organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Methyl-N-[(5-nitro­thio­phen-2-yl)methyl­­idene]aniline

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Giresun University, 28100 Giresun, Turkey
*Correspondence e-mail: uceylan@omu.edu.tr

(Received 29 May 2012; accepted 8 June 2012; online 16 June 2012)

In the crystal structure of the title compound, C12H10N2O2S, the benzene and the 2-nitro­thio­phene rings make a dihedral angle of 7.47 (12)°. The dihedral angle between the nitro group and the attached ring is 1.9 (6)°.

Related literature

For related structures, see: Demirtaş et al. (2009[Demirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.]); Ceylan et al. (2011[Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O2S

  • Mr = 246.28

  • Monoclinic, P 21 /n

  • a = 4.7661 (4) Å

  • b = 22.8201 (18) Å

  • c = 10.7793 (7) Å

  • β = 92.704 (7)°

  • V = 1171.08 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.17 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction SuperNova Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.771, Tmax = 1.000

  • 3997 measured reflections

  • 2211 independent reflections

  • 1549 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.177

  • S = 1.05

  • 2211 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al. 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]);; software used to prepare material for publication: OLEX2 (Dolomanov et al. 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was by the reaction between 5-nitrothiophene-2-carboxaldehyde and p-Toluidine. For the identification of this compound a single crystal structure analysis was performed. It is noted that some 2-nitrothiophene structures have already been reported in literature (Demirtaş et al. 2009; Ceylan et al. 2011). In the crystal structure the dihedral angle between the 6-membered and the 2-nitrothiophene rings amount to 7.47 (12)° and the torsion angle along C5—N1—C8—C9 is 179.7 (3)°. Both rings are in a trans arrangement with respect to the C-N double bond and the nitro group is oriented almost coplanar to the 2-nitrothiophene plane (Fig. 1).

Related literature top

For related structures, see: Demirtaş et al. (2009); Ceylan et al. (2011).

Experimental top

A mixture of 5-nitrothiophene-2-carboxaldehyde (0.011 g 0.066 mmol) in 20 ml e thanol and of p-Toluidine (0.007 g 0.066 mmol) in 20 ml ethanol was refluxed for 1 h. Single crystals suitable for X-ray analysis were obtained from a solution of the title compound in ethanol by slow evaporation of the solvent (yield % 78; m.p 101–103 °C).

Refinement top

All hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip and were refined with Uiso(H)= 1.2Ueq(C) (1.5 for methyl H atoms using a riding model with C—H = 0.930 for aromatic and and 0.960 for methyl H atoms.

Structure description top

The title compound was by the reaction between 5-nitrothiophene-2-carboxaldehyde and p-Toluidine. For the identification of this compound a single crystal structure analysis was performed. It is noted that some 2-nitrothiophene structures have already been reported in literature (Demirtaş et al. 2009; Ceylan et al. 2011). In the crystal structure the dihedral angle between the 6-membered and the 2-nitrothiophene rings amount to 7.47 (12)° and the torsion angle along C5—N1—C8—C9 is 179.7 (3)°. Both rings are in a trans arrangement with respect to the C-N double bond and the nitro group is oriented almost coplanar to the 2-nitrothiophene plane (Fig. 1).

For related structures, see: Demirtaş et al. (2009); Ceylan et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al. 2009) and ORTEP-3 for Windows (Farrugia, 1997);; software used to prepare material for publication: OLEX2 (Dolomanov et al. 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(E)-4-Methyl-N-[(5-nitrothiophen-2-yl)methylidene]aniline top
Crystal data top
C12H10N2O2SF(000) = 512
Mr = 246.28Dx = 1.397 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1442 reflections
a = 4.7661 (4) Åθ = 3.3–27.6°
b = 22.8201 (18) ŵ = 0.26 mm1
c = 10.7793 (7) ÅT = 296 K
β = 92.704 (7)°Prism, brown
V = 1171.08 (15) Å30.17 × 0.15 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction SuperNova Eos
diffractometer
2211 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1549 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.064
Detector resolution: 16.0454 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2726
Tmin = 0.771, Tmax = 1.000l = 138
3997 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0778P)2]
where P = (Fo2 + 2Fc2)/3
2211 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H10N2O2SV = 1171.08 (15) Å3
Mr = 246.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.7661 (4) ŵ = 0.26 mm1
b = 22.8201 (18) ÅT = 296 K
c = 10.7793 (7) Å0.17 × 0.15 × 0.12 mm
β = 92.704 (7)°
Data collection top
Oxford Diffraction SuperNova Eos
diffractometer
2211 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1549 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.000Rint = 0.064
3997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2211 reflectionsΔρmin = 0.28 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.8771 (9)0.51221 (18)0.2226 (4)0.0792 (14)
H1A2.00220.50830.15580.119*
H1B1.98350.51180.30050.119*
H1C1.77650.54850.21410.119*
C21.6709 (7)0.46177 (17)0.2185 (4)0.0576 (11)
C31.5819 (8)0.43632 (17)0.1076 (4)0.0586 (11)
H31.65390.45000.03430.070*
C41.3897 (7)0.39125 (16)0.1021 (3)0.0498 (9)
H41.33210.37540.02560.060*
C51.2814 (7)0.36934 (15)0.2103 (3)0.0409 (8)
C61.3763 (8)0.39378 (17)0.3217 (3)0.0498 (9)
H61.31030.37940.39560.060*
C71.5673 (8)0.43920 (17)0.3253 (4)0.0623 (11)
H71.62730.45490.40170.075*
C80.9566 (7)0.30543 (15)0.1167 (3)0.0436 (8)
H80.99500.32380.04240.052*
C90.7549 (7)0.25849 (15)0.1140 (3)0.0407 (8)
C100.6197 (7)0.23554 (16)0.0104 (3)0.0501 (10)
H100.64980.24860.06960.060*
C110.4313 (7)0.19048 (16)0.0363 (3)0.0479 (9)
H110.32430.16990.02360.057*
C120.4260 (7)0.18089 (14)0.1598 (3)0.0379 (8)
N11.0843 (6)0.32285 (12)0.2158 (2)0.0413 (7)
N20.2502 (6)0.13966 (14)0.2189 (3)0.0488 (8)
O10.2643 (6)0.13733 (12)0.3329 (2)0.0663 (8)
O20.0953 (6)0.10886 (13)0.1531 (3)0.0692 (8)
S10.64676 (18)0.22535 (4)0.24745 (7)0.0417 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (3)0.047 (2)0.133 (4)0.009 (2)0.009 (3)0.004 (3)
C20.036 (2)0.042 (2)0.095 (3)0.0044 (17)0.008 (2)0.003 (2)
C30.052 (2)0.050 (2)0.074 (3)0.000 (2)0.010 (2)0.013 (2)
C40.049 (2)0.051 (2)0.050 (2)0.0003 (19)0.0058 (17)0.0034 (18)
C50.0348 (19)0.0387 (19)0.0492 (19)0.0028 (15)0.0013 (15)0.0042 (16)
C60.048 (2)0.052 (2)0.049 (2)0.0071 (19)0.0010 (16)0.0026 (18)
C70.055 (2)0.058 (3)0.073 (3)0.008 (2)0.005 (2)0.008 (2)
C80.042 (2)0.050 (2)0.0386 (17)0.0005 (17)0.0031 (15)0.0093 (16)
C90.041 (2)0.044 (2)0.0360 (17)0.0019 (16)0.0023 (14)0.0015 (15)
C100.051 (2)0.065 (2)0.0339 (17)0.006 (2)0.0021 (16)0.0042 (17)
C110.049 (2)0.058 (2)0.0354 (17)0.0040 (19)0.0052 (15)0.0093 (17)
C120.0331 (18)0.0394 (19)0.0413 (16)0.0046 (15)0.0039 (14)0.0025 (15)
N10.0417 (16)0.0423 (16)0.0393 (14)0.0015 (14)0.0032 (12)0.0033 (13)
N20.0507 (19)0.0464 (19)0.0493 (17)0.0056 (16)0.0041 (15)0.0033 (15)
O10.085 (2)0.0671 (18)0.0480 (15)0.0064 (16)0.0113 (14)0.0092 (14)
O20.0684 (19)0.0685 (18)0.0704 (17)0.0220 (16)0.0005 (15)0.0036 (16)
S10.0472 (6)0.0464 (6)0.0313 (4)0.0021 (4)0.0015 (4)0.0003 (4)
Geometric parameters (Å, º) top
C1—C21.513 (5)C7—H70.9300
C1—H1A0.9600C8—N11.269 (4)
C1—H1B0.9600C8—C91.439 (5)
C1—H1C0.9600C8—H80.9300
C2—C71.374 (5)C9—C101.366 (4)
C2—C31.378 (5)C9—S11.725 (3)
C3—C41.377 (5)C10—C111.402 (4)
C3—H30.9300C10—H100.9300
C4—C51.391 (4)C11—C121.351 (4)
C4—H40.9300C11—H110.9300
C5—C61.381 (5)C12—N21.430 (4)
C5—N11.420 (4)C12—S11.713 (3)
C6—C71.379 (5)N2—O21.222 (4)
C6—H60.9300N2—O11.228 (4)
C2—C1—H1A109.5C2—C7—H7119.3
C2—C1—H1B109.5C6—C7—H7119.3
H1A—C1—H1B109.5N1—C8—C9123.0 (3)
C2—C1—H1C109.5N1—C8—H8118.5
H1A—C1—H1C109.5C9—C8—H8118.5
H1B—C1—H1C109.5C10—C9—C8126.2 (3)
C7—C2—C3117.4 (4)C10—C9—S1111.4 (3)
C7—C2—C1121.3 (4)C8—C9—S1122.4 (2)
C3—C2—C1121.3 (4)C9—C10—C11113.6 (3)
C4—C3—C2122.0 (4)C9—C10—H10123.2
C4—C3—H3119.0C11—C10—H10123.2
C2—C3—H3119.0C12—C11—C10110.9 (3)
C3—C4—C5120.3 (4)C12—C11—H11124.6
C3—C4—H4119.8C10—C11—H11124.6
C5—C4—H4119.8C11—C12—N2125.8 (3)
C6—C5—C4117.7 (3)C11—C12—S1114.1 (3)
C6—C5—N1117.1 (3)N2—C12—S1120.1 (2)
C4—C5—N1125.2 (3)C8—N1—C5119.4 (3)
C7—C6—C5121.1 (3)O2—N2—O1124.0 (3)
C7—C6—H6119.4O2—N2—C12118.1 (3)
C5—C6—H6119.4O1—N2—C12118.0 (3)
C2—C7—C6121.4 (4)C12—S1—C989.98 (15)
C7—C2—C3—C42.1 (6)C9—C10—C11—C120.8 (4)
C1—C2—C3—C4178.5 (3)C10—C11—C12—N2177.6 (3)
C2—C3—C4—C50.9 (6)C10—C11—C12—S10.2 (4)
C3—C4—C5—C60.9 (5)C9—C8—N1—C5179.7 (3)
C3—C4—C5—N1179.5 (3)C6—C5—N1—C8168.5 (3)
C4—C5—C6—C71.4 (5)C4—C5—N1—C812.8 (5)
N1—C5—C6—C7179.9 (3)C11—C12—N2—O22.2 (5)
C3—C2—C7—C61.6 (6)S1—C12—N2—O2179.8 (3)
C1—C2—C7—C6179.1 (4)C11—C12—N2—O1177.9 (3)
C5—C6—C7—C20.2 (6)S1—C12—N2—O10.2 (4)
N1—C8—C9—C10176.6 (3)C11—C12—S1—C90.3 (3)
N1—C8—C9—S15.4 (5)N2—C12—S1—C9178.2 (3)
C8—C9—C10—C11179.2 (3)C10—C9—S1—C120.7 (3)
S1—C9—C10—C111.0 (4)C8—C9—S1—C12179.0 (3)

Experimental details

Crystal data
Chemical formulaC12H10N2O2S
Mr246.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.7661 (4), 22.8201 (18), 10.7793 (7)
β (°) 92.704 (7)
V3)1171.08 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.17 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction SuperNova Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.771, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3997, 2211, 1549
Rint0.064
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.177, 1.05
No. of reflections2211
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al. 2009) and ORTEP-3 for Windows (Farrugia, 1997);, OLEX2 (Dolomanov et al. 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Giresun University Research Fund for financial support of this study.

References

First citationCeylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDemirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds