organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Nicotinamido-2-naphthoic acid

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 17 May 2012; accepted 26 May 2012; online 2 June 2012)

In the title mol­ecule, C17H12N2O3, the naphthalene ring system and the pyridin-3-yl rings are nearly coplanar with a dihedral angle between them of 2.28 (8)°. In the crystal, the hy­droxy and amide N atoms participate in hydrogen bonds, which connect the mol­ecules into a two-dimensional network parallel to (101).

Related literature

For coordination polymers based on linking ligands with O- and N-donors see: Robin & Fromm, 2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]. For df coordination polymers based on linking ligands with pyrid­yl–carboxyl­ate terminals see: Hu et al. (2012[Hu, S., Sheng, T., Wen, Y., Fu, R. & Wu, X. (2012). Inorg. Chem. Commun. 16, 28-32.]); Chen et al. (2010[Chen, M. S., Su, Z., Chen, M., Chen, S. S., Li, Y. Z. & Sun, W. Y. (2010). CrystEngComm, 14, 3267-3276.]); Tang et al. (2010[Tang, Y. Z., Wen, H. R., Cao, Z., Wang, X. W., Huang, S. & Yu, C. L. (2010). Inorg. Chem. Commun. 13, 924-928.]); Yue et al. (2011[Yue, S. T., Wei, Z. Q., Wang, N., Liu, W. J., Zhao, X., Chang, L. M., Liu, Y. L., Mo, H. H. & Cai, Y. P. (2011). Inorg. Chem. Commun. 14, 1396-1399.]); Zhu et al. (2010[Zhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299-1303.]). For related potential linking ligands see: Han & Lee, 2012[Han, S. H. & Lee, S. W. (2012). Acta Cryst. E68, o294.]; Zheng & Lee, 2012[Zheng, Z. N. & Lee, S. W. (2012). Acta Cryst. E68, o774.].

[Scheme 1]

Experimental

Crystal data
  • C17H12N2O3

  • Mr = 292.29

  • Monoclinic, C c

  • a = 25.901 (3) Å

  • b = 6.2097 (7) Å

  • c = 8.6080 (9) Å

  • β = 103.258 (9)°

  • V = 1347.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.992

  • 11725 measured reflections

  • 1693 independent reflections

  • 2845 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.05

  • 1693 reflections

  • 207 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.92 (3) 2.01 (3) 2.926 (2) 170 (2)
O2—H2O⋯N1ii 0.84 (3) 1.88 (4) 2.708 (2) 170 (3)
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker (2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker (2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis(pyridyl)- and dicarboxylate-type linking ligands have been typically employed for the preparation of coordination polymers (Robin & Fromm, 2006). The vast majority of known coordination polymers contain either a d- or an f-block metal. However, several research groups recently prepared polymers containing both d- and f-block metals within their frameworks by utilizing linking ligands possessing pyridyl–carboxylate terminal groups (Hu et al., 2012; Chen et al., 2010; Tang et al., 2010; Yue et al., 2011; Zhu et al., 2010). Consistent with the hard–soft acid–base concept, the harder oxygen atoms are bonded to the f-block metals and the softer nitrogen atoms are bonded to the d-block metals in these polymers. Our research group recently reported the structures of two potential linking ligands with pyridyl–carboxylate terminal groups (Han & Lee, 2012; Zheng & Lee, 2012) and here we report the structure of third.

The molecular structure of the title molecule with the atom-labeling scheme is given in Figure 1. The naphthalene and 3-pyridyl rings are nearly coplanar with a dihedral angle between them of 2.28 (8)°. The N2–C6 bond length (1.343 (2) Å) indicates a C–N single bond. The intermolecular O–H···N and N–H···O (carbonyl) hydrogen bonds (Table 1) connect the molecules along the a- and c-axes, respectively, leading to a 2-D network in the [101] direction (Figure 2).

Related literature top

For coordination polymers based on linking ligands with O- and N-donors see: Robin & Fromm, 2006. For df coordination polymers based on linking ligands with pyridyl–carboxylate terminals see: Hu et al. (2012); Chen et al. (2010); Tang et al. (2010); Yue et al. (2011); Zhu et al. (2010). For related potential linking ligands see: Han & Lee, 2012; Zheng & Lee, 2012.

Experimental top

A stirred mixture of 6-amino-2-naphthoic acid (0.94 g, 5 mmol) and N,N-dimethyl-4-aminopyridine (0.02 g, 0.17 mmol) in dimethylacetamide (15 mL) was heated at 80 °C for 30 min under argon. The solution was cooled to 10 °C, and nicotinoyl chloride hydrochloride (0.89 g, 5 mmol) was added. The temperature was then raised slowly to 50 °C and was maintained there for 8 h. On addition of dichloromethane to the resulting mixture, a precipitate was formed, which was filtered off and dried under vacuum at 100°C. The product was recrystallized from methanol to give crystals of the title compound (1.22 g, 4.2 mmol, 83.9% yield). mp: 593–595 K (decomp). 1H NMR (500 MHz, DMSO-d6, d) 11.06 (s, 1H, carboxylic acid OH), 9.35 (s, 1H, amide NH), 8.93 (d, 1H, pyridine proton), 8.71 (d, 1H, pyridine proton), 8.56 (s, 2H, naphthalene proton), 8.14 (d, 1H, pyridine proton), 7.96–7.94 (m, 4H, naphthalene proton), 7.88 (t, 1H, pyridine proton). 13C{1H} NMR (125 MHz, DMSO-d6, d) 167.3, 163.1, 148.7, 145.7, 139.5, 138.4, 135.4, 131.6, 130.2, 129.9, 129.1, 127.8, 127.0, 125.75, 125.0, 121.3, 116.2. IR (KBr, cm-1): 3623 (w), 3328 (w), 2925 (s), 2640 (s), 2372 (s), 2075 (s), 1800 (m), 1621 (m), 1551 (m), 1291 (m), 1195 (m), 1018 (m), 773 (m), 724 (m), 678 (m), 633 (m), 494 (s).

Refinement top

All non-hydrogen atoms were refined anisotropically. C-bound H atoms were positioned geometrically [C–H = 0.93–0.97 A] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The hydrogen atoms attached to N and O were located in a difference Fourier map and refined isotropically.

Structure description top

Bis(pyridyl)- and dicarboxylate-type linking ligands have been typically employed for the preparation of coordination polymers (Robin & Fromm, 2006). The vast majority of known coordination polymers contain either a d- or an f-block metal. However, several research groups recently prepared polymers containing both d- and f-block metals within their frameworks by utilizing linking ligands possessing pyridyl–carboxylate terminal groups (Hu et al., 2012; Chen et al., 2010; Tang et al., 2010; Yue et al., 2011; Zhu et al., 2010). Consistent with the hard–soft acid–base concept, the harder oxygen atoms are bonded to the f-block metals and the softer nitrogen atoms are bonded to the d-block metals in these polymers. Our research group recently reported the structures of two potential linking ligands with pyridyl–carboxylate terminal groups (Han & Lee, 2012; Zheng & Lee, 2012) and here we report the structure of third.

The molecular structure of the title molecule with the atom-labeling scheme is given in Figure 1. The naphthalene and 3-pyridyl rings are nearly coplanar with a dihedral angle between them of 2.28 (8)°. The N2–C6 bond length (1.343 (2) Å) indicates a C–N single bond. The intermolecular O–H···N and N–H···O (carbonyl) hydrogen bonds (Table 1) connect the molecules along the a- and c-axes, respectively, leading to a 2-D network in the [101] direction (Figure 2).

For coordination polymers based on linking ligands with O- and N-donors see: Robin & Fromm, 2006. For df coordination polymers based on linking ligands with pyridyl–carboxylate terminals see: Hu et al. (2012); Chen et al. (2010); Tang et al. (2010); Yue et al. (2011); Zhu et al. (2010). For related potential linking ligands see: Han & Lee, 2012; Zheng & Lee, 2012.

Computing details top

Data collection: APEX2 (Bruker (2008); cell refinement: SAINT (Bruker (2008); data reduction: SAINT (Bruker (2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing showing a 2-D H-bonded (dashed lines) network.
6-Nicotinamido-2-naphthoic acid top
Crystal data top
C17H12N2O3F(000) = 608
Mr = 292.29Dx = 1.441 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6523 reflections
a = 25.901 (3) Åθ = 3.2–28.5°
b = 6.2097 (7) ŵ = 0.10 mm1
c = 8.6080 (9) ÅT = 296 K
β = 103.258 (9)°Plate, yellow
V = 1347.6 (3) Å30.40 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1693 independent reflections
Radiation source: sealed tube2845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 28.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3434
Tmin = 0.961, Tmax = 0.992k = 88
11725 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0998P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1693 reflectionsΔρmax = 0.24 e Å3
207 parametersΔρmin = 0.18 e Å3
2 restraintsAbsolute structure: The absolute structure could not be determined with certainty
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H12N2O3V = 1347.6 (3) Å3
Mr = 292.29Z = 4
Monoclinic, CcMo Kα radiation
a = 25.901 (3) ŵ = 0.10 mm1
b = 6.2097 (7) ÅT = 296 K
c = 8.6080 (9) Å0.40 × 0.20 × 0.08 mm
β = 103.258 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
1693 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2845 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.992Rint = 0.035
11725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
1693 reflectionsΔρmin = 0.18 e Å3
207 parametersAbsolute structure: The absolute structure could not be determined with certainty
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31793 (6)0.2140 (2)0.26571 (17)0.0391 (3)
O20.62483 (6)0.3924 (3)0.1855 (2)0.0454 (4)
H2O0.6456 (12)0.485 (6)0.163 (4)0.059 (8)*
O30.59863 (7)0.6936 (3)0.2841 (3)0.0583 (5)
N10.19038 (7)0.1634 (3)0.5762 (2)0.0406 (4)
N20.33612 (6)0.0227 (3)0.47225 (19)0.0354 (4)
H2N0.3278 (9)0.070 (4)0.565 (3)0.037 (6)*
C10.23346 (8)0.0931 (3)0.5307 (2)0.0359 (4)
H10.24530.04630.55800.043*
C20.17334 (8)0.3618 (4)0.5349 (3)0.0432 (5)
H20.14350.41160.56660.052*
C30.19787 (9)0.4971 (4)0.4473 (3)0.0430 (5)
H30.18460.63460.42000.052*
C40.24257 (8)0.4253 (4)0.4005 (2)0.0386 (4)
H40.25980.51330.34090.046*
C50.26131 (7)0.2192 (3)0.4442 (2)0.0301 (4)
C60.30789 (7)0.1368 (3)0.3864 (2)0.0301 (4)
C70.38118 (7)0.1288 (3)0.4401 (2)0.0307 (4)
C80.39174 (8)0.3389 (3)0.5049 (2)0.0340 (4)
H80.36910.40130.56160.041*
C90.43521 (7)0.4492 (3)0.4839 (2)0.0320 (4)
H90.44200.58650.52700.038*
C100.47019 (7)0.3577 (3)0.3975 (2)0.0283 (4)
C110.51502 (7)0.4691 (3)0.3710 (2)0.0308 (4)
H110.52210.60800.41060.037*
C120.54815 (7)0.3749 (3)0.2878 (2)0.0311 (4)
C130.53849 (8)0.1624 (3)0.2294 (2)0.0350 (4)
H130.56180.09780.17570.042*
C140.49520 (7)0.0515 (3)0.2513 (2)0.0338 (4)
H140.48900.08760.21130.041*
C150.45962 (7)0.1469 (3)0.3345 (2)0.0285 (4)
C160.41444 (7)0.0333 (3)0.3574 (2)0.0317 (4)
H160.40740.10500.31660.038*
C170.59290 (7)0.5052 (4)0.2540 (2)0.0356 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0371 (7)0.0478 (8)0.0382 (6)0.0070 (6)0.0207 (5)0.0074 (6)
O20.0352 (8)0.0457 (9)0.0632 (9)0.0036 (7)0.0274 (7)0.0042 (7)
O30.0498 (10)0.0452 (10)0.0917 (13)0.0172 (8)0.0405 (9)0.0099 (8)
N10.0283 (8)0.0505 (10)0.0483 (9)0.0018 (7)0.0197 (7)0.0032 (8)
N20.0312 (8)0.0458 (10)0.0353 (8)0.0097 (7)0.0200 (6)0.0055 (7)
C10.0283 (9)0.0382 (10)0.0452 (10)0.0026 (8)0.0166 (8)0.0032 (8)
C20.0282 (9)0.0566 (14)0.0485 (11)0.0062 (9)0.0166 (8)0.0062 (10)
C30.0375 (11)0.0382 (11)0.0551 (12)0.0114 (8)0.0142 (9)0.0017 (9)
C40.0340 (10)0.0398 (11)0.0450 (10)0.0033 (7)0.0156 (8)0.0053 (8)
C50.0232 (8)0.0363 (10)0.0334 (8)0.0031 (7)0.0120 (6)0.0016 (7)
C60.0252 (8)0.0366 (9)0.0318 (8)0.0011 (7)0.0132 (6)0.0023 (7)
C70.0255 (9)0.0385 (11)0.0308 (8)0.0060 (7)0.0123 (6)0.0013 (7)
C80.0332 (9)0.0383 (10)0.0348 (9)0.0001 (8)0.0169 (7)0.0021 (7)
C90.0334 (10)0.0317 (9)0.0343 (8)0.0025 (7)0.0149 (7)0.0030 (7)
C100.0267 (8)0.0318 (9)0.0285 (7)0.0003 (7)0.0109 (6)0.0021 (6)
C110.0281 (9)0.0324 (9)0.0337 (8)0.0057 (7)0.0109 (7)0.0004 (7)
C120.0244 (8)0.0351 (10)0.0357 (9)0.0022 (7)0.0110 (7)0.0052 (7)
C130.0295 (9)0.0368 (10)0.0429 (10)0.0014 (7)0.0171 (8)0.0008 (8)
C140.0318 (10)0.0324 (9)0.0414 (10)0.0003 (7)0.0171 (8)0.0022 (7)
C150.0266 (9)0.0331 (9)0.0289 (7)0.0031 (7)0.0124 (6)0.0009 (6)
C160.0296 (9)0.0336 (9)0.0346 (9)0.0057 (7)0.0130 (7)0.0013 (7)
C170.0256 (9)0.0445 (12)0.0392 (9)0.0064 (8)0.0126 (7)0.0031 (8)
Geometric parameters (Å, º) top
O1—C61.225 (2)C7—C161.372 (3)
O2—C171.321 (2)C7—C81.421 (3)
O2—H2O0.84 (3)C8—C91.365 (3)
O3—C171.200 (3)C8—H80.9300
N1—C21.330 (3)C9—C101.416 (2)
N1—C11.338 (2)C9—H90.9300
N2—C61.347 (3)C10—C111.414 (2)
N2—C71.422 (2)C10—C151.420 (2)
N2—H2N0.92 (3)C11—C121.369 (3)
C1—C51.391 (2)C11—H110.9300
C1—H10.9300C12—C131.413 (3)
C2—C31.378 (3)C12—C171.496 (2)
C2—H20.9300C13—C141.365 (3)
C3—C41.384 (3)C13—H130.9300
C3—H30.9300C14—C151.420 (2)
C4—C51.389 (3)C14—H140.9300
C4—H40.9300C15—C161.418 (2)
C5—C61.497 (2)C16—H160.9300
C17—O2—H2O104 (2)C7—C8—H8120.0
C2—N1—C1118.18 (17)C8—C9—C10120.97 (17)
C6—N2—C7126.92 (15)C8—C9—H9119.5
C6—N2—H2N120.2 (15)C10—C9—H9119.5
C7—N2—H2N112.9 (15)C11—C10—C9122.43 (17)
N1—C1—C5122.86 (18)C11—C10—C15118.87 (15)
N1—C1—H1118.6C9—C10—C15118.69 (15)
C5—C1—H1118.6C12—C11—C10120.79 (18)
N1—C2—C3123.04 (18)C12—C11—H11119.6
N1—C2—H2118.5C10—C11—H11119.6
C3—C2—H2118.5C11—C12—C13120.25 (17)
C2—C3—C4119.0 (2)C11—C12—C17118.50 (18)
C2—C3—H3120.5C13—C12—C17121.19 (17)
C4—C3—H3120.5C14—C13—C12120.39 (17)
C3—C4—C5118.79 (18)C14—C13—H13119.8
C3—C4—H4120.6C12—C13—H13119.8
C5—C4—H4120.6C13—C14—C15120.52 (17)
C4—C5—C1118.16 (16)C13—C14—H14119.7
C4—C5—C6118.87 (16)C15—C14—H14119.7
C1—C5—C6122.81 (16)C16—C15—C10119.90 (15)
O1—C6—N2123.99 (16)C16—C15—C14120.97 (17)
O1—C6—C5119.50 (17)C10—C15—C14119.13 (15)
N2—C6—C5116.51 (15)C7—C16—C15119.58 (18)
C16—C7—C8120.89 (16)C7—C16—H16120.2
C16—C7—N2122.82 (17)C15—C16—H16120.2
C8—C7—N2116.24 (16)O3—C17—O2123.64 (17)
C9—C8—C7119.96 (16)O3—C17—C12123.26 (18)
C9—C8—H8120.0O2—C17—C12113.08 (18)
C2—N1—C1—C50.8 (3)C9—C10—C11—C12179.58 (16)
C1—N1—C2—C30.2 (3)C15—C10—C11—C120.8 (3)
N1—C2—C3—C40.5 (3)C10—C11—C12—C131.2 (3)
C2—C3—C4—C50.3 (3)C10—C11—C12—C17176.03 (16)
C3—C4—C5—C11.2 (3)C11—C12—C13—C142.0 (3)
C3—C4—C5—C6176.77 (19)C17—C12—C13—C14175.16 (19)
N1—C1—C5—C41.6 (3)C12—C13—C14—C150.7 (3)
N1—C1—C5—C6176.89 (18)C11—C10—C15—C16179.01 (19)
C7—N2—C6—O10.2 (3)C9—C10—C15—C160.6 (2)
C7—N2—C6—C5178.98 (17)C11—C10—C15—C142.0 (2)
C4—C5—C6—O123.5 (3)C9—C10—C15—C14178.39 (19)
C1—C5—C6—O1151.76 (19)C13—C14—C15—C16179.77 (17)
C4—C5—C6—N2157.19 (18)C13—C14—C15—C101.2 (3)
C1—C5—C6—N227.5 (3)C8—C7—C16—C150.8 (3)
C6—N2—C7—C1626.4 (3)N2—C7—C16—C15177.94 (16)
C6—N2—C7—C8156.33 (19)C10—C15—C16—C70.2 (3)
C16—C7—C8—C90.6 (3)C14—C15—C16—C7179.18 (17)
N2—C7—C8—C9177.93 (17)C11—C12—C17—O36.6 (3)
C7—C8—C9—C100.2 (3)C13—C12—C17—O3170.6 (2)
C8—C9—C10—C11178.80 (17)C11—C12—C17—O2174.43 (16)
C8—C9—C10—C150.8 (3)C13—C12—C17—O28.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.92 (3)2.01 (3)2.926 (2)170 (2)
O2—H2O···N1ii0.84 (3)1.88 (4)2.708 (2)170 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H12N2O3
Mr292.29
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)25.901 (3), 6.2097 (7), 8.6080 (9)
β (°) 103.258 (9)
V3)1347.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.20 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
11725, 1693, 2845
Rint0.035
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.05
No. of reflections1693
No. of parameters207
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.18
Absolute structureThe absolute structure could not be determined with certainty

Computer programs: APEX2 (Bruker (2008), SAINT (Bruker (2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.92 (3)2.01 (3)2.926 (2)170 (2)
O2—H2O···N1ii0.84 (3)1.88 (4)2.708 (2)170 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2009–0079916).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M. S., Su, Z., Chen, M., Chen, S. S., Li, Y. Z. & Sun, W. Y. (2010). CrystEngComm, 14, 3267–3276.  Web of Science CSD CrossRef Google Scholar
First citationHan, S. H. & Lee, S. W. (2012). Acta Cryst. E68, o294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, S., Sheng, T., Wen, Y., Fu, R. & Wu, X. (2012). Inorg. Chem. Commun. 16, 28–32.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y. Z., Wen, H. R., Cao, Z., Wang, X. W., Huang, S. & Yu, C. L. (2010). Inorg. Chem. Commun. 13, 924–928.  Web of Science CSD CrossRef CAS Google Scholar
First citationYue, S. T., Wei, Z. Q., Wang, N., Liu, W. J., Zhao, X., Chang, L. M., Liu, Y. L., Mo, H. H. & Cai, Y. P. (2011). Inorg. Chem. Commun. 14, 1396–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Z. N. & Lee, S. W. (2012). Acta Cryst. E68, o774.  CSD CrossRef IUCr Journals Google Scholar
First citationZhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds