organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3,5,5-Tetra­methyl-r-2,c-6-di­phenyl­piperidin-4-one

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: chitragovi12@gmail.com

(Received 28 March 2012; accepted 27 April 2012; online 13 June 2012)

The piperidone ring of the title compound, C21H25NO, adopts a chair conformation with the two phenyl groups equatorially oriented and cis to each other. In the crystal, mol­ecules are linked by weak N—H⋯O hydrogen bonds, forming chains parallel to [100].

Related literature

For some bioactive properties of piperidones, see: Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427.]). For piperidone ring conformations in related compounds, see: Parthiban et al. (2008[Parthiban, P., Ramkumar, V., Kumar, N. A., Kim, J. S. & Jeong, Y. T. (2008). Acta Cryst. E64, o1631.]); Lakshminarayana et al. (2009[Lakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Naik, N. (2009). Acta Cryst. E65, o1001.]); Ravichandran et al. (2010[Ravichandran, K., Ramesh, P., Jeganathan, P., Ponnuswamy, S. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o276-o277.]). For the synthesis, see: Noller & Baliah (1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]). For ring puckering parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO

  • Mr = 307.42

  • Triclinic, [P \overline 1]

  • a = 6.9227 (11) Å

  • b = 11.540 (2) Å

  • c = 12.472 (2) Å

  • α = 64.771 (4)°

  • β = 80.755 (5)°

  • γ = 72.675 (4)°

  • V = 859.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.986

  • 12752 measured reflections

  • 2659 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 24.0°

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.152

  • S = 1.15

  • 2659 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.94 (3) 2.39 (3) 3.258 (3) 153 (2)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aryl substituted piperidine-4-ones are important heterocyclic entities present in natural products like alkaloids.The piperidones exhibit diverse bioactivities such as bactericidal, fungicidal and herbicidal activities (Mobio et al., 1989).The six-membered ring of piperidones adopts, predominantly, a chair conformation (Parthiban et al., 2008) but many often the conformation depends on the substitution in the piperidone ring (Lakshminarayana et al., 2009; Ravichandran et al., 2010). The determination of the crystal structure of the title compound was mainly undertaken to evaluate the impact of four methyl groups at C2 and C4 carbon atoms. The ORTEP diagram of the title compound is shown in Fig. 1. In the title compound C21H25NO, the piperidone ring adopts a chair conformation with ring puckering parameters (Nardelli, 1983; Cremer & Pople, 1975) of Q=0.543 (2)°, θ = 155.55 (3)° and φ=136.72 (2)°. The two phenyl groups are equatorial oriented and cis to each other. The crystal packing is stabilized by a week N—H···O hydrogen bond [d(N—O)=3.257 (4) Å and angle N—H···O= 151.11 (2)°]. The N—H···O hydrogen bond connects the adjacent molecule into a head to tail fashion to generate a one dimensional chain extending parallel to the [1 0 0] direction.

Related literature top

For some bioactive properties of piperidones, see: Mobio et al. (1989). For piperidone ring conformations in related compounds, see: Parthiban et al. (2008); Lakshminarayana et al. (2009); Ravichandran et al. (2010). For the synthesis, see: Noller & Baliah (1948). For ring puckering parameters, see: Nardelli (1983); Cremer & Pople (1975).

Experimental top

The title compound was prepared by one pot synthesis from 3,4-dimethy-3-pentanone, benzaldehyde and ammonium acetate at 1:2:1 proportion in ethanol as solvent by adopting the literature procedure reported by (Noller & Baliah, 1948). Crystals suitable for single-crystal X-raydiffraction were grown by slow evaporation of a solution in benzene (m.p. 467–469 K).

Refinement top

The H atoms associated with the carbon atoms were fixed geometrically and allowed to ride on their parent carbon atoms with C–H distances in the range of 0.93 Å–0.98 Å and Uiso(H) set to either 1.2Uequ(C) or 1.5Ueqi(C) of the carrier atom. The H-atom bound to the N-atom is identified from a difference electron density map and restrained to a distance of 0.93 (3) Å

Structure description top

Aryl substituted piperidine-4-ones are important heterocyclic entities present in natural products like alkaloids.The piperidones exhibit diverse bioactivities such as bactericidal, fungicidal and herbicidal activities (Mobio et al., 1989).The six-membered ring of piperidones adopts, predominantly, a chair conformation (Parthiban et al., 2008) but many often the conformation depends on the substitution in the piperidone ring (Lakshminarayana et al., 2009; Ravichandran et al., 2010). The determination of the crystal structure of the title compound was mainly undertaken to evaluate the impact of four methyl groups at C2 and C4 carbon atoms. The ORTEP diagram of the title compound is shown in Fig. 1. In the title compound C21H25NO, the piperidone ring adopts a chair conformation with ring puckering parameters (Nardelli, 1983; Cremer & Pople, 1975) of Q=0.543 (2)°, θ = 155.55 (3)° and φ=136.72 (2)°. The two phenyl groups are equatorial oriented and cis to each other. The crystal packing is stabilized by a week N—H···O hydrogen bond [d(N—O)=3.257 (4) Å and angle N—H···O= 151.11 (2)°]. The N—H···O hydrogen bond connects the adjacent molecule into a head to tail fashion to generate a one dimensional chain extending parallel to the [1 0 0] direction.

For some bioactive properties of piperidones, see: Mobio et al. (1989). For piperidone ring conformations in related compounds, see: Parthiban et al. (2008); Lakshminarayana et al. (2009); Ravichandran et al. (2010). For the synthesis, see: Noller & Baliah (1948). For ring puckering parameters, see: Nardelli (1983); Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Part of crystal structure showing the packing of the molecules in the unit cell and formation of N1—H1A···O1 hydrogen bond.
3,3,5,5-Tetramethyl-r-2,c-6-diphenylpiperidin-4-one top
Crystal data top
C21H25NOZ = 2
Mr = 307.42F(000) = 332
Triclinic, P1Dx = 1.187 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9227 (11) ÅCell parameters from 4779 reflections
b = 11.540 (2) Åθ = 2.1–23.8°
c = 12.472 (2) ŵ = 0.07 mm1
α = 64.771 (4)°T = 295 K
β = 80.755 (5)°Block, colourless
γ = 72.675 (4)°0.30 × 0.25 × 0.20 mm
V = 859.8 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2659 independent reflections
Radiation source: fine-focus sealed tube2123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scanθmax = 24.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.919, Tmax = 0.986k = 1313
12752 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.4957P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2659 reflectionsΔρmax = 0.23 e Å3
217 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (4)
Crystal data top
C21H25NOγ = 72.675 (4)°
Mr = 307.42V = 859.8 (3) Å3
Triclinic, P1Z = 2
a = 6.9227 (11) ÅMo Kα radiation
b = 11.540 (2) ŵ = 0.07 mm1
c = 12.472 (2) ÅT = 295 K
α = 64.771 (4)°0.30 × 0.25 × 0.20 mm
β = 80.755 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2659 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2123 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.986Rint = 0.032
12752 measured reflectionsθmax = 24.0°
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.23 e Å3
2659 reflectionsΔρmin = 0.18 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7201 (4)0.4000 (2)0.1945 (2)0.0372 (6)
H10.71650.42800.10870.045*
C20.9321 (4)0.3963 (2)0.2220 (2)0.0407 (6)
C31.0898 (4)0.2903 (2)0.1901 (2)0.0435 (6)
C41.0442 (4)0.1603 (2)0.2102 (2)0.0446 (6)
C50.8169 (4)0.1810 (2)0.1951 (2)0.0386 (6)
H50.79200.22630.11000.046*
C60.5498 (4)0.4960 (2)0.2302 (2)0.0394 (6)
C70.4653 (4)0.4602 (3)0.3438 (2)0.0496 (7)
H70.51330.37500.40030.059*
C80.3102 (5)0.5492 (3)0.3749 (3)0.0633 (8)
H80.25440.52340.45180.076*
C90.2383 (5)0.6751 (3)0.2932 (3)0.0657 (9)
H90.13510.73540.31440.079*
C100.3196 (5)0.7116 (3)0.1799 (3)0.0641 (9)
H100.27050.79700.12390.077*
C110.4734 (4)0.6232 (2)0.1478 (3)0.0514 (7)
H110.52650.64930.07030.062*
C120.7552 (4)0.0522 (2)0.2417 (2)0.0408 (6)
C130.7551 (4)0.0084 (3)0.1664 (3)0.0533 (7)
H130.79200.03110.08660.064*
C140.7008 (5)0.1267 (3)0.2086 (3)0.0647 (9)
H140.70040.16550.15680.078*
C150.6482 (5)0.1867 (3)0.3250 (3)0.0655 (9)
H150.61370.26690.35320.079*
C160.6461 (4)0.1284 (3)0.4009 (3)0.0597 (8)
H160.60980.16890.48070.072*
C170.6982 (4)0.0093 (2)0.3588 (2)0.0483 (7)
H170.69450.03000.41080.058*
C180.9507 (5)0.3605 (3)0.3540 (3)0.0632 (8)
H18A0.90240.28320.40100.095*
H18B0.87130.43320.37360.095*
H18C1.09000.34290.37000.095*
C190.9807 (4)0.5297 (3)0.1504 (3)0.0569 (8)
H19A1.11590.52360.16530.085*
H19B0.88670.59600.17330.085*
H19C0.97020.55350.06750.085*
C201.1125 (5)0.0629 (3)0.3352 (3)0.0691 (9)
H20A1.24640.06460.34470.104*
H20B1.11310.02490.34670.104*
H20C1.02070.08790.39270.104*
C211.1721 (5)0.1079 (3)0.1211 (3)0.0707 (10)
H21A1.13350.16950.04220.106*
H21B1.15070.02380.13590.106*
H21C1.31260.09730.12930.106*
N10.6901 (3)0.26610 (18)0.25244 (18)0.0388 (5)
O11.2574 (3)0.30563 (19)0.1531 (2)0.0641 (6)
H1A0.554 (4)0.268 (2)0.251 (2)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (14)0.0324 (12)0.0436 (14)0.0100 (10)0.0031 (10)0.0179 (11)
C20.0389 (14)0.0400 (14)0.0502 (15)0.0132 (11)0.0018 (11)0.0225 (12)
C30.0344 (15)0.0428 (14)0.0531 (15)0.0111 (11)0.0032 (11)0.0179 (12)
C40.0370 (15)0.0330 (13)0.0583 (16)0.0050 (10)0.0008 (11)0.0169 (12)
C50.0393 (14)0.0320 (12)0.0441 (14)0.0047 (10)0.0036 (10)0.0171 (11)
C60.0391 (14)0.0319 (13)0.0546 (16)0.0104 (10)0.0028 (11)0.0230 (12)
C70.0482 (16)0.0434 (15)0.0598 (17)0.0111 (12)0.0030 (13)0.0254 (13)
C80.0566 (19)0.073 (2)0.078 (2)0.0182 (16)0.0122 (15)0.0510 (18)
C90.0520 (19)0.0570 (19)0.105 (3)0.0006 (14)0.0078 (17)0.055 (2)
C100.063 (2)0.0361 (15)0.094 (2)0.0003 (13)0.0180 (18)0.0303 (16)
C110.0548 (17)0.0365 (14)0.0644 (18)0.0099 (12)0.0086 (13)0.0207 (13)
C120.0366 (14)0.0295 (12)0.0541 (16)0.0022 (10)0.0059 (11)0.0176 (11)
C130.0601 (19)0.0417 (15)0.0627 (18)0.0091 (13)0.0059 (14)0.0266 (14)
C140.070 (2)0.0442 (17)0.093 (2)0.0083 (14)0.0144 (18)0.0399 (17)
C150.0576 (19)0.0381 (16)0.102 (3)0.0130 (13)0.0099 (17)0.0264 (17)
C160.0537 (19)0.0442 (16)0.073 (2)0.0170 (13)0.0043 (14)0.0122 (15)
C170.0473 (16)0.0415 (14)0.0591 (17)0.0146 (12)0.0013 (12)0.0211 (13)
C180.0543 (19)0.086 (2)0.0630 (19)0.0170 (16)0.0097 (14)0.0406 (17)
C190.0506 (18)0.0462 (16)0.085 (2)0.0197 (13)0.0024 (14)0.0335 (15)
C200.0489 (18)0.0526 (18)0.084 (2)0.0073 (14)0.0257 (16)0.0032 (16)
C210.0541 (19)0.0559 (18)0.108 (3)0.0136 (14)0.0245 (17)0.0487 (18)
N10.0331 (12)0.0320 (11)0.0558 (13)0.0103 (8)0.0015 (9)0.0217 (9)
O10.0380 (12)0.0621 (13)0.0986 (16)0.0187 (9)0.0098 (10)0.0387 (12)
Geometric parameters (Å, º) top
C1—N11.464 (3)C11—H110.9300
C1—C61.513 (3)C12—C171.375 (4)
C1—C21.545 (3)C12—C131.390 (4)
C1—H10.9800C13—C141.383 (4)
C2—C191.523 (3)C13—H130.9300
C2—C31.525 (3)C14—C151.359 (5)
C2—C181.534 (4)C14—H140.9300
C3—O11.213 (3)C15—C161.372 (4)
C3—C41.532 (3)C15—H150.9300
C4—C211.523 (4)C16—C171.383 (4)
C4—C201.531 (4)C16—H160.9300
C4—C51.550 (3)C17—H170.9300
C5—N11.460 (3)C18—H18A0.9600
C5—C121.514 (3)C18—H18B0.9600
C5—H50.9800C18—H18C0.9600
C6—C71.378 (4)C19—H19A0.9600
C6—C111.385 (3)C19—H19B0.9600
C7—C81.381 (4)C19—H19C0.9600
C7—H70.9300C20—H20A0.9600
C8—C91.367 (4)C20—H20B0.9600
C8—H80.9300C20—H20C0.9600
C9—C101.367 (5)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—C111.378 (4)C21—H21C0.9600
C10—H100.9300N1—H1A0.94 (3)
N1—C1—C6110.46 (19)C17—C12—C13117.6 (2)
N1—C1—C2109.22 (19)C17—C12—C5121.9 (2)
C6—C1—C2113.51 (18)C13—C12—C5120.5 (2)
N1—C1—H1107.8C14—C13—C12120.9 (3)
C6—C1—H1107.8C14—C13—H13119.6
C2—C1—H1107.8C12—C13—H13119.6
C19—C2—C3109.0 (2)C15—C14—C13120.5 (3)
C19—C2—C18108.4 (2)C15—C14—H14119.8
C3—C2—C18107.4 (2)C13—C14—H14119.8
C19—C2—C1110.9 (2)C14—C15—C16119.7 (3)
C3—C2—C1108.89 (19)C14—C15—H15120.2
C18—C2—C1112.2 (2)C16—C15—H15120.2
O1—C3—C2119.9 (2)C15—C16—C17120.0 (3)
O1—C3—C4118.9 (2)C15—C16—H16120.0
C2—C3—C4121.1 (2)C17—C16—H16120.0
C21—C4—C20108.7 (2)C12—C17—C16121.4 (3)
C21—C4—C3108.7 (2)C12—C17—H17119.3
C20—C4—C3106.0 (2)C16—C17—H17119.3
C21—C4—C5109.6 (2)C2—C18—H18A109.5
C20—C4—C5112.4 (2)C2—C18—H18B109.5
C3—C4—C5111.33 (19)H18A—C18—H18B109.5
N1—C5—C12109.7 (2)C2—C18—H18C109.5
N1—C5—C4110.6 (2)H18A—C18—H18C109.5
C12—C5—C4113.06 (19)H18B—C18—H18C109.5
N1—C5—H5107.7C2—C19—H19A109.5
C12—C5—H5107.7C2—C19—H19B109.5
C4—C5—H5107.7H19A—C19—H19B109.5
C7—C6—C11118.1 (2)C2—C19—H19C109.5
C7—C6—C1121.7 (2)H19A—C19—H19C109.5
C11—C6—C1120.2 (2)H19B—C19—H19C109.5
C6—C7—C8120.9 (3)C4—C20—H20A109.5
C6—C7—H7119.5C4—C20—H20B109.5
C8—C7—H7119.5H20A—C20—H20B109.5
C9—C8—C7120.3 (3)C4—C20—H20C109.5
C9—C8—H8119.8H20A—C20—H20C109.5
C7—C8—H8119.8H20B—C20—H20C109.5
C8—C9—C10119.4 (3)C4—C21—H21A109.5
C8—C9—H9120.3C4—C21—H21B109.5
C10—C9—H9120.3H21A—C21—H21B109.5
C9—C10—C11120.7 (3)C4—C21—H21C109.5
C9—C10—H10119.6H21A—C21—H21C109.5
C11—C10—H10119.6H21B—C21—H21C109.5
C10—C11—C6120.5 (3)C5—N1—C1111.10 (19)
C10—C11—H11119.7C5—N1—H1A109.0 (15)
C6—C11—H11119.7C1—N1—H1A111.2 (15)
N1—C1—C2—C19172.5 (2)N1—C1—C6—C11141.9 (2)
C6—C1—C2—C1963.7 (3)C2—C1—C6—C1195.1 (3)
N1—C1—C2—C352.6 (3)C11—C6—C7—C80.6 (4)
C6—C1—C2—C3176.3 (2)C1—C6—C7—C8179.8 (2)
N1—C1—C2—C1866.1 (3)C6—C7—C8—C90.3 (4)
C6—C1—C2—C1857.6 (3)C7—C8—C9—C100.8 (5)
C19—C2—C3—O125.8 (3)C8—C9—C10—C110.4 (5)
C18—C2—C3—O191.4 (3)C9—C10—C11—C60.5 (4)
C1—C2—C3—O1146.9 (2)C7—C6—C11—C101.0 (4)
C19—C2—C3—C4157.6 (2)C1—C6—C11—C10179.4 (2)
C18—C2—C3—C485.2 (3)N1—C5—C12—C1737.9 (3)
C1—C2—C3—C436.5 (3)C4—C5—C12—C1786.1 (3)
O1—C3—C4—C2130.6 (3)N1—C5—C12—C13142.3 (2)
C2—C3—C4—C21152.7 (2)C4—C5—C12—C1393.7 (3)
O1—C3—C4—C2086.0 (3)C17—C12—C13—C140.4 (4)
C2—C3—C4—C2090.6 (3)C5—C12—C13—C14179.4 (2)
O1—C3—C4—C5151.4 (2)C12—C13—C14—C150.6 (4)
C2—C3—C4—C531.9 (3)C13—C14—C15—C160.9 (5)
C21—C4—C5—N1163.2 (2)C14—C15—C16—C170.2 (4)
C20—C4—C5—N175.8 (3)C13—C12—C17—C161.2 (4)
C3—C4—C5—N142.9 (3)C5—C12—C17—C16178.6 (2)
C21—C4—C5—C1273.3 (3)C15—C16—C17—C120.9 (4)
C20—C4—C5—C1247.7 (3)C12—C5—N1—C1169.68 (19)
C3—C4—C5—C12166.4 (2)C4—C5—N1—C164.9 (2)
N1—C1—C6—C737.7 (3)C6—C1—N1—C5163.89 (19)
C2—C1—C6—C785.3 (3)C2—C1—N1—C570.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.94 (3)2.39 (3)3.258 (3)153 (2)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H25NO
Mr307.42
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.9227 (11), 11.540 (2), 12.472 (2)
α, β, γ (°)64.771 (4), 80.755 (5), 72.675 (4)
V3)859.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.919, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
12752, 2659, 2123
Rint0.032
θmax (°)24.0
(sin θ/λ)max1)0.572
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.152, 1.15
No. of reflections2659
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.94 (3)2.39 (3)3.258 (3)153 (2)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the SAIF, IIT Madras, for the X- ray data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Naik, N. (2009). Acta Cryst. E65, o1001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationParthiban, P., Ramkumar, V., Kumar, N. A., Kim, J. S. & Jeong, Y. T. (2008). Acta Cryst. E64, o1631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavichandran, K., Ramesh, P., Jeganathan, P., Ponnuswamy, S. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o276–o277.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds