organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Carb­­oxy­pyridinium nitrate

aDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: mghazzali@ksu.edu.sa

(Received 11 April 2012; accepted 23 June 2012; online 30 June 2012)

In the crystal structure of the title compound, C6H6NO2+·NO3, the protonated cations are linked by N—H⋯O hydrogen bonds into chains along the b axis. The cations and anions are also linked by N—H⋯O and O—H⋯O hydrogen bonds. C—H⋯O inter­actions also occur. In the cation, the ring makes a dihedral angle of 10.1 (3)° with the carboxylate group.

Related literature

For related structures, see: Athimoolam & Rajaram (2005[Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764-o2767.]); Athimoolam & Natarajan (2007[Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, o2656.]); Kutoglu & Scheringer (1983[Kutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232-234.]); Jebas et al. (2006[Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481-o3482.]); Slouf (2001[Slouf, M. (2001). Acta Cryst. E57, o61-o62.]); Ye et al. (2010[Ye, H.-Y., Chen, L.-Z. & Xiong, R.-G. (2010). Acta Cryst. B66, 387-395.]). For graph-set descriptors, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Motherwell et al. (2000[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 466-473.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6NO2+·NO3

  • Mr = 186.13

  • Triclinic, [P \overline 1]

  • a = 6.7530 (4) Å

  • b = 7.5024 (4) Å

  • c = 8.4439 (5) Å

  • α = 81.895 (2)°

  • β = 82.215 (1)°

  • γ = 66.769 (2)°

  • V = 387.69 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.946, Tmax = 0.986

  • 15468 measured reflections

  • 1760 independent reflections

  • 1102 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.13

  • 1760 reflections

  • 127 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4i 0.92 (3) 1.67 (3) 2.5833 (19) 169 (2)
N1—H1N⋯O2ii 0.96 (3) 2.08 (3) 2.824 (2) 133 (2)
N1—H1N⋯O4 0.96 (3) 2.12 (3) 2.921 (2) 139 (2)
C3—H3⋯O3 0.93 2.45 3.330 (3) 158
C6—H6⋯O5iii 0.93 2.37 3.259 (2) 160
C5—H5⋯O3iv 0.93 2.47 3.142 (2) 129
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) x, y-1, z+1; (iv) x, y, z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Previously, the crystal structures of nicotinium derivatives containing diverse anions have been reported (Athimoolam & Rajaram, 2005; Athimoolam & Natarajan, 2007; Kutoglu & Scheringer, 1983; Jebas et al., 2006; Slouf, 2001; Ye et al., 2010). We report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the nicotinium cation is planar with a maximum deviation for the carboxylate oxygen atom (O1) being 0.265 (2) Å. In the crystal structure (Fig. 2), the cations are linked by N—H···O hydrogen bonds (Table 1) into infinite chains along the [010] vector. Regarding the graph set descriptors (Etter, 1990; Bernstein et al., 1995; Motherwell et al., 2000), this N—H···O chain motif is described as C(6). The bifurcated N—H···O with O—H···O interactions (Table 1) are connecting the nicotinium with nitrates, thus defining a third-level discrete D33(13) hydrogen bond motif in the bc-plane (Fig. 2).

Related literature top

For related structures, see: Athimoolam & Rajaram (2005); Athimoolam & Natarajan (2007); Kutoglu & Scheringer (1983); Jebas et al. (2006); Slouf (2001); Ye et al. (2010). For graph-set descriptors, see: Etter (1990); Bernstein et al. (1995); Motherwell et al. (2000).

Experimental top

The title compound was unintentionally obtained during a microwave irradiation (300 W, 150 oC, 10 min., MicroSynth, Milestone) reaction of Ce(OH)4 in diluted nitric acid with aqueous solution of nicotinic acid. After cooling, the solution was left undisturbed and colourless crystals were collected by filtration after one week.

Refinement top

Aromatic carbon–bound H–atoms were placed in ideal calculated positions [C—H 0.93 Å, Uiso(H) = 1.2Ueq(C)] and refined as riding atoms. Amine and hydroxyl hydrogen atoms were located from difference Fourier map and refined freely.

Structure description top

Previously, the crystal structures of nicotinium derivatives containing diverse anions have been reported (Athimoolam & Rajaram, 2005; Athimoolam & Natarajan, 2007; Kutoglu & Scheringer, 1983; Jebas et al., 2006; Slouf, 2001; Ye et al., 2010). We report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the nicotinium cation is planar with a maximum deviation for the carboxylate oxygen atom (O1) being 0.265 (2) Å. In the crystal structure (Fig. 2), the cations are linked by N—H···O hydrogen bonds (Table 1) into infinite chains along the [010] vector. Regarding the graph set descriptors (Etter, 1990; Bernstein et al., 1995; Motherwell et al., 2000), this N—H···O chain motif is described as C(6). The bifurcated N—H···O with O—H···O interactions (Table 1) are connecting the nicotinium with nitrates, thus defining a third-level discrete D33(13) hydrogen bond motif in the bc-plane (Fig. 2).

For related structures, see: Athimoolam & Rajaram (2005); Athimoolam & Natarajan (2007); Kutoglu & Scheringer (1983); Jebas et al. (2006); Slouf (2001); Ye et al. (2010). For graph-set descriptors, see: Etter (1990); Bernstein et al. (1995); Motherwell et al. (2000).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O—H···O, N—H···O and C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x,y - 1, z; (ii) x, y + 1, z; (iii) x,y + 1, z - 1; (iv) x, y, z - 1.]
3-Carboxypyridinium nitrate top
Crystal data top
C6H6NO2+·NO3Z = 2
Mr = 186.13F(000) = 192
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 6.7530 (4) ÅCell parameters from 963 reflections
b = 7.5024 (4) Åθ = 3.3–27.5°
c = 8.4439 (5) ŵ = 0.14 mm1
α = 81.895 (2)°T = 293 K
β = 82.215 (1)°Block, colourless
γ = 66.769 (2)°0.40 × 0.20 × 0.10 mm
V = 387.69 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1760 independent reflections
Radiation source: fine-focus sealed tube1102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 99
Tmin = 0.946, Tmax = 0.986l = 1010
15468 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.025P]
where P = (Fo2 + 2Fc2)/3
1760 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C6H6NO2+·NO3γ = 66.769 (2)°
Mr = 186.13V = 387.69 (4) Å3
Triclinic, P1Z = 2
a = 6.7530 (4) ÅMo Kα radiation
b = 7.5024 (4) ŵ = 0.14 mm1
c = 8.4439 (5) ÅT = 293 K
α = 81.895 (2)°0.40 × 0.20 × 0.10 mm
β = 82.215 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1760 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1102 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.986Rint = 0.046
15468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.19 e Å3
1760 reflectionsΔρmin = 0.35 e Å3
127 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2671 (2)0.1191 (2)0.48174 (17)0.0528 (4)
H1O0.277 (4)0.232 (4)0.443 (3)0.079 (8)*
N10.2399 (3)0.3328 (2)0.7169 (2)0.0461 (5)
H1N0.245 (4)0.449 (4)0.654 (3)0.086 (9)*
C10.2321 (3)0.1404 (3)0.6385 (2)0.0405 (5)
O20.2000 (3)0.2778 (2)0.71433 (17)0.0570 (5)
N20.2859 (3)0.5132 (2)0.2675 (2)0.0461 (4)
C20.2350 (3)0.0215 (2)0.7207 (2)0.0366 (4)
O30.2861 (3)0.3523 (2)0.2502 (2)0.0723 (6)
C30.2385 (3)0.1913 (3)0.6360 (2)0.0416 (5)
H30.23990.20790.52470.050*
O40.2781 (3)0.5540 (2)0.40863 (18)0.0698 (5)
C40.2393 (3)0.3167 (3)0.8764 (3)0.0483 (5)
H40.24100.41820.92730.058*
C50.2361 (3)0.1507 (3)0.9645 (2)0.0497 (5)
H50.23480.13811.07580.060*
O50.2917 (3)0.6324 (3)0.1555 (2)0.0817 (6)
C60.2350 (3)0.0018 (3)0.8862 (2)0.0439 (5)
H60.23410.11260.94490.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0802 (11)0.0451 (9)0.0395 (9)0.0309 (8)0.0008 (7)0.0094 (6)
N10.0598 (11)0.0313 (9)0.0518 (11)0.0232 (8)0.0029 (8)0.0032 (7)
C10.0501 (11)0.0346 (10)0.0389 (11)0.0185 (9)0.0027 (8)0.0052 (8)
O20.0937 (12)0.0416 (8)0.0482 (9)0.0412 (8)0.0003 (8)0.0045 (7)
N20.0578 (11)0.0445 (10)0.0380 (9)0.0205 (8)0.0065 (7)0.0053 (7)
C20.0447 (10)0.0304 (9)0.0364 (10)0.0171 (8)0.0010 (8)0.0033 (7)
O30.1120 (14)0.0623 (11)0.0602 (11)0.0464 (10)0.0100 (9)0.0208 (8)
C30.0533 (12)0.0346 (10)0.0390 (10)0.0202 (9)0.0018 (8)0.0025 (8)
O40.1353 (15)0.0522 (10)0.0359 (9)0.0481 (10)0.0118 (9)0.0077 (7)
C40.0580 (13)0.0421 (11)0.0514 (13)0.0237 (10)0.0038 (9)0.0126 (9)
C50.0660 (14)0.0477 (12)0.0408 (12)0.0264 (11)0.0052 (10)0.0077 (9)
O50.1135 (15)0.0740 (12)0.0513 (10)0.0380 (11)0.0075 (9)0.0208 (9)
C60.0585 (12)0.0352 (10)0.0419 (11)0.0230 (9)0.0024 (9)0.0031 (8)
Geometric parameters (Å, º) top
O1—C11.311 (2)N2—O41.261 (2)
O1—H1O0.92 (3)C2—C31.377 (2)
N1—C41.335 (3)C2—C61.385 (3)
N1—C31.344 (3)C3—H30.9300
N1—H1N0.96 (3)C4—C51.364 (3)
C1—O21.213 (2)C4—H40.9300
C1—C21.489 (3)C5—C61.379 (3)
N2—O51.214 (2)C5—H50.9300
N2—O31.236 (2)C6—H60.9300
C1—O1—H1O107.7 (16)N1—C3—C2118.93 (18)
C4—N1—C3123.13 (17)N1—C3—H3120.5
C4—N1—H1N120.2 (16)C2—C3—H3120.5
C3—N1—H1N116.7 (16)N1—C4—C5119.72 (18)
O2—C1—O1124.77 (18)N1—C4—H4120.1
O2—C1—C2121.11 (18)C5—C4—H4120.1
O1—C1—C2114.11 (16)C4—C5—C6119.0 (2)
O5—N2—O3123.04 (18)C4—C5—H5120.5
O5—N2—O4119.22 (18)C6—C5—H5120.5
O3—N2—O4117.74 (17)C5—C6—C2120.39 (18)
C3—C2—C6118.80 (17)C5—C6—H6119.8
C3—C2—C1121.64 (17)C2—C6—H6119.8
C6—C2—C1119.56 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.92 (3)1.67 (3)2.5833 (19)169 (2)
N1—H1N···O2ii0.96 (3)2.08 (3)2.824 (2)133 (2)
N1—H1N···O40.96 (3)2.12 (3)2.921 (2)139 (2)
C3—H3···O30.932.453.330 (3)158
C6—H6···O5iii0.932.373.259 (2)160
C5—H5···O3iv0.932.473.142 (2)129
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H6NO2+·NO3
Mr186.13
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7530 (4), 7.5024 (4), 8.4439 (5)
α, β, γ (°)81.895 (2), 82.215 (1), 66.769 (2)
V3)387.69 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.946, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
15468, 1760, 1102
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.13
No. of reflections1760
No. of parameters127
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.35

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.92 (3)1.67 (3)2.5833 (19)169 (2)
N1—H1N···O2ii0.96 (3)2.08 (3)2.824 (2)133 (2)
N1—H1N···O40.96 (3)2.12 (3)2.921 (2)139 (2)
C3—H3···O30.932.453.330 (3)157.7
C6—H6···O5iii0.932.373.259 (2)159.9
C5—H5···O3iv0.932.473.142 (2)128.9
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y1, z+1; (iv) x, y, z+1.
 

Acknowledgements

The authors are thankful for the National Plan for Science and Technology, KSU (NPST grant 09-ENE909–02) for funding this work.

References

First citationAthimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, o2656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAthimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764–o2767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationJebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481–o3482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232–234.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 466–473.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlouf, M. (2001). Acta Cryst. E57, o61–o62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Chen, L.-Z. & Xiong, R.-G. (2010). Acta Cryst. B66, 387–395.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds