The crystal used was an inversion twin with refined twin components ratio of 0.60 (1)/0.40 (1).

Structure description top

The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).

The asymmetric unit of the title complex is shown in Fig. 1. The bond lengths and angles are comparable to those in related structures (Kargar & Kia, 2011a,b). The long apical Cu—O bond is shorter than the sum of the van der Waals (vdW) radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964] and is formed by a symmetry related O atom creating a one-dimenional polymer along [010] (Fig. 2). In the crystal there are intermolecular Cl4···Cl6(1/2 - x, y, -1/2 + z) [3.444 (2)Å] distances which are shorter than the sum of the van der Waals radii for Cl [3.50Å] atoms (Bondi, 1964; Fig. 3). In addition, intermolecular ππ interactions [Cg1···Cg2i = 3.736 (2)Å, (i) x, -1+y, z; Cg3···Cg4ii = 3.875 (3) Å, (ii) x, 1+y, z; Cg1,Cg2, Cg3 and Cg4 are the centroids of the (C1–C6), (C6–C8), (C13–C18) and (C31–C36) rings respectively].

For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006). For bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000). For related structures, see: Kargar & Kia (2011a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex, showing 40% probability displacement ellipsoids [H-atoms have been omitted for clarity].
[Figure 2] Fig. 2. Part of the crystal structure, viewed along the c-axis, showing the one-dimensional coordination chain propagating along the b-axis [H-atoms have been omitted for clarity].
[Figure 3] Fig. 3. Part of the crystal structure, viewed along the b-axis, showing zig-zag linking of molecules through intermolecular Cl···Cl interactions along the c-axis [only the Cl atoms involved in the interactions are shown and H-atoms omitted for clarity].
catena-Poly[{µ3-4,4',6,6'-tetrachloro-2,2'-[butane-1,4- diylbis(nitrilomethanylylidene)]diphenolato}{µ2-4,4',6,6'-tetrachloro- 2,2'-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato}dicopper(II)] top
Crystal data top
[Cu2(C18H14Cl4N2O2)2]Z = 4
Mr = 990.30F(000) = 1988
Orthorhombic, Pca21Dx = 1.697 Mg m3
Hall symbol: P 2c -2acMo Kα radiation, λ = 0.71073 Å
a = 26.6927 (16) ŵ = 1.70 mm1
b = 7.7775 (4) ÅT = 291 K
c = 18.6689 (9) ÅNeedle, dark-red
V = 3875.7 (4) Å30.36 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8990 independent reflections
Radiation source: fine-focus sealed tube6793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3534
Tmin = 0.581, Tmax = 0.773k = 1010
18623 measured reflectionsl = 2423
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
8990 reflectionsΔρmax = 0.43 e Å3
488 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 4247 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.605 (10)
Crystal data top
[Cu2(C18H14Cl4N2O2)2]V = 3875.7 (4) Å3
Mr = 990.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 26.6927 (16) ŵ = 1.70 mm1
b = 7.7775 (4) ÅT = 291 K
c = 18.6689 (9) Å0.36 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6793 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.773Rint = 0.034
18623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.43 e Å3
S = 0.99Δρmin = 0.35 e Å3
8990 reflectionsAbsolute structure: Flack (1983), 4247 Friedel pairs
488 parametersAbsolute structure parameter: 0.605 (10)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.337328 (15)0.58203 (6)0.49568 (2)0.03303 (11)
Cu20.372623 (16)1.16823 (6)0.50686 (2)0.03338 (11)
Cl10.16981 (4)0.56157 (19)0.41600 (6)0.0637 (4)
Cl20.10357 (4)0.81832 (18)0.66592 (6)0.0630 (3)
Cl30.62687 (5)0.9809 (2)0.39111 (8)0.0819 (5)
Cl40.44901 (4)1.14708 (19)0.27711 (5)0.0632 (4)
Cl50.30179 (5)1.27744 (18)0.73675 (6)0.0610 (3)
Cl60.11528 (5)1.28198 (19)0.62737 (8)0.0720 (4)
Cl70.57210 (5)0.5842 (2)0.30261 (8)0.0873 (5)
Cl80.50484 (4)0.49330 (18)0.57186 (6)0.0551 (3)
O10.26712 (9)0.5760 (4)0.48373 (13)0.0397 (7)
O20.41409 (10)1.1451 (4)0.42485 (13)0.0409 (7)
O30.33216 (9)1.2300 (4)0.58740 (14)0.0403 (7)
O40.40552 (9)0.5174 (3)0.50582 (15)0.0408 (6)
N10.33065 (11)0.6318 (4)0.60038 (16)0.0339 (8)
N20.42848 (12)1.1052 (4)0.57284 (16)0.0334 (7)
N30.31196 (12)1.1706 (4)0.44287 (17)0.0357 (8)
N40.34356 (12)0.6048 (4)0.38931 (17)0.0338 (8)
C10.23262 (14)0.6340 (5)0.5258 (2)0.0345 (9)
C20.18203 (13)0.6377 (5)0.5021 (2)0.0386 (8)
C30.14355 (15)0.6947 (6)0.5433 (2)0.0435 (10)
H30.11110.69630.52530.052*
C40.15322 (15)0.7505 (6)0.6124 (2)0.0411 (10)
C50.20089 (14)0.7489 (5)0.6389 (2)0.0389 (9)
H50.20700.78730.68530.047*
C60.24090 (14)0.6895 (5)0.5963 (2)0.0326 (8)
C70.28933 (14)0.6746 (5)0.6297 (2)0.0370 (9)
H70.29060.69900.67850.044*
C80.37456 (14)0.6148 (6)0.6481 (2)0.0368 (10)
H8A0.39280.51110.63570.044*
H8B0.36320.60360.69720.044*
C90.40930 (13)0.7679 (5)0.6423 (2)0.0364 (9)
H9A0.43880.74610.67130.044*
H9B0.42020.77880.59300.044*
C100.38622 (14)0.9362 (5)0.6657 (2)0.0368 (9)
H10A0.37950.93130.71670.044*
H10B0.35440.95110.64130.044*
C110.41906 (15)1.0905 (5)0.65037 (19)0.0371 (9)
H11A0.40271.19400.66750.045*
H11B0.45061.07850.67560.045*
C120.47348 (15)1.0699 (6)0.5522 (2)0.0369 (10)
H120.49641.04280.58800.044*
C130.49213 (14)1.0681 (5)0.47969 (19)0.0357 (9)
C140.54318 (16)1.0277 (6)0.4704 (2)0.0485 (12)
H140.56291.00010.50990.058*
C150.56376 (17)1.0291 (6)0.4032 (2)0.0527 (12)
C160.53470 (17)1.0663 (6)0.3442 (2)0.0484 (11)
H160.54901.06600.29880.058*
C170.48514 (15)1.1036 (6)0.3521 (2)0.0406 (10)
C180.46083 (16)1.1077 (5)0.4208 (2)0.0377 (10)
C190.28383 (14)1.2284 (5)0.5951 (2)0.0339 (9)
C200.26211 (15)1.2550 (6)0.6637 (2)0.0410 (10)
C210.21145 (17)1.2690 (6)0.6737 (2)0.0476 (11)
H210.19861.28890.71930.057*
C220.17914 (16)1.2535 (6)0.6154 (2)0.0472 (11)
C230.19810 (15)1.2208 (6)0.5491 (2)0.0445 (11)
H230.17641.20780.51050.053*
C240.24970 (15)1.2066 (5)0.5385 (2)0.0381 (10)
C250.26634 (15)1.1856 (5)0.4653 (2)0.0378 (10)
H250.24151.18260.43040.045*
C260.31740 (15)1.1496 (5)0.36388 (19)0.0365 (9)
H26A0.34461.22170.34710.044*
H26B0.28691.18790.34060.044*
C270.32770 (15)0.9657 (5)0.3430 (2)0.0374 (10)
H27A0.35760.92760.36790.045*
H27B0.33480.96230.29200.045*
C280.28539 (14)0.8383 (5)0.3588 (2)0.0396 (10)
H28A0.27540.85070.40850.048*
H28B0.25670.86690.32930.048*
C290.29957 (15)0.6540 (5)0.3455 (2)0.0371 (10)
H290.28300.58090.31400.045*
C300.38488 (16)0.5911 (6)0.3557 (2)0.0408 (10)
H300.38310.59740.30600.049*
C310.43377 (14)0.5672 (6)0.3857 (2)0.0397 (10)
C320.47492 (17)0.5804 (6)0.3381 (2)0.0497 (11)
H320.46930.59750.28950.060*
C330.52243 (17)0.5682 (6)0.3633 (3)0.0536 (12)
C340.53194 (16)0.5446 (6)0.4350 (2)0.0489 (11)
H340.56480.53990.45160.059*
C350.49241 (14)0.5279 (5)0.4820 (2)0.0403 (10)
C360.44190 (14)0.5369 (5)0.4595 (2)0.0365 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0270 (2)0.0393 (2)0.0328 (2)0.0001 (2)0.0010 (2)0.0004 (2)
Cu20.0324 (2)0.0408 (3)0.0269 (2)0.0028 (2)0.0005 (2)0.0008 (2)
Cl10.0383 (6)0.1084 (11)0.0443 (6)0.0003 (7)0.0076 (5)0.0216 (7)
Cl20.0434 (6)0.0912 (10)0.0544 (7)0.0174 (6)0.0098 (5)0.0116 (7)
Cl30.0438 (7)0.1340 (15)0.0678 (8)0.0229 (8)0.0065 (6)0.0041 (9)
Cl40.0514 (7)0.1088 (11)0.0296 (5)0.0003 (7)0.0031 (5)0.0046 (6)
Cl50.0560 (7)0.0944 (10)0.0324 (5)0.0004 (7)0.0039 (5)0.0003 (6)
Cl60.0393 (6)0.0929 (10)0.0837 (9)0.0038 (7)0.0194 (6)0.0158 (8)
Cl70.0457 (7)0.1407 (15)0.0755 (9)0.0138 (8)0.0286 (7)0.0277 (9)
Cl80.0365 (6)0.0757 (9)0.0529 (6)0.0033 (6)0.0062 (5)0.0012 (6)
O10.0267 (13)0.0592 (18)0.0333 (14)0.0012 (13)0.0027 (11)0.0040 (13)
O20.0325 (15)0.061 (2)0.0297 (14)0.0029 (14)0.0006 (11)0.0028 (13)
O30.0297 (15)0.0592 (19)0.0321 (14)0.0018 (13)0.0018 (12)0.0064 (14)
O40.0253 (13)0.0590 (16)0.0382 (14)0.0055 (12)0.0033 (13)0.0037 (16)
N10.0323 (18)0.036 (2)0.0333 (17)0.0036 (15)0.0036 (14)0.0023 (15)
N20.0380 (19)0.037 (2)0.0248 (15)0.0019 (16)0.0042 (14)0.0008 (14)
N30.0372 (19)0.039 (2)0.0306 (16)0.0060 (16)0.0023 (15)0.0020 (15)
N40.0338 (18)0.0336 (19)0.0340 (17)0.0033 (16)0.0009 (14)0.0018 (15)
C10.032 (2)0.034 (2)0.038 (2)0.0024 (17)0.0021 (16)0.0034 (17)
C20.0291 (17)0.052 (2)0.0345 (19)0.0034 (16)0.0023 (19)0.003 (2)
C30.029 (2)0.057 (3)0.045 (2)0.000 (2)0.0037 (18)0.000 (2)
C40.035 (2)0.051 (3)0.037 (2)0.003 (2)0.0070 (18)0.002 (2)
C50.037 (2)0.048 (2)0.0319 (19)0.003 (2)0.0021 (18)0.0021 (19)
C60.0289 (19)0.035 (2)0.0341 (19)0.0013 (17)0.0013 (16)0.0026 (18)
C70.035 (2)0.048 (3)0.0278 (19)0.003 (2)0.0014 (17)0.0032 (19)
C80.032 (2)0.045 (3)0.033 (2)0.0002 (19)0.0099 (17)0.0078 (19)
C90.0267 (19)0.044 (2)0.038 (2)0.0003 (19)0.0029 (16)0.0020 (19)
C100.035 (2)0.048 (2)0.0269 (18)0.0002 (19)0.0026 (16)0.0021 (18)
C110.036 (2)0.048 (3)0.0275 (19)0.004 (2)0.0003 (16)0.0010 (18)
C120.032 (2)0.048 (3)0.0303 (19)0.0076 (19)0.0091 (17)0.0041 (19)
C130.035 (2)0.036 (2)0.036 (2)0.0020 (18)0.0018 (16)0.0000 (18)
C140.037 (2)0.064 (3)0.045 (2)0.004 (2)0.0009 (19)0.003 (2)
C150.039 (2)0.070 (3)0.049 (3)0.010 (2)0.004 (2)0.006 (2)
C160.043 (3)0.065 (3)0.036 (2)0.002 (2)0.0077 (19)0.006 (2)
C170.040 (2)0.053 (3)0.0287 (19)0.003 (2)0.0015 (17)0.0042 (19)
C180.041 (2)0.039 (3)0.033 (2)0.005 (2)0.0012 (18)0.0049 (18)
C190.037 (2)0.030 (2)0.035 (2)0.0015 (18)0.0003 (17)0.0061 (17)
C200.040 (2)0.049 (3)0.035 (2)0.001 (2)0.0070 (18)0.003 (2)
C210.049 (3)0.052 (3)0.041 (2)0.000 (2)0.014 (2)0.006 (2)
C220.035 (2)0.048 (3)0.059 (3)0.001 (2)0.016 (2)0.014 (2)
C230.036 (2)0.050 (3)0.047 (2)0.002 (2)0.001 (2)0.004 (2)
C240.036 (2)0.036 (2)0.042 (2)0.0010 (19)0.0015 (19)0.0034 (19)
C250.034 (2)0.041 (3)0.039 (2)0.002 (2)0.0116 (17)0.0007 (18)
C260.035 (2)0.048 (3)0.0264 (19)0.002 (2)0.0018 (16)0.0009 (18)
C270.038 (2)0.042 (3)0.032 (2)0.0019 (19)0.0000 (16)0.0052 (18)
C280.034 (2)0.046 (3)0.039 (2)0.001 (2)0.0068 (17)0.002 (2)
C290.037 (2)0.043 (2)0.0307 (19)0.001 (2)0.0120 (17)0.0063 (19)
C300.040 (2)0.048 (3)0.034 (2)0.002 (2)0.0044 (18)0.001 (2)
C310.031 (2)0.042 (2)0.046 (2)0.0037 (19)0.0032 (18)0.003 (2)
C320.043 (3)0.062 (3)0.044 (3)0.008 (2)0.006 (2)0.008 (2)
C330.038 (2)0.064 (3)0.058 (3)0.005 (2)0.018 (2)0.012 (3)
C340.032 (2)0.054 (3)0.060 (3)0.003 (2)0.010 (2)0.008 (2)
C350.032 (2)0.040 (2)0.049 (2)0.0047 (18)0.0009 (18)0.007 (2)
C360.028 (2)0.036 (2)0.046 (2)0.0055 (18)0.0040 (17)0.0001 (18)
Geometric parameters (Å, º) top
Cu1—O11.888 (2)C10—C111.513 (5)
Cu1—O41.898 (2)C10—H10A0.9700
Cu1—N42.000 (3)C10—H10B0.9700
Cu1—N12.001 (3)C11—H11A0.9700
Cu2—O21.898 (3)C11—H11B0.9700
Cu2—O31.913 (3)C12—C131.443 (5)
Cu2—N21.995 (3)C12—H120.9300
Cu2—N32.012 (3)C13—C141.409 (5)
Cu2—O4i2.854 (3)C13—C181.415 (5)
Cl1—C21.744 (4)C14—C151.369 (6)
Cl2—C41.741 (4)C14—H140.9300
Cl3—C151.740 (4)C15—C161.378 (6)
Cl4—C171.733 (4)C16—C171.362 (6)
Cl5—C201.735 (4)C16—H160.9300
Cl6—C221.733 (4)C17—C181.437 (5)
Cl7—C331.748 (4)C19—C241.405 (5)
Cl8—C351.730 (4)C19—C201.422 (5)
O1—C11.292 (4)C20—C211.369 (6)
O2—C181.283 (5)C21—C221.395 (6)
O3—C191.298 (4)C21—H210.9300
O4—C361.309 (4)C22—C231.360 (6)
N1—C71.276 (5)C23—C241.396 (5)
N1—C81.478 (5)C23—H230.9300
N2—C121.291 (5)C24—C251.447 (5)
N2—C111.473 (5)C25—H250.9300
N3—C251.293 (5)C26—C271.507 (5)
N3—C261.491 (5)C26—H26A0.9700
N4—C301.273 (5)C26—H26B0.9700
N4—C291.482 (5)C27—C281.532 (5)
C1—C61.403 (5)C27—H27A0.9700
C1—C21.421 (5)C27—H27B0.9700
C2—C31.358 (5)C28—C291.503 (6)
C3—C41.385 (5)C28—H28A0.9700
C3—H30.9300C28—H28B0.9700
C4—C51.365 (5)C29—H290.9300
C5—C61.409 (5)C30—C311.432 (6)
C5—H50.9300C30—H300.9300
C6—C71.440 (5)C31—C361.415 (6)
C7—H70.9300C31—C321.417 (6)
C8—C91.513 (5)C32—C331.356 (6)
C8—H8A0.9700C32—H320.9300
C8—H8B0.9700C33—C341.375 (6)
C9—C101.512 (5)C34—C351.379 (5)
C9—H9A0.9700C34—H340.9300
C9—H9B0.9700C35—C361.414 (5)
O1—Cu1—O4163.19 (11)C14—C13—C12116.8 (3)
O1—Cu1—N488.14 (12)C18—C13—C12121.6 (4)
O4—Cu1—N492.45 (12)C15—C14—C13119.9 (4)
O1—Cu1—N191.82 (11)C15—C14—H14120.0
O4—Cu1—N192.25 (12)C13—C14—H14120.0
N4—Cu1—N1163.77 (13)C14—C15—C16120.5 (4)
O2—Cu2—O3170.89 (13)C14—C15—Cl3120.4 (3)
O2—Cu2—N292.23 (12)C16—C15—Cl3119.1 (3)
O3—Cu2—N289.91 (12)C17—C16—C15120.4 (4)
O2—Cu2—N389.50 (12)C17—C16—H16119.8
O3—Cu2—N390.57 (12)C15—C16—H16119.8
N2—Cu2—N3165.95 (14)C16—C17—C18122.6 (4)
O2—Cu2—O4i84.56 (10)C16—C17—Cl4119.7 (3)
O3—Cu2—O4i86.56 (10)C18—C17—Cl4117.7 (3)
N2—Cu2—O4i90.47 (11)O2—C18—C13125.3 (4)
N3—Cu2—O4i103.57 (11)O2—C18—C17119.8 (4)
C1—O1—Cu1128.9 (2)C13—C18—C17115.0 (4)
C18—O2—Cu2129.5 (2)O3—C19—C24124.2 (4)
C19—O3—Cu2130.2 (2)O3—C19—C20120.2 (4)
C36—O4—Cu1128.0 (3)C24—C19—C20115.5 (4)
C7—N1—C8116.8 (3)C21—C20—C19122.5 (4)
C7—N1—Cu1123.2 (3)C21—C20—Cl5119.2 (3)
C8—N1—Cu1120.0 (3)C19—C20—Cl5118.3 (3)
C12—N2—C11115.8 (3)C20—C21—C22119.8 (4)
C12—N2—Cu2124.3 (3)C20—C21—H21120.1
C11—N2—Cu2119.9 (2)C22—C21—H21120.1
C25—N3—C26115.0 (3)C23—C22—C21119.8 (4)
C25—N3—Cu2124.5 (3)C23—C22—Cl6120.5 (4)
C26—N3—Cu2120.5 (2)C21—C22—Cl6119.7 (3)
C30—N4—C29115.8 (3)C22—C23—C24120.7 (4)
C30—N4—Cu1123.6 (3)C22—C23—H23119.6
C29—N4—Cu1120.3 (2)C24—C23—H23119.6
O1—C1—C6124.5 (3)C23—C24—C19121.6 (4)
O1—C1—C2119.7 (3)C23—C24—C25116.5 (4)
C6—C1—C2115.8 (3)C19—C24—C25121.6 (4)
C3—C2—C1123.3 (4)N3—C25—C24127.3 (4)
C3—C2—Cl1119.5 (3)N3—C25—H25116.4
C1—C2—Cl1117.2 (3)C24—C25—H25116.4
C2—C3—C4119.3 (4)N3—C26—C27112.2 (3)
C2—C3—H3120.4N3—C26—H26A109.2
C4—C3—H3120.4C27—C26—H26A109.2
C5—C4—C3120.5 (4)N3—C26—H26B109.2
C5—C4—Cl2120.3 (3)C27—C26—H26B109.2
C3—C4—Cl2119.2 (3)H26A—C26—H26B107.9
C4—C5—C6120.3 (4)C26—C27—C28115.4 (3)
C4—C5—H5119.8C26—C27—H27A108.4
C6—C5—H5119.8C28—C27—H27A108.4
C1—C6—C5120.7 (4)C26—C27—H27B108.4
C1—C6—C7121.6 (3)C28—C27—H27B108.4
C5—C6—C7117.5 (4)H27A—C27—H27B107.5
N1—C7—C6127.6 (4)C29—C28—C27113.5 (3)
N1—C7—H7116.2C29—C28—H28A108.9
C6—C7—H7116.2C27—C28—H28A108.9
N1—C8—C9111.9 (3)C29—C28—H28B108.9
N1—C8—H8A109.2C27—C28—H28B108.9
C9—C8—H8A109.2H28A—C28—H28B107.7
N1—C8—H8B109.2N4—C29—C28110.7 (3)
C9—C8—H8B109.2N4—C29—H29124.6
H8A—C8—H8B107.9C28—C29—H29124.6
C10—C9—C8114.3 (3)N4—C30—C31127.4 (4)
C10—C9—H9A108.7N4—C30—H30116.3
C8—C9—H9A108.7C31—C30—H30116.3
C10—C9—H9B108.7C36—C31—C32120.3 (4)
C8—C9—H9B108.7C36—C31—C30122.9 (4)
H9A—C9—H9B107.6C32—C31—C30116.9 (4)
C9—C10—C11113.3 (3)C33—C32—C31120.2 (4)
C9—C10—H10A108.9C33—C32—H32119.9
C11—C10—H10A108.9C31—C32—H32119.9
C9—C10—H10B108.9C32—C33—C34121.3 (4)
C11—C10—H10B108.9C32—C33—Cl7118.7 (4)
H10A—C10—H10B107.7C34—C33—Cl7120.0 (4)
N2—C11—C10110.3 (3)C33—C34—C35119.4 (4)
N2—C11—H11A109.6C33—C34—H34120.3
C10—C11—H11A109.6C35—C34—H34120.3
N2—C11—H11B109.6C34—C35—C36122.4 (4)
C10—C11—H11B109.6C34—C35—Cl8119.0 (3)
H11A—C11—H11B108.1C36—C35—Cl8118.6 (3)
N2—C12—C13127.1 (4)O4—C36—C35120.4 (4)
N2—C12—H12116.4O4—C36—C31123.3 (4)
C13—C12—H12116.4C35—C36—C31116.4 (3)
C14—C13—C18121.6 (4)
O4—Cu1—O1—C1120.7 (4)N2—C12—C13—C14179.2 (4)
N4—Cu1—O1—C1146.9 (3)N2—C12—C13—C180.2 (7)
N1—Cu1—O1—C116.8 (3)C18—C13—C14—C151.2 (7)
N2—Cu2—O2—C182.0 (4)C12—C13—C14—C15177.9 (4)
N3—Cu2—O2—C18168.1 (4)C13—C14—C15—C161.3 (8)
N2—Cu2—O3—C19151.8 (3)C13—C14—C15—Cl3179.5 (3)
N3—Cu2—O3—C1914.2 (3)C14—C15—C16—C170.5 (8)
O1—Cu1—O4—C36108.6 (5)Cl3—C15—C16—C17179.7 (4)
N4—Cu1—O4—C3616.9 (3)C15—C16—C17—C180.5 (7)
N1—Cu1—O4—C36147.6 (3)C15—C16—C17—Cl4179.1 (4)
O1—Cu1—N1—C712.0 (3)Cu2—O2—C18—C132.5 (6)
O4—Cu1—N1—C7175.7 (3)Cu2—O2—C18—C17177.6 (3)
N4—Cu1—N1—C777.6 (6)C14—C13—C18—O2179.7 (4)
O1—Cu1—N1—C8166.3 (3)C12—C13—C18—O21.3 (7)
O4—Cu1—N1—C82.6 (3)C14—C13—C18—C170.1 (6)
N4—Cu1—N1—C8104.2 (5)C12—C13—C18—C17178.8 (4)
O2—Cu2—N2—C120.9 (3)C16—C17—C18—O2179.4 (4)
O3—Cu2—N2—C12170.2 (4)Cl4—C17—C18—O21.0 (6)
N3—Cu2—N2—C1297.8 (6)C16—C17—C18—C130.7 (6)
O2—Cu2—N2—C11176.9 (3)Cl4—C17—C18—C13178.9 (3)
O3—Cu2—N2—C1112.0 (3)Cu2—O3—C19—C2411.7 (6)
N3—Cu2—N2—C1180.0 (6)Cu2—O3—C19—C20170.4 (3)
O2—Cu2—N3—C25179.5 (3)O3—C19—C20—C21174.3 (4)
O3—Cu2—N3—C258.6 (3)C24—C19—C20—C213.8 (6)
N2—Cu2—N3—C2583.3 (7)O3—C19—C20—Cl53.5 (5)
O2—Cu2—N3—C262.2 (3)C24—C19—C20—Cl5178.4 (3)
O3—Cu2—N3—C26173.1 (3)C19—C20—C21—C221.3 (7)
N2—Cu2—N3—C2695.0 (6)Cl5—C20—C21—C22179.2 (3)
O1—Cu1—N4—C30169.2 (4)C20—C21—C22—C231.4 (7)
O4—Cu1—N4—C306.0 (4)C20—C21—C22—Cl6176.8 (3)
N1—Cu1—N4—C30100.7 (5)C21—C22—C23—C241.5 (7)
O1—Cu1—N4—C2916.0 (3)Cl6—C22—C23—C24176.7 (3)
O4—Cu1—N4—C29179.2 (3)C22—C23—C24—C191.2 (6)
N1—Cu1—N4—C2974.2 (6)C22—C23—C24—C25175.2 (4)
O4i—Cu2—O2—C1888.2 (4)O3—C19—C24—C23174.4 (4)
O4i—Cu2—O3—C19117.7 (3)C20—C19—C24—C233.7 (6)
O4i—Cu2—N2—C1283.7 (3)O3—C19—C24—C250.7 (7)
O4i—Cu2—N2—C1198.5 (3)C20—C19—C24—C25177.3 (4)
O4i—Cu2—N3—C2595.2 (3)C26—N3—C25—C24179.6 (4)
O4i—Cu2—N3—C2686.5 (3)Cu2—N3—C25—C241.3 (7)
Cu1—O1—C1—C611.3 (5)C23—C24—C25—N3179.7 (4)
Cu1—O1—C1—C2171.3 (3)C19—C24—C25—N35.7 (8)
O1—C1—C2—C3179.2 (4)C25—N3—C26—C27102.5 (4)
C6—C1—C2—C31.6 (6)Cu2—N3—C26—C2775.9 (4)
O1—C1—C2—Cl10.1 (5)N3—C26—C27—C2864.9 (4)
C6—C1—C2—Cl1177.5 (3)C26—C27—C28—C29173.0 (3)
C1—C2—C3—C40.9 (7)C30—N4—C29—C28105.5 (4)
Cl1—C2—C3—C4178.2 (3)Cu1—N4—C29—C2869.7 (4)
C2—C3—C4—C50.3 (7)C27—C28—C29—N458.2 (4)
C2—C3—C4—Cl2178.3 (3)C29—N4—C30—C31171.4 (4)
C3—C4—C5—C60.4 (6)Cu1—N4—C30—C313.6 (7)
Cl2—C4—C5—C6178.2 (3)N4—C30—C31—C367.0 (7)
O1—C1—C6—C5179.2 (4)N4—C30—C31—C32171.1 (4)
C2—C1—C6—C51.7 (5)C36—C31—C32—C331.6 (7)
O1—C1—C6—C74.4 (6)C30—C31—C32—C33176.5 (4)
C2—C1—C6—C7173.0 (3)C31—C32—C33—C340.6 (7)
C4—C5—C6—C11.2 (6)C31—C32—C33—Cl7179.7 (4)
C4—C5—C6—C7173.8 (4)C32—C33—C34—C351.9 (7)
C8—N1—C7—C6175.9 (4)Cl7—C33—C34—C35178.4 (4)
Cu1—N1—C7—C62.4 (6)C33—C34—C35—C361.0 (7)
C1—C6—C7—N18.7 (7)C33—C34—C35—Cl8178.5 (4)
C5—C6—C7—N1176.4 (4)Cu1—O4—C36—C35161.8 (3)
C7—N1—C8—C9103.0 (4)Cu1—O4—C36—C3118.3 (6)
Cu1—N1—C8—C978.6 (4)C34—C35—C36—O4178.8 (4)
N1—C8—C9—C1063.3 (4)Cl8—C35—C36—O40.7 (5)
C8—C9—C10—C11172.3 (3)C34—C35—C36—C311.1 (6)
C12—N2—C11—C10109.1 (4)Cl8—C35—C36—C31179.3 (3)
Cu2—N2—C11—C1068.9 (4)C32—C31—C36—O4177.5 (4)
C9—C10—C11—N260.6 (4)C30—C31—C36—O44.4 (7)
C11—N2—C12—C13177.6 (4)C32—C31—C36—C352.4 (6)
Cu2—N2—C12—C130.3 (6)C30—C31—C36—C35175.6 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O30.972.463.073 (5)121
C27—H27A···O20.972.503.098 (5)120
C28—H28A···O10.972.573.137 (5)118

Experimental details

Crystal data
Chemical formula[Cu2(C18H14Cl4N2O2)2]
Mr990.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)291
a, b, c (Å)26.6927 (16), 7.7775 (4), 18.6689 (9)
V3)3875.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.36 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.581, 0.773
No. of measured, independent and
observed [I > 2σ(I)] reflections
18623, 8990, 6793
Rint0.034
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.085, 0.99
No. of reflections8990
No. of parameters488
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.35
Absolute structureFlack (1983), 4247 Friedel pairs
Absolute structure parameter0.605 (10)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

HK and AAA thank PNU for support of this work. RK thanks the Science and Research Branch, Islamic Azad University.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationHannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024.  Web of Science CSD CrossRef Google Scholar
First citationKargar, H. & Kia, R. (2011a). Acta Cryst. E67, m497–m498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H. & Kia, R. (2011b). Acta Cryst. E67, m499–m500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667.  Web of Science CSD CrossRef Google Scholar
First citationLi, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308–6316.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds