organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-1-(4-methyl­phen­yl)thio­urea

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 5 June 2012; accepted 10 June 2012; online 16 June 2012)

The asymmetric unit of the title compound, C10H12N2OS, contains two independent mol­ecules. In both mol­ecules, the conformations of the two N—H bonds are anti to each other. Furthermore, the conformations of the amide C=S bonds and the C=O bonds are anti to each other. The dihedral angles between the benzene ring and the side chain are 52.8 (1) and 68.0 (1)° in the two independent mol­ecules. An intra­molecular N—H⋯O hydrogen bond occurs in both independent mol­ecules. In the crystal, mol­ecules are linked into infinite chains along the a axis through a series of N—H⋯O and N—H⋯S hydrogen bonds.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda & Weiss (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]); Shahwar et al. (2012[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.]), of N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]), of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]) and of N-chloro­aryl­sulfonamides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]); Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2OS

  • Mr = 208.28

  • Triclinic, [P \overline 1]

  • a = 9.1623 (8) Å

  • b = 10.130 (1) Å

  • c = 13.446 (1) Å

  • α = 73.212 (9)°

  • β = 70.276 (8)°

  • γ = 66.772 (8)°

  • V = 1061.90 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.908, Tmax = 0.937

  • 7674 measured reflections

  • 4293 independent reflections

  • 3267 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.00

  • 4293 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.84 2.02 2.674 (2) 134
N1—H1N⋯O2i 0.84 2.47 3.198 (2) 145
N2—H2N⋯S2ii 0.84 2.68 3.5058 (17) 169
N3—H3N⋯O2 0.86 1.97 2.661 (2) 137
N3—H3N⋯O1i 0.86 2.42 3.131 (2) 140
N4—H4N⋯S1ii 0.85 2.57 3.4078 (17) 169
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiourea and its derivatives are widely used as precursors or intermediates towards the syntheisis of a variety of heterocyclic compounds. They are known to exhibit a wide variety of biological activities. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994); N-(aryl)-methanesulfonamides (Gowda et al., 2007); N-(aryl)-arylsulfonamides (Gowda et al., 2005) and N-chloroarylsulfonamides (Jyothi & Gowda, 2004; Shetty & Gowda, 2004). in the present work, the crystal structure of 3-acetyl-1-(4-methylphenyl)thiourea has been determined (Fig. 1).

The asymmetric unit of the structure contains two independent molecules. The conformations of the two N—H bonds in the side chain are anti to each other and one of them is anti to the CS in the urea segments and the other is syn, in both the molecules, similar to the anti conformation observed in 3-acetyl-1-(2-methylphenyl)thiourea (Shahwar et al., 2012) Further, the conformations of the amide CS and the CO are anti to each other.

The side chains are oriented themselves with respect to the phenyl rings with the torsion angles of C2—C1—N1—C7 = 53.32 (32)° and C6—C1—N1—C7 = - 131.28 (24)° in molecule 1, and C12—C11—N3—C17 = - 67.14 (31)° and C16—C11—N3—C17 = 116.61 (26)° in molecule 2. The dihedral angles between the phenyl rings and the side chains are 52.8 (1)° and 68.0 (1)°, in the two independent molecules.

The amide oxygen and one of the NH hydrogen atoms exhibit both intra- and inter-molecular bifurcated hydrogen bonding. In the structure, series of N—H···O and N—H···S intermolecular hydrogen bonds pack the molecules into infinite chains (Table 1, Fig.2).

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda & Weiss (1994); Shahwar et al. (2012), of N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), of N-(aryl)-arylsulfonamides, see: Gowda et al. (2005) and of N-chloroarylsulfonamides, see: Jyothi & Gowda (2004); Shetty & Gowda (2004).

Experimental top

3-Acetyl-1-(4-methylphenyl)thiourea was synthesized by adding a solution of acetyl chloride (0.10 mol) in acetone (30 ml) dropwise to a suspension of ammonium thiocyanate (0.10 mol) in acetone (30 ml). The reaction mixture was refluxed for 30 min. After cooling to room temperature, a solution of 4-methylaniline (0.10 mol) in acetone (10 ml) was added and refluxed for 3 h. The reaction mixture was poured into acidified cold water. The precipitated title compound was recrystallized to constant melting point from acetonitrile. The purity of the compound was checked and characterized by its infrared spectrum.

Prism like yellow single crystals used in X-ray diffraction studies were grown in acetonitrile solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å. The amino H atoms were freely refined with the N—H distances restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl) of the parent atom. In one of the two crystallographically independent molecules the H atoms of both methyl groups are disordered and were refined using a split model.

Structure description top

Thiourea and its derivatives are widely used as precursors or intermediates towards the syntheisis of a variety of heterocyclic compounds. They are known to exhibit a wide variety of biological activities. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994); N-(aryl)-methanesulfonamides (Gowda et al., 2007); N-(aryl)-arylsulfonamides (Gowda et al., 2005) and N-chloroarylsulfonamides (Jyothi & Gowda, 2004; Shetty & Gowda, 2004). in the present work, the crystal structure of 3-acetyl-1-(4-methylphenyl)thiourea has been determined (Fig. 1).

The asymmetric unit of the structure contains two independent molecules. The conformations of the two N—H bonds in the side chain are anti to each other and one of them is anti to the CS in the urea segments and the other is syn, in both the molecules, similar to the anti conformation observed in 3-acetyl-1-(2-methylphenyl)thiourea (Shahwar et al., 2012) Further, the conformations of the amide CS and the CO are anti to each other.

The side chains are oriented themselves with respect to the phenyl rings with the torsion angles of C2—C1—N1—C7 = 53.32 (32)° and C6—C1—N1—C7 = - 131.28 (24)° in molecule 1, and C12—C11—N3—C17 = - 67.14 (31)° and C16—C11—N3—C17 = 116.61 (26)° in molecule 2. The dihedral angles between the phenyl rings and the side chains are 52.8 (1)° and 68.0 (1)°, in the two independent molecules.

The amide oxygen and one of the NH hydrogen atoms exhibit both intra- and inter-molecular bifurcated hydrogen bonding. In the structure, series of N—H···O and N—H···S intermolecular hydrogen bonds pack the molecules into infinite chains (Table 1, Fig.2).

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda & Weiss (1994); Shahwar et al. (2012), of N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), of N-(aryl)-arylsulfonamides, see: Gowda et al. (2005) and of N-chloroarylsulfonamides, see: Jyothi & Gowda (2004); Shetty & Gowda (2004).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level. Please note that the H atoms in two methyl groups are disordered.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
3-Acetyl-1-(4-methylphenyl)thiourea top
Crystal data top
C10H12N2OSZ = 4
Mr = 208.28F(000) = 440
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1623 (8) ÅCell parameters from 3355 reflections
b = 10.130 (1) Åθ = 2.6–27.8°
c = 13.446 (1) ŵ = 0.27 mm1
α = 73.212 (9)°T = 293 K
β = 70.276 (8)°Prism, yellow
γ = 66.772 (8)°0.36 × 0.32 × 0.24 mm
V = 1061.90 (16) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4293 independent reflections
Radiation source: fine-focus sealed tube3267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.908, Tmax = 0.937k = 1112
7674 measured reflectionsl = 916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3765P]
where P = (Fo2 + 2Fc2)/3
4293 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H12N2OSγ = 66.772 (8)°
Mr = 208.28V = 1061.90 (16) Å3
Triclinic, P1Z = 4
a = 9.1623 (8) ÅMo Kα radiation
b = 10.130 (1) ŵ = 0.27 mm1
c = 13.446 (1) ÅT = 293 K
α = 73.212 (9)°0.36 × 0.32 × 0.24 mm
β = 70.276 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4293 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3267 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.937Rint = 0.013
7674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
4293 reflectionsΔρmin = 0.26 e Å3
257 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.28304 (7)0.27948 (6)0.08545 (5)0.0639 (2)
O10.19291 (19)0.74868 (16)0.09138 (12)0.0662 (5)
N10.11169 (19)0.56173 (17)0.08639 (12)0.0447 (4)
H1N0.09100.64880.05390.054*
N20.32618 (19)0.50464 (17)0.06329 (12)0.0462 (4)
H2N0.40490.43610.09010.055*
C10.0100 (2)0.5382 (2)0.19255 (14)0.0390 (4)
C20.0770 (3)0.4649 (2)0.27913 (15)0.0523 (5)
H20.19030.42470.26850.063*
C30.0244 (3)0.4514 (3)0.38129 (16)0.0549 (5)
H30.02210.39930.43870.066*
C40.1927 (3)0.5128 (2)0.40096 (15)0.0469 (5)
C50.2577 (2)0.5863 (2)0.31314 (15)0.0494 (5)
H50.37090.62840.32380.059*
C60.1575 (2)0.5985 (2)0.20985 (15)0.0439 (5)
H60.20380.64760.15200.053*
C70.2348 (2)0.4588 (2)0.03716 (15)0.0427 (4)
C80.3017 (2)0.6427 (2)0.12374 (15)0.0467 (5)
C90.4200 (3)0.6519 (3)0.23205 (17)0.0615 (6)
H9A0.46510.55850.25390.092*0.50
H9B0.50700.67920.22860.092*0.50
H9C0.36370.72370.28310.092*0.50
H9D0.42540.74910.25650.092*0.50
H9E0.38350.62840.28190.092*0.50
H9F0.52680.58390.22730.092*0.50
C100.3005 (3)0.5015 (3)0.51417 (17)0.0720 (7)
H10A0.23410.46860.56420.108*0.50
H10B0.35570.43310.52550.108*0.50
H10C0.38030.59550.52480.108*0.50
H10D0.41270.52960.51210.108*0.50
H10E0.29100.56500.55080.108*0.50
H10F0.26640.40260.55150.108*0.50
S20.33996 (7)0.74388 (6)0.20962 (4)0.05795 (19)
O20.12185 (17)1.10683 (16)0.04421 (11)0.0580 (4)
N30.09598 (19)0.98380 (17)0.16188 (12)0.0455 (4)
H3N0.05711.05190.11320.055*
N40.32028 (19)0.91449 (17)0.02163 (11)0.0450 (4)
H4N0.41690.85590.00270.054*
C110.0049 (2)0.9812 (2)0.26949 (14)0.0403 (4)
C120.0728 (3)0.8725 (2)0.32034 (16)0.0505 (5)
H120.04750.79500.28680.061*
C130.1786 (3)0.8790 (2)0.42149 (16)0.0545 (5)
H130.22510.80560.45500.065*
C140.2173 (3)0.9914 (3)0.47410 (16)0.0552 (6)
C150.1460 (3)1.0980 (3)0.42215 (18)0.0644 (6)
H150.16891.17410.45650.077*
C160.0411 (3)1.0949 (2)0.32005 (17)0.0555 (5)
H160.00451.16880.28600.067*
C170.2422 (2)0.8888 (2)0.12968 (14)0.0407 (4)
C180.2596 (2)1.0195 (2)0.05967 (15)0.0449 (5)
C190.3800 (3)1.0180 (3)0.16731 (16)0.0588 (6)
H19A0.32221.05350.22250.088*
H19B0.45290.92000.17240.088*
H19C0.44241.07960.17620.088*
C200.3339 (3)0.9966 (4)0.58516 (19)0.0884 (9)
H20A0.30210.90330.63070.133*
H20B0.44371.01940.58020.133*
H20C0.32991.07020.61490.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0638 (4)0.0405 (3)0.0528 (3)0.0047 (3)0.0089 (3)0.0042 (2)
O10.0649 (10)0.0448 (8)0.0526 (9)0.0031 (7)0.0073 (7)0.0039 (7)
N10.0463 (9)0.0382 (8)0.0347 (8)0.0074 (7)0.0010 (7)0.0051 (7)
N20.0438 (9)0.0418 (9)0.0361 (8)0.0060 (7)0.0016 (7)0.0082 (7)
C10.0430 (10)0.0373 (10)0.0319 (9)0.0114 (8)0.0050 (8)0.0071 (7)
C20.0394 (10)0.0669 (14)0.0403 (11)0.0061 (10)0.0091 (9)0.0122 (10)
C30.0573 (13)0.0650 (14)0.0363 (10)0.0137 (11)0.0170 (10)0.0035 (10)
C40.0523 (12)0.0563 (12)0.0333 (10)0.0267 (10)0.0036 (9)0.0060 (9)
C50.0384 (10)0.0613 (13)0.0437 (11)0.0177 (9)0.0055 (9)0.0068 (9)
C60.0441 (11)0.0460 (11)0.0360 (10)0.0115 (9)0.0116 (8)0.0023 (8)
C70.0392 (10)0.0435 (10)0.0374 (10)0.0090 (8)0.0051 (8)0.0079 (8)
C80.0440 (11)0.0457 (11)0.0407 (10)0.0116 (9)0.0036 (8)0.0068 (9)
C90.0586 (13)0.0566 (13)0.0470 (12)0.0169 (11)0.0074 (10)0.0046 (10)
C100.0716 (16)0.106 (2)0.0387 (12)0.0479 (16)0.0015 (11)0.0064 (12)
S20.0506 (3)0.0539 (3)0.0376 (3)0.0033 (2)0.0053 (2)0.0017 (2)
O20.0486 (8)0.0539 (9)0.0413 (8)0.0010 (7)0.0047 (6)0.0015 (6)
N30.0431 (9)0.0417 (9)0.0312 (8)0.0027 (7)0.0026 (7)0.0012 (7)
N40.0415 (9)0.0421 (9)0.0315 (8)0.0021 (7)0.0012 (7)0.0043 (7)
C110.0366 (9)0.0425 (10)0.0300 (9)0.0059 (8)0.0034 (7)0.0052 (8)
C120.0517 (12)0.0477 (11)0.0447 (11)0.0141 (10)0.0032 (9)0.0117 (9)
C130.0503 (12)0.0586 (13)0.0459 (12)0.0225 (11)0.0029 (9)0.0016 (10)
C140.0462 (12)0.0713 (15)0.0348 (10)0.0125 (11)0.0013 (9)0.0106 (10)
C150.0724 (16)0.0678 (15)0.0493 (13)0.0217 (13)0.0020 (11)0.0276 (11)
C160.0617 (13)0.0519 (12)0.0479 (12)0.0228 (11)0.0007 (10)0.0117 (10)
C170.0423 (10)0.0390 (10)0.0325 (9)0.0091 (8)0.0045 (8)0.0065 (8)
C180.0475 (11)0.0417 (10)0.0350 (10)0.0113 (9)0.0051 (8)0.0031 (8)
C190.0569 (13)0.0578 (13)0.0353 (10)0.0061 (10)0.0005 (9)0.0017 (9)
C200.0750 (18)0.125 (3)0.0440 (13)0.0295 (18)0.0122 (12)0.0219 (15)
Geometric parameters (Å, º) top
S1—C71.672 (2)C10—H10D0.9600
O1—C81.212 (2)C10—H10E0.9600
N1—C71.329 (2)C10—H10F0.9600
N1—C11.429 (2)S2—C171.6777 (19)
N1—H1N0.8407O2—C181.211 (2)
N2—C81.373 (2)N3—C171.319 (2)
N2—C71.387 (2)N3—C111.429 (2)
N2—H2N0.8403N3—H3N0.8569
C1—C61.373 (3)N4—C181.381 (2)
C1—C21.381 (3)N4—C171.385 (2)
C2—C31.378 (3)N4—H4N0.8494
C2—H20.9300C11—C121.373 (3)
C3—C41.377 (3)C11—C161.377 (3)
C3—H30.9300C12—C131.380 (3)
C4—C51.386 (3)C12—H120.9300
C4—C101.510 (3)C13—C141.378 (3)
C5—C61.384 (3)C13—H130.9300
C5—H50.9300C14—C151.376 (3)
C6—H60.9300C14—C201.516 (3)
C8—C91.496 (3)C15—C161.386 (3)
C9—H9A0.9600C15—H150.9300
C9—H9B0.9600C16—H160.9300
C9—H9C0.9600C18—C191.495 (3)
C9—H9D0.9600C19—H19A0.9600
C9—H9E0.9600C19—H19B0.9600
C9—H9F0.9600C19—H19C0.9600
C10—H10A0.9600C20—H20A0.9600
C10—H10B0.9600C20—H20B0.9600
C10—H10C0.9600C20—H20C0.9600
C7—N1—C1125.49 (16)C4—C10—H10D109.5
C7—N1—H1N118.6H10A—C10—H10D141.1
C1—N1—H1N115.9H10B—C10—H10D56.3
C8—N2—C7129.02 (16)H10C—C10—H10D56.3
C8—N2—H2N117.5C4—C10—H10E109.5
C7—N2—H2N113.4H10A—C10—H10E56.3
C6—C1—C2119.26 (17)H10B—C10—H10E141.1
C6—C1—N1119.26 (16)H10C—C10—H10E56.3
C2—C1—N1121.32 (17)H10D—C10—H10E109.5
C3—C2—C1119.90 (19)C4—C10—H10F109.5
C3—C2—H2120.1H10A—C10—H10F56.3
C1—C2—H2120.1H10B—C10—H10F56.3
C4—C3—C2121.96 (19)H10C—C10—H10F141.1
C4—C3—H3119.0H10D—C10—H10F109.5
C2—C3—H3119.0H10E—C10—H10F109.5
C3—C4—C5117.32 (17)C17—N3—C11126.15 (16)
C3—C4—C10120.85 (19)C17—N3—H3N116.6
C5—C4—C10121.83 (19)C11—N3—H3N117.2
C6—C5—C4121.35 (18)C18—N4—C17128.49 (16)
C6—C5—H5119.3C18—N4—H4N115.9
C4—C5—H5119.3C17—N4—H4N115.5
C1—C6—C5120.19 (18)C12—C11—C16119.91 (18)
C1—C6—H6119.9C12—C11—N3121.24 (17)
C5—C6—H6119.9C16—C11—N3118.75 (18)
N1—C7—N2116.88 (17)C11—C12—C13119.65 (19)
N1—C7—S1124.99 (15)C11—C12—H12120.2
N2—C7—S1118.11 (14)C13—C12—H12120.2
O1—C8—N2122.36 (17)C14—C13—C12121.8 (2)
O1—C8—C9122.79 (19)C14—C13—H13119.1
N2—C8—C9114.85 (17)C12—C13—H13119.1
C8—C9—H9A109.5C15—C14—C13117.53 (19)
C8—C9—H9B109.5C15—C14—C20121.5 (2)
H9A—C9—H9B109.5C13—C14—C20121.0 (2)
C8—C9—H9C109.5C14—C15—C16121.8 (2)
H9A—C9—H9C109.5C14—C15—H15119.1
H9B—C9—H9C109.5C16—C15—H15119.1
C8—C9—H9D109.5C11—C16—C15119.4 (2)
H9A—C9—H9D141.1C11—C16—H16120.3
H9B—C9—H9D56.3C15—C16—H16120.3
H9C—C9—H9D56.3N3—C17—N4116.44 (16)
C8—C9—H9E109.5N3—C17—S2125.08 (14)
H9A—C9—H9E56.3N4—C17—S2118.47 (13)
H9B—C9—H9E141.1O2—C18—N4122.67 (17)
H9C—C9—H9E56.3O2—C18—C19123.20 (18)
H9D—C9—H9E109.5N4—C18—C19114.12 (17)
C8—C9—H9F109.5C18—C19—H19A109.5
H9A—C9—H9F56.3C18—C19—H19B109.5
H9B—C9—H9F56.3H19A—C19—H19B109.5
H9C—C9—H9F141.1C18—C19—H19C109.5
H9D—C9—H9F109.5H19A—C19—H19C109.5
H9E—C9—H9F109.5H19B—C19—H19C109.5
C4—C10—H10A109.5C14—C20—H20A109.5
C4—C10—H10B109.5C14—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
C4—C10—H10C109.5C14—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.842.022.674 (2)134
N1—H1N···O2i0.842.473.198 (2)145
N2—H2N···S2ii0.842.683.5058 (17)169
N3—H3N···O20.861.972.661 (2)137
N3—H3N···O1i0.862.423.131 (2)140
N4—H4N···S1ii0.852.573.4078 (17)169
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H12N2OS
Mr208.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1623 (8), 10.130 (1), 13.446 (1)
α, β, γ (°)73.212 (9), 70.276 (8), 66.772 (8)
V3)1061.90 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.32 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.908, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
7674, 4293, 3267
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.00
No. of reflections4293
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.842.022.674 (2)134.0
N1—H1N···O2i0.842.473.198 (2)144.7
N2—H2N···S2ii0.842.683.5058 (17)169.1
N3—H3N···O20.861.972.661 (2)137.2
N3—H3N···O1i0.862.423.131 (2)140.2
N4—H4N···S1ii0.852.573.4078 (17)168.6
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds