organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(2-Bromo­eth­yl)-9H-carbazole

aSchool of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: lidongfeng@mail.ccut.edu.cn

(Received 23 April 2012; accepted 28 May 2012; online 13 June 2012)

In the title compound, C14H12BrN, the fused-ring system is slightly buckled as its two benzene rings are inclined to one another by 3.41 (14)°.

Related literature

For the synthesis, see: Huang et al. (2004[Huang, X. F., Zhong, S. Z., Yan, X. Z., Ke, X. J., Srisanit, N. & Wang, M. R. (2004). Synth. Met. 140, 79-86.]). For a similar structure, see: Aravindan et al. (2003[Aravindan, P. G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Ravikumar, K., Nagarajan, N. & Perumal, P. T. (2003). Acta Cryst. E59, o1432-o1434.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12BrN

  • Mr = 274.16

  • Monoclinic, P 21 /c

  • a = 5.417 (3) Å

  • b = 12.254 (6) Å

  • c = 17.505 (11) Å

  • β = 96.46 (3)°

  • V = 1154.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.53 mm−1

  • T = 288 K

  • 0.16 × 0.15 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.599, Tmax = 0.657

  • 10873 measured reflections

  • 2630 independent reflections

  • 2093 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.082

  • S = 1.02

  • 2630 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carozole and its derivatives are an important type of nitrogen-containing aromatic heterocyclic compounds. These special structure of carbazole compounds endow their distinct various functions as well as wide potential applications. In this paper, we report the crystal structure of the title compound.

The molecular structure of tiltle compound, C14H12BrN, as shown in Fig.1, all bond lengths and angles are in the normal ranges and are comparable with a reported compounnd (Aravindan et al. 2003). The dihedral angel of the two benzene rings is 3.41 (14) °. Van der Waals forces stablize the crystal structure.

Related literature top

For the synthesis, see: Huang et al. (2004). For a similar structure, see: Aravindan et al. (2003).

Experimental top

The title compound was prepared according to the literature (Huang et al. 2004). Single crystals suitable were prepared by slow evaporation of a dichloromethane solution of the compoundat room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 and 0.97 Å) and were included in the refinement in the riding model with Uiso(H) = 1.2 Ueq(C). The (-2 5 5) was omitted owing to bad disagreement.

Structure description top

Carozole and its derivatives are an important type of nitrogen-containing aromatic heterocyclic compounds. These special structure of carbazole compounds endow their distinct various functions as well as wide potential applications. In this paper, we report the crystal structure of the title compound.

The molecular structure of tiltle compound, C14H12BrN, as shown in Fig.1, all bond lengths and angles are in the normal ranges and are comparable with a reported compounnd (Aravindan et al. 2003). The dihedral angel of the two benzene rings is 3.41 (14) °. Van der Waals forces stablize the crystal structure.

For the synthesis, see: Huang et al. (2004). For a similar structure, see: Aravindan et al. (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probalility level.
9-(2-Bromoethyl)-9H-carbazole top
Crystal data top
C14H12BrNF(000) = 552
Mr = 274.16Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8078 reflections
a = 5.417 (3) Åθ = 3.3–27.5°
b = 12.254 (6) ŵ = 3.53 mm1
c = 17.505 (11) ÅT = 288 K
β = 96.46 (3)°Block, colorless
V = 1154.6 (11) Å30.16 × 0.15 × 0.13 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2630 independent reflections
Radiation source: fine-focus sealed tube2093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 67
Tmin = 0.599, Tmax = 0.657k = 1515
10873 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.3164P]
where P = (Fo2 + 2Fc2)/3
2630 reflections(Δ/σ)max = 0.007
145 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C14H12BrNV = 1154.6 (11) Å3
Mr = 274.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.417 (3) ŵ = 3.53 mm1
b = 12.254 (6) ÅT = 288 K
c = 17.505 (11) Å0.16 × 0.15 × 0.13 mm
β = 96.46 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2630 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2093 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.657Rint = 0.039
10873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2630 reflectionsΔρmin = 0.59 e Å3
145 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.25417 (5)1.06970 (2)0.430911 (16)0.05611 (12)
C10.0265 (4)0.88648 (17)0.22679 (12)0.0350 (4)
C20.1470 (4)0.94431 (18)0.17824 (14)0.0420 (5)
H20.27170.98470.19740.050*
C30.1273 (5)0.9395 (2)0.10030 (14)0.0506 (6)
H30.24240.97660.06640.061*
C40.0610 (5)0.8802 (2)0.07141 (14)0.0504 (6)
H40.07060.87930.01870.060*
C50.2328 (4)0.82325 (19)0.11943 (13)0.0446 (5)
H50.35910.78460.09970.054*
C60.2147 (4)0.82425 (16)0.19839 (12)0.0356 (4)
C70.3499 (4)0.77144 (17)0.26390 (13)0.0365 (5)
C80.5493 (4)0.69878 (19)0.27313 (15)0.0473 (6)
H80.62480.67550.23090.057*
C90.6322 (5)0.6623 (2)0.34564 (18)0.0572 (7)
H90.76540.61400.35220.069*
C100.5209 (5)0.6961 (2)0.40933 (16)0.0546 (6)
H100.58130.66980.45770.066*
C110.3225 (4)0.76790 (19)0.40274 (14)0.0465 (5)
H110.24840.79030.44550.056*
C120.2387 (4)0.80512 (17)0.32906 (13)0.0357 (4)
C130.1196 (4)0.92796 (18)0.35461 (14)0.0417 (5)
H13A0.10730.89000.40350.050*
H13B0.28930.92070.33080.050*
C140.0643 (4)1.04724 (19)0.36924 (15)0.0466 (5)
H14A0.19511.07900.39560.056*
H14B0.06311.08460.32040.056*
N10.0445 (3)0.87583 (15)0.30599 (10)0.0369 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05008 (16)0.06487 (19)0.05276 (18)0.01404 (11)0.00307 (12)0.00812 (12)
C10.0349 (10)0.0342 (10)0.0358 (11)0.0048 (8)0.0038 (8)0.0010 (9)
C20.0387 (11)0.0423 (12)0.0441 (13)0.0013 (9)0.0002 (10)0.0007 (10)
C30.0585 (14)0.0479 (13)0.0417 (14)0.0059 (11)0.0106 (11)0.0088 (10)
C40.0685 (16)0.0497 (13)0.0322 (12)0.0103 (12)0.0017 (11)0.0014 (10)
C50.0533 (13)0.0427 (12)0.0394 (13)0.0039 (10)0.0117 (10)0.0061 (10)
C60.0370 (10)0.0337 (10)0.0363 (11)0.0056 (8)0.0055 (9)0.0034 (9)
C70.0352 (10)0.0339 (10)0.0401 (12)0.0040 (9)0.0035 (9)0.0024 (9)
C80.0413 (11)0.0414 (12)0.0589 (16)0.0033 (10)0.0042 (11)0.0067 (11)
C90.0480 (13)0.0421 (13)0.078 (2)0.0077 (11)0.0076 (13)0.0035 (13)
C100.0585 (14)0.0464 (13)0.0546 (16)0.0029 (12)0.0121 (12)0.0163 (12)
C110.0520 (12)0.0456 (12)0.0411 (13)0.0052 (11)0.0011 (11)0.0075 (10)
C120.0343 (10)0.0342 (10)0.0379 (11)0.0038 (8)0.0018 (8)0.0014 (9)
C130.0355 (10)0.0477 (13)0.0432 (13)0.0033 (9)0.0105 (9)0.0080 (10)
C140.0392 (11)0.0496 (13)0.0507 (15)0.0037 (10)0.0044 (10)0.0084 (11)
N10.0376 (9)0.0403 (9)0.0329 (9)0.0028 (8)0.0048 (7)0.0001 (8)
Geometric parameters (Å, º) top
Br1—C141.949 (3)C8—C91.373 (4)
C1—N11.385 (3)C8—H80.9300
C1—C21.389 (3)C9—C101.389 (4)
C1—C61.408 (3)C9—H90.9300
C2—C31.382 (4)C10—C111.383 (4)
C2—H20.9300C10—H100.9300
C3—C41.392 (4)C11—C121.395 (3)
C3—H30.9300C11—H110.9300
C4—C51.372 (4)C12—N11.387 (3)
C4—H40.9300C13—N11.447 (3)
C5—C61.397 (3)C13—C141.508 (3)
C5—H50.9300C13—H13A0.9700
C6—C71.443 (3)C13—H13B0.9700
C7—C81.395 (3)C14—H14A0.9700
C7—C121.410 (3)C14—H14B0.9700
N1—C1—C2128.8 (2)C10—C9—H9119.4
N1—C1—C6109.29 (18)C11—C10—C9121.7 (2)
C2—C1—C6121.8 (2)C11—C10—H10119.1
C3—C2—C1117.4 (2)C9—C10—H10119.1
C3—C2—H2121.3C10—C11—C12117.0 (2)
C1—C2—H2121.3C10—C11—H11121.5
C2—C3—C4121.5 (2)C12—C11—H11121.5
C2—C3—H3119.3N1—C12—C11129.1 (2)
C4—C3—H3119.3N1—C12—C7109.03 (19)
C5—C4—C3121.1 (2)C11—C12—C7121.9 (2)
C5—C4—H4119.5N1—C13—C14113.85 (19)
C3—C4—H4119.5N1—C13—H13A108.8
C4—C5—C6118.9 (2)C14—C13—H13A108.8
C4—C5—H5120.5N1—C13—H13B108.8
C6—C5—H5120.5C14—C13—H13B108.8
C5—C6—C1119.2 (2)H13A—C13—H13B107.7
C5—C6—C7134.2 (2)C13—C14—Br1112.18 (16)
C1—C6—C7106.57 (18)C13—C14—H14A109.2
C8—C7—C12119.3 (2)Br1—C14—H14A109.2
C8—C7—C6134.1 (2)C13—C14—H14B109.2
C12—C7—C6106.66 (18)Br1—C14—H14B109.2
C9—C8—C7118.9 (2)H14A—C14—H14B107.9
C9—C8—H8120.5C12—N1—C1108.42 (17)
C7—C8—H8120.5C12—N1—C13126.90 (19)
C8—C9—C10121.2 (2)C1—N1—C13124.65 (18)
C8—C9—H9119.4

Experimental details

Crystal data
Chemical formulaC14H12BrN
Mr274.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)288
a, b, c (Å)5.417 (3), 12.254 (6), 17.505 (11)
β (°) 96.46 (3)
V3)1154.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.53
Crystal size (mm)0.16 × 0.15 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.599, 0.657
No. of measured, independent and
observed [I > 2σ(I)] reflections
10873, 2630, 2093
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.02
No. of reflections2630
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.59

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of Jilin Province (grant No. 20101548).

References

First citationAravindan, P. G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Ravikumar, K., Nagarajan, N. & Perumal, P. T. (2003). Acta Cryst. E59, o1432–o1434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuang, X. F., Zhong, S. Z., Yan, X. Z., Ke, X. J., Srisanit, N. & Wang, M. R. (2004). Synth. Met. 140, 79-86.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds