organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{(E)-[(3-Iodo-4-methyl­phen­yl)imino]­meth­yl}-4-(tri­fluoro­meth­­oxy)phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey
*Correspondence e-mail: merve.pekdemir@oposta.omu.edu.tr

(Received 31 May 2012; accepted 13 June 2012; online 20 June 2012)

The title compound, C15H11F3INO2, adopts the enol–imine tautomeric form. The mol­ecule displays an E conformation with respect to the imine C=N double bond. The dihedral angle between the two benzene rings is 12.4 (2)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring motif. The trifluoro­meth­oxy­phenyl group is disordered over two sites with an occupancy ratio of 0.621 (6):0.379 (6). The crystal structure features C—H⋯π inter­actions.

Related literature

For generic history to the use of Schiff bases and their biological activity, see: Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547-2554.]); Cukurovali et al. (2002[Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.]); Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem. 92, 141-148.]). Schiff base compounds can be classified by their photochromic and thermochromic characteristics, see: Alarcon et al. (1999[Alarcon, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233-240.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Gül et al. (2007[Gül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]); Şahin et al. (2005[Şahin, O., Albayrak, C., Odabaşogˇlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o3508-o3510.]); Xu et al. (1994[Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.]). For related structures, see: Ağar et al. 2010[Ağar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759-1772.]); Ceylan et al. (2011[Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.]); Demirtaş et al. (2009)[Demirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.]; Tecer et al. (2010[Tecer, E., Dege, N., Zülfikaroğlu, A., Şenyüz, N. & Batı, H. (2010). Acta Cryst. E66, o3369-o3370.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11F3INO2

  • Mr = 421.15

  • Triclinic, [P \overline 1]

  • a = 4.6733 (3) Å

  • b = 6.6441 (5) Å

  • c = 25.2825 (19) Å

  • α = 86.970 (6)°

  • β = 86.386 (6)°

  • γ = 78.087 (5)°

  • V = 765.95 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 296 K

  • 0.80 × 0.38 × 0.10 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.389, Tmax = 0.833

  • 9671 measured reflections

  • 3237 independent reflections

  • 2806 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.04

  • 3237 reflections

  • 198 parameters

  • 38 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.628 (4) 147
C15—H15BCgi 0.96 2.85 3.570 (5) 133
Symmetry code: (i) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff base complexes are of major interests for inorganic and bioinorganic chemistry. To the best of our knowledge, in recent years, Schiff base ligands have demonstrated important biological activities and new samples have been tested for their antitumor, antimicrobial and antiviral activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002).

Schiff base compounds display interesting photochromic and thermochromic properties in the solid state and can be classified in terms of these features (Cohen et al., 1964). Photo- and thermochromism arise via H-atom transfer from an hydroxy O atom to the imine N atom (Hadjoudis et al., 1987; Xu et al., 1994). Such proton- exchanging materials can be used for the design of various molecular electronic devices (Alarcon et al., 1999). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two sort of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine (Gül et al., 2007) and N—H···O in keto-amine tautomers (Şahin et al., 2005).

As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here. Our researchs show that compound (I) adopts the phenol-imine tautomeric form. The molecular structure of the title compound is shown in Fig.1. The molecule contains two aromatic rings linked through a imine group. The dihedral angle between the two benzene ring is 12.4 (2)°. The C5—N1—C13—C7 torsion angle is 179.4 (3)°. The C13N1 bond distance [1.272 (5) Å] is consistent with related structures (Aǧar et al., 2010; Tecer et al., 2010; Ceylan et al., 2011; Demirtaş et al., 2009).

The trifluoromethyl group is disordered and have been refined as such (see refinement details). The F atoms are disordered over two positions with refined site occupancies of 0.621 (6): 0.379 (6).

Fig.1 additionally shows a strong intramolecular hyrogen bond (O1—H1···N1) can be defined as an S(6) motif (Bernstein et al., 1995). The molecule are packaged by C—H···π interactions.

Related literature top

For generic history to the use of Schiff bases as their biological activity, see: Tarafder et al. (2002); Cukurovali et al. (2002); Ali et al. (2002). Schiff base compounds can be classified by their photochromic and thermochromic characteristics, see: Alarcon et al. (1999); Cohen et al. (1964); Gül et al. (2007); Hadjoudis et al. (1987); Şahin et al. (2005); Xu et al. (1994). For related structures, see: Aǧar et al. 2010); Ceylan et al. (2011); Demirtaş et al. (2009); Tecer et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound l was prepared by mixing a solution 2-hydroxy-5- (trifluoromethoxy)benzaldehyde (0.0107 g 0.052 mmol) in 20 ml ethanol with a solution of 3-iodo-4-methylaniline (0.0121 g 0.052 mmol) in 20 ml ethanol and refluxing the resulting mixture by 1 h under stirring. The crystals of 2-{(E)-[(3-iodo-4-methylphenyl)imino]methyl}-4-(trifluoromethoxy)phenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield %63; m.p 88–90 °C).

Refinement top

The H1 atom was located in a difference map and refined subject to a DFIX (SHELXL97; Sheldrick, 2008) restraint of O—H=0.82 (2) Å. All other H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Structure description top

Schiff base complexes are of major interests for inorganic and bioinorganic chemistry. To the best of our knowledge, in recent years, Schiff base ligands have demonstrated important biological activities and new samples have been tested for their antitumor, antimicrobial and antiviral activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002).

Schiff base compounds display interesting photochromic and thermochromic properties in the solid state and can be classified in terms of these features (Cohen et al., 1964). Photo- and thermochromism arise via H-atom transfer from an hydroxy O atom to the imine N atom (Hadjoudis et al., 1987; Xu et al., 1994). Such proton- exchanging materials can be used for the design of various molecular electronic devices (Alarcon et al., 1999). In general, Schiff bases display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two sort of intramolecular hydrogen bonds are observed in Schiff bases: O—H···N in phenol-imine (Gül et al., 2007) and N—H···O in keto-amine tautomers (Şahin et al., 2005).

As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here. Our researchs show that compound (I) adopts the phenol-imine tautomeric form. The molecular structure of the title compound is shown in Fig.1. The molecule contains two aromatic rings linked through a imine group. The dihedral angle between the two benzene ring is 12.4 (2)°. The C5—N1—C13—C7 torsion angle is 179.4 (3)°. The C13N1 bond distance [1.272 (5) Å] is consistent with related structures (Aǧar et al., 2010; Tecer et al., 2010; Ceylan et al., 2011; Demirtaş et al., 2009).

The trifluoromethyl group is disordered and have been refined as such (see refinement details). The F atoms are disordered over two positions with refined site occupancies of 0.621 (6): 0.379 (6).

Fig.1 additionally shows a strong intramolecular hyrogen bond (O1—H1···N1) can be defined as an S(6) motif (Bernstein et al., 1995). The molecule are packaged by C—H···π interactions.

For generic history to the use of Schiff bases as their biological activity, see: Tarafder et al. (2002); Cukurovali et al. (2002); Ali et al. (2002). Schiff base compounds can be classified by their photochromic and thermochromic characteristics, see: Alarcon et al. (1999); Cohen et al. (1964); Gül et al. (2007); Hadjoudis et al. (1987); Şahin et al. (2005); Xu et al. (1994). For related structures, see: Aǧar et al. 2010); Ceylan et al. (2011); Demirtaş et al. (2009); Tecer et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability.
2-{(E)-[(3-Iodo-4-methylphenyl)imino]methyl}-4-(trifluoromethoxy)phenol top
Crystal data top
C15H11F3INO2Z = 2
Mr = 421.15F(000) = 408
Triclinic, P1Dx = 1.826 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6733 (3) ÅCell parameters from 18957 reflections
b = 6.6441 (5) Åθ = 1.6–27.3°
c = 25.2825 (19) ŵ = 2.13 mm1
α = 86.970 (6)°T = 296 K
β = 86.386 (6)°PLATE, yellow
γ = 78.087 (5)°0.80 × 0.38 × 0.10 mm
V = 765.95 (10) Å3
Data collection top
Stoe IPDS 2
diffractometer
3237 independent reflections
Radiation source: fine-focus sealed tube2806 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.066
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 1.6°
rotation method scansh = 55
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 88
Tmin = 0.389, Tmax = 0.833l = 3131
9671 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.1093P]
where P = (Fo2 + 2Fc2)/3
3237 reflections(Δ/σ)max = 0.002
198 parametersΔρmax = 0.71 e Å3
38 restraintsΔρmin = 0.58 e Å3
Crystal data top
C15H11F3INO2γ = 78.087 (5)°
Mr = 421.15V = 765.95 (10) Å3
Triclinic, P1Z = 2
a = 4.6733 (3) ÅMo Kα radiation
b = 6.6441 (5) ŵ = 2.13 mm1
c = 25.2825 (19) ÅT = 296 K
α = 86.970 (6)°0.80 × 0.38 × 0.10 mm
β = 86.386 (6)°
Data collection top
Stoe IPDS 2
diffractometer
3237 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2806 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.833Rint = 0.066
9671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03838 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.71 e Å3
3237 reflectionsΔρmin = 0.58 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C150.9104 (9)0.8097 (7)0.57659 (18)0.0655 (10)
H15A0.99690.66850.58490.098*
H15B1.05660.89210.57700.098*
H15C0.83330.82110.54200.098*
C140.6844 (15)0.7327 (12)0.9450 (2)0.0967 (18)
I10.59478 (6)1.29948 (4)0.557019 (11)0.06978 (14)
O10.3927 (8)1.3987 (4)0.77435 (14)0.0774 (9)
H10.25811.34290.75440.116*
N10.0211 (6)1.0922 (4)0.73088 (12)0.0511 (6)
C10.5067 (7)1.0843 (5)0.61658 (13)0.0487 (7)
C50.2116 (7)1.0139 (5)0.69393 (13)0.0491 (7)
C60.2828 (7)1.1499 (5)0.65460 (14)0.0498 (7)
H60.18081.28580.65350.060*
O20.8277 (7)0.8215 (5)0.90303 (13)0.0752 (8)
C30.5939 (8)0.7512 (5)0.65756 (16)0.0578 (8)
H30.69840.61600.65930.069*
C130.1359 (8)0.9712 (5)0.76217 (14)0.0528 (7)
H130.06550.83010.76010.063*
C70.3726 (7)1.0436 (5)0.80106 (14)0.0501 (7)
C40.3711 (8)0.8124 (6)0.69536 (15)0.0566 (8)
H40.32760.71900.72180.068*
C120.4914 (8)1.2548 (6)0.80557 (15)0.0575 (8)
C80.4832 (8)0.9026 (6)0.83407 (16)0.0563 (8)
H80.40790.76260.83090.068*
C20.6688 (7)0.8836 (5)0.61677 (15)0.0520 (7)
C100.8238 (10)1.1762 (8)0.87578 (19)0.0725 (11)
H100.97501.21980.90090.087*
C90.7043 (8)0.9682 (6)0.87166 (15)0.0602 (9)
C110.7204 (10)1.3145 (7)0.8433 (2)0.0716 (11)
H110.80341.45360.84610.086*
F1A0.830 (2)0.6351 (14)0.9751 (3)0.1137 (11)0.621 (6)
F2A0.4368 (18)0.5983 (14)0.9256 (3)0.1137 (11)0.621 (6)
F3A0.5481 (19)0.8352 (13)0.9714 (3)0.1137 (11)0.621 (6)
F1B0.818 (4)0.571 (2)0.9597 (5)0.1137 (11)0.379 (6)
F2B0.428 (3)0.704 (2)0.9445 (5)0.1137 (11)0.379 (6)
F3B0.758 (3)0.8901 (18)0.9804 (4)0.1137 (11)0.379 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C150.057 (2)0.064 (2)0.072 (2)0.0052 (17)0.0091 (18)0.0137 (19)
C140.102 (4)0.128 (5)0.074 (3)0.062 (4)0.007 (3)0.026 (3)
I10.0703 (2)0.0657 (2)0.0686 (2)0.01119 (13)0.01306 (13)0.00966 (13)
O10.088 (2)0.0503 (14)0.083 (2)0.0003 (13)0.0198 (16)0.0101 (14)
N10.0505 (14)0.0500 (14)0.0493 (14)0.0040 (12)0.0000 (12)0.0015 (12)
C10.0473 (16)0.0482 (15)0.0500 (16)0.0087 (13)0.0021 (13)0.0008 (13)
C50.0475 (16)0.0483 (16)0.0497 (17)0.0050 (13)0.0039 (13)0.0014 (13)
C60.0476 (16)0.0457 (15)0.0530 (17)0.0029 (13)0.0019 (13)0.0002 (13)
O20.0662 (16)0.091 (2)0.0705 (18)0.0272 (15)0.0008 (14)0.0153 (16)
C30.0545 (19)0.0446 (16)0.068 (2)0.0029 (14)0.0012 (16)0.0029 (15)
C130.0545 (18)0.0483 (16)0.0541 (18)0.0072 (14)0.0030 (14)0.0010 (14)
C70.0473 (16)0.0506 (16)0.0507 (17)0.0072 (13)0.0030 (13)0.0020 (13)
C40.0569 (19)0.0497 (17)0.058 (2)0.0016 (15)0.0014 (15)0.0063 (15)
C120.061 (2)0.0515 (17)0.0570 (19)0.0071 (15)0.0012 (16)0.0032 (15)
C80.0537 (18)0.0540 (18)0.060 (2)0.0086 (15)0.0038 (15)0.0040 (15)
C20.0444 (16)0.0538 (17)0.0559 (18)0.0045 (14)0.0021 (14)0.0085 (15)
C100.064 (2)0.082 (3)0.067 (2)0.008 (2)0.0115 (19)0.009 (2)
C90.0553 (19)0.072 (2)0.0546 (19)0.0175 (17)0.0003 (15)0.0035 (17)
C110.068 (2)0.061 (2)0.079 (3)0.0028 (18)0.010 (2)0.009 (2)
F1A0.1195 (19)0.136 (3)0.090 (2)0.043 (2)0.010 (2)0.0223 (18)
F2A0.1195 (19)0.136 (3)0.090 (2)0.043 (2)0.010 (2)0.0223 (18)
F3A0.1195 (19)0.136 (3)0.090 (2)0.043 (2)0.010 (2)0.0223 (18)
F1B0.1195 (19)0.136 (3)0.090 (2)0.043 (2)0.010 (2)0.0223 (18)
F2B0.1195 (19)0.136 (3)0.090 (2)0.043 (2)0.010 (2)0.0223 (18)
F3B0.1195 (19)0.136 (3)0.090 (2)0.043 (2)0.010 (2)0.0223 (18)
Geometric parameters (Å, º) top
C15—C21.492 (5)C5—C41.391 (5)
C15—H15A0.9600C6—H60.9300
C15—H15B0.9600O2—C91.415 (5)
C15—H15C0.9600C3—C41.380 (5)
C14—F2B1.174 (16)C3—C21.395 (6)
C14—F1A1.236 (10)C3—H30.9300
C14—F3A1.263 (10)C13—C71.454 (5)
C14—O21.336 (7)C13—H130.9300
C14—F1B1.371 (16)C7—C81.380 (5)
C14—F3B1.387 (12)C7—C121.406 (5)
C14—F2A1.387 (10)C4—H40.9300
I1—C12.102 (3)C12—C111.396 (6)
O1—C121.344 (5)C8—C91.377 (6)
O1—H10.8200C8—H80.9300
N1—C131.272 (5)C10—C111.343 (7)
N1—C51.420 (4)C10—C91.386 (6)
C1—C21.391 (5)C10—H100.9300
C1—C61.392 (5)C11—H110.9300
C5—C61.379 (5)
C2—C15—H15A109.5C5—C6—C1120.2 (3)
C2—C15—H15B109.5C5—C6—H6119.9
H15A—C15—H15B109.5C1—C6—H6119.9
C2—C15—H15C109.5C14—O2—C9117.8 (4)
H15A—C15—H15C109.5C4—C3—C2122.7 (3)
H15B—C15—H15C109.5C4—C3—H3118.6
F2B—C14—F1A122.8 (10)C2—C3—H3118.6
F2B—C14—F3A56.8 (8)N1—C13—C7122.9 (3)
F1A—C14—F3A110.3 (7)N1—C13—H13118.6
F2B—C14—O2120.6 (8)C7—C13—H13118.6
F1A—C14—O2113.4 (6)C8—C7—C12119.4 (3)
F3A—C14—O2119.7 (6)C8—C7—C13119.4 (3)
F2B—C14—F1B118.3 (11)C12—C7—C13121.2 (3)
F1A—C14—F1B25.2 (7)C3—C4—C5120.0 (3)
F3A—C14—F1B131.3 (8)C3—C4—H4120.0
O2—C14—F1B103.9 (7)C5—C4—H4120.0
F2B—C14—F3B100.5 (10)O1—C12—C11119.7 (4)
F1A—C14—F3B86.9 (7)O1—C12—C7121.9 (3)
F3A—C14—F3B43.6 (6)C11—C12—C7118.4 (4)
O2—C14—F3B100.3 (7)C9—C8—C7120.3 (4)
F1B—C14—F3B111.8 (9)C9—C8—H8119.8
F2B—C14—F2A39.0 (8)C7—C8—H8119.8
F1A—C14—F2A108.9 (8)C1—C2—C3115.9 (3)
F3A—C14—F2A95.7 (7)C1—C2—C15123.3 (4)
O2—C14—F2A106.9 (6)C3—C2—C15120.7 (3)
F1B—C14—F2A90.9 (9)C11—C10—C9119.7 (4)
F3B—C14—F2A139.0 (8)C11—C10—H10120.1
C12—O1—H1109.5C9—C10—H10120.1
C13—N1—C5120.7 (3)C8—C9—C10120.4 (4)
C2—C1—C6122.3 (3)C8—C9—O2119.7 (4)
C2—C1—I1119.9 (3)C10—C9—O2119.7 (4)
C6—C1—I1117.8 (2)C10—C11—C12121.7 (4)
C6—C5—C4118.8 (3)C10—C11—H11119.1
C6—C5—N1116.8 (3)C12—C11—H11119.1
C4—C5—N1124.4 (3)
C13—N1—C5—C6167.1 (3)C8—C7—C12—C110.5 (6)
C13—N1—C5—C413.6 (5)C13—C7—C12—C11179.3 (4)
C4—C5—C6—C11.2 (5)C12—C7—C8—C91.1 (6)
N1—C5—C6—C1179.4 (3)C13—C7—C8—C9179.1 (3)
C2—C1—C6—C50.9 (5)C6—C1—C2—C30.1 (5)
I1—C1—C6—C5178.6 (2)I1—C1—C2—C3179.6 (3)
F2B—C14—O2—C931.7 (14)C6—C1—C2—C15179.8 (3)
F1A—C14—O2—C9168.1 (7)I1—C1—C2—C150.7 (5)
F3A—C14—O2—C935.1 (10)C4—C3—C2—C10.7 (6)
F1B—C14—O2—C9167.2 (8)C4—C3—C2—C15179.6 (4)
F3B—C14—O2—C977.1 (7)C7—C8—C9—C101.8 (6)
F2A—C14—O2—C971.9 (7)C7—C8—C9—O2176.2 (3)
C5—N1—C13—C7179.4 (3)C11—C10—C9—C80.9 (7)
N1—C13—C7—C8179.2 (3)C11—C10—C9—O2175.2 (4)
N1—C13—C7—C121.0 (5)C14—O2—C9—C881.3 (6)
C2—C3—C4—C50.3 (6)C14—O2—C9—C10104.3 (6)
C6—C5—C4—C30.7 (5)C9—C10—C11—C120.7 (8)
N1—C5—C4—C3180.0 (3)O1—C12—C11—C10179.3 (4)
C8—C7—C12—O1179.8 (4)C7—C12—C11—C101.4 (7)
C13—C7—C12—O10.0 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.628 (4)147
C15—H15B···Cgi0.962.853.570 (5)133
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H11F3INO2
Mr421.15
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.6733 (3), 6.6441 (5), 25.2825 (19)
α, β, γ (°)86.970 (6), 86.386 (6), 78.087 (5)
V3)765.95 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.80 × 0.38 × 0.10
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.389, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
9671, 3237, 2806
Rint0.066
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.04
No. of reflections3237
No. of parameters198
No. of restraints38
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.58

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.628 (4)147.3
C15—H15B···Cgi0.962.853.570 (5)133
Symmetry code: (i) x+1, y, z.
 

References

First citationAğar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759–1772.  Google Scholar
First citationAlarcon, S. H., Pagani, D., Bacigalupo, J. & Olivieri, A. C. (1999). J. Mol. Struct. 475, 233–240.  Google Scholar
First citationAli, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem. 92, 141–148.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCeylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationCukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.  Web of Science CrossRef CAS Google Scholar
First citationDemirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationŞahin, O., Albayrak, C., Odabaşogˇlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o3508–o3510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547-2554.  Web of Science CSD CrossRef CAS Google Scholar
First citationTecer, E., Dege, N., Zülfikaroğlu, A., Şenyüz, N. & Batı, H. (2010). Acta Cryst. E66, o3369–o3370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds