organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Meth­­oxy­phen­yl)-1,3-di­hydro-1,3,2-benzodi­aza­borole

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
*Correspondence e-mail: akermanm@ukzn.ac.za

(Received 18 June 2012; accepted 22 June 2012; online 30 June 2012)

The title compound, C13H13BN2O, is one in a series of 1,3,2-benzodiaza­boroles featuring a 2-meth­oxy­phenyl substitution at the 2-position in the nitro­gen–boron heterocyle. The dihedral angle between the mean planes of the benzodiaza­borole and 2-meth­oxy­phenyl ring systems is 21.5 (1)°. There is an inter­molecular hydrogen bond between one of the NH groups and the meth­oxy O atom. This hydrogen bond leads to an infinite hydrogen-bonded chain colinear with the a axis.

Related literature

For the synthesis of the title compound, see: Sithebe et al. (2011[Sithebe, S., Hadebe, S. W. & Robinson, S. R. (2011). Tetrahedron, 67, 4277-4282.]); Weber et al. (2009[Weber, L., Werner, V., Fox, A. M., Marder, B. T., Schwedler, S., Brockhinke, A., Stammler, H.-G. & Neumann, B. (2009). Dalton Trans. pp. 1339-1351.], 2011[Weber, L., Halama, J., Bohling, L., Chrostowska, A., Dargelos, A., Stammler, H.-G. & Neumann, B. (2011). Eur. J. Inorg. Chem. pp. 3091-3101.]). For related derivatives as well as their photoluminiscence studies, see: Weber et al. (2010[Weber, L., Halama, J., Werner, V., Hanke, K., Bohling, L., Chrostowska, A., Maciejczyk, M., Raza, A.-L., Stammler, H.-G. & Neumann, B. (2010). Eur. J. Inorg. Chem. pp. 5416-5425.]); Maruyama & Kawanishi (2002[Maruyama, S. & Kawanishi, Y. (2002). J. Mater. Chem. 12, 2245-2249.]). For structures of related compounds, see: Slabber et al. (2011[Slabber, C. A., Akerman, M. P. & Robinson, R. S. (2011). Acta Cryst. E67, o1338.]); Akerman et al. (2011[Akerman, M. P., Robinson, R. S. & Slabber, C. A. (2011). Acta Cryst. E67, o1873.]). For applications of 1,3,2-diaza­borolyl compounds, see: Schwedler et al. (2011[Schwedler, S., Eickhoff, D., Brockhinke, R., Cherian, D., Weber, L. & Brockhinke, A. (2011). Phys. Chem. Chem. Phys. 13, 9301-9310.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13BN2O

  • Mr = 224.06

  • Orthorhombic, P 21 21 21

  • a = 7.549 (5) Å

  • b = 12.230 (5) Å

  • c = 12.308 (5) Å

  • V = 1136.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 110 K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.960, Tmax = 0.968

  • 11586 measured reflections

  • 2125 independent reflections

  • 1939 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.05

  • 2125 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H102⋯O001i 0.89 (2) 2.40 (2) 3.201 (2) 151 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POV-RAY (Cason et al., 2002[Cason, C. J. (2002). POV-RAY for Windows. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Molecular compounds functionalized with 1,3,2-diazaborolyl groups have received considerable attention and have been investigated for their optical, electronic and ion sensing abilities, making them possible candidates for use in advanced material science (Schwedler et al.,2011). Rapid developments in the chemistry of 1,3,2-diazaborolyl containing compounds, due to their photoluminescence characteristics and unusual stability, have been observed in recent years. Unlike most triarylborane compounds which require dimesitylborolyl moieties for the enhancement of their stability, 2-arylbenzo-1,3,2-diazaborole compounds have been reported to be water and air stable without any additional dimesityl groups (Weber et al., 2009). To gain insight into the intriguing characteristics exhibited by these compounds, we (Sithebe et al., 2011) and other researchers (Maruyama et al., 2002 and Weber et al. 2011) have directed our reseach focus towards the investigation of the photophysical studies as well as the determination of the crystal structures of 1,3,2-benzodiazaborolyl compounds.

The molecule features a 1,3,2-benzodiazaborolyl backbone with a five-membered diazaborole ring substituted with hydrogen atoms at the 1- and 3-positions, and a 3-methoxyphenyl ring at the 2-position. The 1,3,2-benzodiazaborolyl backbone of the molecule is essentially planar, however, the 3-methoxyphenyl ring at the 2-position, is rotated out of plane with a dihedral angle of 21.5 (1)°. The two N—B bonds are approximately equal (averaged to 1.433 (2) Å). The N1—B—N2 bond angle is 105.2 (1)°, the N1—B—C1 and N2—B—C1 bond angles are slighly different, measuring 125.4 (1)° and 129.3 (1)°, respectively (refer to Figure 1 for the atom numbering scheme). These bond lengths and angles compare favourably to those of previously reported diazaborolyl systems (Weber et al., 2009). The molecules are linked through hydrogen bonding forming infinite, one-dimensional chains co-linear with the a-axis (Figure 2). The amine NH acts as the hydrogen bond donor and the etheryl oxygen atom the H-bond acceptor. The hydrogen bond lengths and bond angles are summarized in Table 1.

Related literature top

For the synthesis of the title compound, see: Sithebe et al. (2011); Weber et al. (2009, 2011). For related derivatives as well as their photoluminiscence studies, see: Weber et al. (2010); Maruyama & Kawanishi (2002). For structures of related compounds, see: Slabber et al. (2011); Akerman et al. (2011). For applications of 1,3,2-diazaborolyl compounds, see: Schwedler et al. (2011).

Experimental top

3-Methoxyphenylboronic acid (1.00 g, 5.18 mmol) and o-phenylenediamine (0.56 g, 5.18 mmol) were dissolved in toluene (80 ml) in a two neck flask equipped with a Dean and Stark Apparatus, magnetic stirrer bar and reflux condenser. The mixture was heated under reflux overnight and the solvent was removed in vacuo, affording 2-{3-methoxyphenyl}benzo-1,3,2-diazaborole as an off-white solid. The desired product was purified using a flash column and radial chromatography using Hexane: Ethyl acetate (8:2) as the eluent. Crystals suitable for X-ray difraction were grown by slow evaporation of a n-hexane:dicloromethane (6:4) solution.

Refinement top

All non-hydrogen atoms were located in the difference Fourier map and refined anisotropically. The positions of all hydrogen atoms were calculated using the standard riding model of SHELXL97. with C—H(aromatic) distances of 0.93 Å and Uiso = 1.2 Ueq, and CH(methyl) distances of 0.96 Å and Uiso = 1.5 Ueq. The amine hydrogen atoms were located in the difference Fourier map and allowed to refine isotropically. In the absence of significant anomalous scattering, Friedel pairs were merged.

Structure description top

Molecular compounds functionalized with 1,3,2-diazaborolyl groups have received considerable attention and have been investigated for their optical, electronic and ion sensing abilities, making them possible candidates for use in advanced material science (Schwedler et al.,2011). Rapid developments in the chemistry of 1,3,2-diazaborolyl containing compounds, due to their photoluminescence characteristics and unusual stability, have been observed in recent years. Unlike most triarylborane compounds which require dimesitylborolyl moieties for the enhancement of their stability, 2-arylbenzo-1,3,2-diazaborole compounds have been reported to be water and air stable without any additional dimesityl groups (Weber et al., 2009). To gain insight into the intriguing characteristics exhibited by these compounds, we (Sithebe et al., 2011) and other researchers (Maruyama et al., 2002 and Weber et al. 2011) have directed our reseach focus towards the investigation of the photophysical studies as well as the determination of the crystal structures of 1,3,2-benzodiazaborolyl compounds.

The molecule features a 1,3,2-benzodiazaborolyl backbone with a five-membered diazaborole ring substituted with hydrogen atoms at the 1- and 3-positions, and a 3-methoxyphenyl ring at the 2-position. The 1,3,2-benzodiazaborolyl backbone of the molecule is essentially planar, however, the 3-methoxyphenyl ring at the 2-position, is rotated out of plane with a dihedral angle of 21.5 (1)°. The two N—B bonds are approximately equal (averaged to 1.433 (2) Å). The N1—B—N2 bond angle is 105.2 (1)°, the N1—B—C1 and N2—B—C1 bond angles are slighly different, measuring 125.4 (1)° and 129.3 (1)°, respectively (refer to Figure 1 for the atom numbering scheme). These bond lengths and angles compare favourably to those of previously reported diazaborolyl systems (Weber et al., 2009). The molecules are linked through hydrogen bonding forming infinite, one-dimensional chains co-linear with the a-axis (Figure 2). The amine NH acts as the hydrogen bond donor and the etheryl oxygen atom the H-bond acceptor. The hydrogen bond lengths and bond angles are summarized in Table 1.

For the synthesis of the title compound, see: Sithebe et al. (2011); Weber et al. (2009, 2011). For related derivatives as well as their photoluminiscence studies, see: Weber et al. (2010); Maruyama & Kawanishi (2002). For structures of related compounds, see: Slabber et al. (2011); Akerman et al. (2011). For applications of 1,3,2-diazaborolyl compounds, see: Schwedler et al. (2011).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and POV-RAY (Cason et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of (1) at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding interactions in (1), shown as dashed lines, viewed down the b-axis.
2-(3-Methoxyphenyl)-1,3-dihydro-1,3,2-benzodiazaborole top
Crystal data top
C13H13BN2OF(000) = 472
Mr = 224.06Dx = 1.310 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1939 reflections
a = 7.549 (5) Åθ = 3.2–32.1°
b = 12.230 (5) ŵ = 0.08 mm1
c = 12.308 (5) ÅT = 110 K
V = 1136.3 (10) Å3Needle, colourless
Z = 40.50 × 0.40 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2125 independent reflections
Radiation source: fine-focus sealed tube1939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scans at fixed θ anglesθmax = 32.1°, θmin = 3.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 117
Tmin = 0.960, Tmax = 0.968k = 1718
11586 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0725P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2125 reflectionsΔρmax = 0.32 e Å3
164 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (6)
Crystal data top
C13H13BN2OV = 1136.3 (10) Å3
Mr = 224.06Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.549 (5) ŵ = 0.08 mm1
b = 12.230 (5) ÅT = 110 K
c = 12.308 (5) Å0.50 × 0.40 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2125 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1939 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.968Rint = 0.031
11586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
2125 reflectionsΔρmin = 0.20 e Å3
164 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0010.68887 (13)0.34747 (7)1.11670 (7)0.0238 (2)
N20.86812 (15)0.17066 (8)0.71418 (8)0.0184 (2)
N10.69146 (14)0.27984 (8)0.61068 (8)0.0187 (2)
C80.85853 (16)0.12575 (9)0.61012 (9)0.0171 (2)
C20.73726 (16)0.30830 (10)0.92377 (10)0.0179 (2)
H20.78480.23800.93880.022*
C60.65474 (16)0.44957 (10)0.79625 (10)0.0217 (2)
H60.64490.47560.72380.026*
C110.78716 (17)0.07371 (10)0.39528 (10)0.0208 (2)
H110.76340.05440.32190.025*
C130.74943 (16)0.19384 (9)0.54613 (9)0.0168 (2)
C120.71345 (16)0.16880 (10)0.43846 (9)0.0194 (2)
H120.64070.21510.39540.023*
C10.72155 (16)0.34445 (10)0.81557 (9)0.0181 (2)
C90.93295 (17)0.03188 (10)0.56632 (11)0.0203 (2)
H91.00750.01390.60870.024*
C40.61570 (17)0.47951 (10)0.98828 (10)0.0228 (3)
H40.57890.52491.04670.027*
C30.68309 (17)0.37557 (10)1.00871 (10)0.0193 (2)
C50.60273 (18)0.51624 (10)0.88201 (11)0.0241 (3)
H50.55800.58740.86770.029*
C100.89523 (17)0.00661 (10)0.45839 (10)0.0213 (2)
H100.94420.05770.42720.026*
C70.7662 (2)0.24408 (11)1.14365 (11)0.0296 (3)
H7A0.69470.18521.11220.044*
H7B0.77000.23581.22280.044*
H7C0.88680.24051.11440.044*
B10.76235 (18)0.26817 (10)0.71788 (10)0.0179 (2)
H1020.940 (3)0.1411 (15)0.7630 (17)0.042 (5)*
H1010.625 (3)0.3271 (17)0.5846 (18)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0010.0320 (5)0.0242 (4)0.0153 (4)0.0015 (4)0.0037 (4)0.0013 (3)
N20.0218 (5)0.0184 (4)0.0150 (4)0.0016 (4)0.0021 (4)0.0006 (3)
N10.0233 (5)0.0172 (4)0.0156 (4)0.0040 (4)0.0009 (4)0.0001 (4)
C80.0195 (5)0.0166 (5)0.0152 (5)0.0009 (4)0.0005 (4)0.0018 (4)
C20.0197 (5)0.0175 (5)0.0166 (5)0.0002 (4)0.0004 (4)0.0011 (4)
C60.0237 (6)0.0211 (5)0.0202 (5)0.0015 (5)0.0015 (5)0.0007 (4)
C110.0239 (6)0.0214 (5)0.0172 (5)0.0029 (5)0.0019 (5)0.0017 (4)
C130.0196 (5)0.0158 (4)0.0150 (5)0.0004 (4)0.0013 (4)0.0009 (4)
C120.0224 (5)0.0207 (5)0.0151 (5)0.0000 (4)0.0003 (4)0.0006 (4)
C10.0188 (5)0.0185 (5)0.0170 (5)0.0006 (4)0.0008 (4)0.0006 (4)
C90.0219 (5)0.0182 (5)0.0207 (5)0.0018 (4)0.0015 (5)0.0018 (4)
C40.0243 (6)0.0220 (6)0.0221 (6)0.0024 (5)0.0021 (5)0.0036 (4)
C30.0202 (5)0.0210 (5)0.0166 (5)0.0022 (4)0.0010 (4)0.0020 (4)
C50.0265 (6)0.0194 (5)0.0265 (6)0.0047 (5)0.0011 (5)0.0010 (5)
C100.0242 (6)0.0180 (5)0.0219 (5)0.0004 (5)0.0041 (5)0.0015 (4)
C70.0382 (7)0.0313 (7)0.0195 (5)0.0066 (6)0.0031 (5)0.0052 (5)
B10.0202 (5)0.0178 (5)0.0157 (5)0.0005 (5)0.0001 (5)0.0003 (4)
Geometric parameters (Å, º) top
O001—C31.3735 (15)C11—C101.3937 (18)
O001—C71.4316 (17)C11—C121.3945 (17)
N2—C81.3954 (15)C11—H110.9500
N2—B11.4359 (17)C13—C121.3870 (16)
N2—H1020.89 (2)C12—H120.9500
N1—C131.3888 (15)C1—B11.5527 (18)
N1—B11.4309 (17)C9—C101.3933 (19)
N1—H1010.83 (2)C9—H90.9500
C8—C91.3872 (17)C4—C51.3864 (19)
C8—C131.4115 (16)C4—C31.3921 (18)
C2—C31.3918 (16)C4—H40.9500
C2—C11.4081 (17)C5—H50.9500
C2—H20.9500C10—H100.9500
C6—C51.3903 (18)C7—H7A0.9800
C6—C11.4013 (17)C7—H7B0.9800
C6—H60.9500C7—H7C0.9800
C3—O001—C7117.27 (10)C6—C1—B1119.42 (11)
C8—N2—B1109.10 (10)C2—C1—B1121.80 (11)
C8—N2—H102119.5 (12)C8—C9—C10118.12 (12)
B1—N2—H102131.1 (12)C8—C9—H9120.9
C13—N1—B1109.52 (10)C10—C9—H9120.9
C13—N1—H101119.8 (15)C5—C4—C3119.48 (12)
B1—N1—H101130.7 (15)C5—C4—H4120.3
C9—C8—N2131.41 (11)C3—C4—H4120.3
C9—C8—C13120.51 (11)O001—C3—C2124.73 (11)
N2—C8—C13108.07 (10)O001—C3—C4114.51 (11)
C3—C2—C1120.01 (11)C2—C3—C4120.76 (12)
C3—C2—H2120.0C4—C5—C6120.41 (12)
C1—C2—H2120.0C4—C5—H5119.8
C5—C6—C1120.72 (12)C6—C5—H5119.8
C5—C6—H6119.6C9—C10—C11121.36 (12)
C1—C6—H6119.6C9—C10—H10119.3
C10—C11—C12120.81 (12)C11—C10—H10119.3
C10—C11—H11119.6O001—C7—H7A109.5
C12—C11—H11119.6O001—C7—H7B109.5
C12—C13—N1130.70 (11)H7A—C7—H7B109.5
C12—C13—C8121.14 (11)O001—C7—H7C109.5
N1—C13—C8108.15 (10)H7A—C7—H7C109.5
C13—C12—C11118.05 (12)H7B—C7—H7C109.5
C13—C12—H12121.0N1—B1—N2105.16 (10)
C11—C12—H12121.0N1—B1—C1125.44 (11)
C6—C1—C2118.61 (11)N2—B1—C1129.33 (11)
B1—N2—C8—C9178.52 (13)C7—O001—C3—C4176.53 (12)
B1—N2—C8—C130.68 (13)C1—C2—C3—O001178.47 (12)
B1—N1—C13—C12178.50 (13)C1—C2—C3—C41.02 (18)
B1—N1—C13—C80.17 (14)C5—C4—C3—O001179.61 (12)
C9—C8—C13—C120.17 (18)C5—C4—C3—C20.07 (19)
N2—C8—C13—C12179.14 (11)C3—C4—C5—C60.7 (2)
C9—C8—C13—N1178.99 (10)C1—C6—C5—C40.2 (2)
N2—C8—C13—N10.32 (13)C8—C9—C10—C110.53 (18)
N1—C13—C12—C11178.02 (12)C12—C11—C10—C90.14 (19)
C8—C13—C12—C110.50 (18)C13—N1—B1—N20.57 (13)
C10—C11—C12—C130.65 (18)C13—N1—B1—C1176.89 (11)
C5—C6—C1—C20.88 (19)C8—N2—B1—N10.76 (13)
C5—C6—C1—B1174.46 (12)C8—N2—B1—C1176.55 (12)
C3—C2—C1—C61.48 (18)C6—C1—B1—N119.86 (19)
C3—C2—C1—B1173.75 (12)C2—C1—B1—N1155.33 (12)
N2—C8—C9—C10178.44 (12)C6—C1—B1—N2163.32 (12)
C13—C8—C9—C100.68 (17)C2—C1—B1—N221.5 (2)
C7—O001—C3—C23.95 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H102···O001i0.89 (2)2.40 (2)3.201 (2)151 (2)
Symmetry code: (i) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC13H13BN2O
Mr224.06
Crystal system, space groupOrthorhombic, P212121
Temperature (K)110
a, b, c (Å)7.549 (5), 12.230 (5), 12.308 (5)
V3)1136.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.960, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
11586, 2125, 1939
Rint0.031
(sin θ/λ)max1)0.748
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.05
No. of reflections2125
No. of parameters164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and POV-RAY (Cason et al., 2002), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H102···O001i0.89 (2)2.40 (2)3.201 (2)151 (2)
Symmetry code: (i) x+1/2, y+1/2, z+2.
 

Acknowledgements

We gratefully acknowledge the National Research Foundation and the University of KwaZulu Natal for financial assistance.

References

First citationAkerman, M. P., Robinson, R. S. & Slabber, C. A. (2011). Acta Cryst. E67, o1873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCason, C. J. (2002). POV-RAY for Windows. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaruyama, S. & Kawanishi, Y. (2002). J. Mater. Chem. 12, 2245-2249.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSchwedler, S., Eickhoff, D., Brockhinke, R., Cherian, D., Weber, L. & Brockhinke, A. (2011). Phys. Chem. Chem. Phys. 13, 9301–9310.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSithebe, S., Hadebe, S. W. & Robinson, S. R. (2011). Tetrahedron, 67, 4277–4282.  Google Scholar
First citationSlabber, C. A., Akerman, M. P. & Robinson, R. S. (2011). Acta Cryst. E67, o1338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeber, L., Halama, J., Bohling, L., Chrostowska, A., Dargelos, A., Stammler, H.-G. & Neumann, B. (2011). Eur. J. Inorg. Chem. pp. 3091–3101.  Web of Science CSD CrossRef Google Scholar
First citationWeber, L., Halama, J., Werner, V., Hanke, K., Bohling, L., Chrostowska, A., Maciejczyk, M., Raza, A.-L., Stammler, H.-G. & Neumann, B. (2010). Eur. J. Inorg. Chem. pp. 5416–5425.  Web of Science CSD CrossRef Google Scholar
First citationWeber, L., Werner, V., Fox, A. M., Marder, B. T., Schwedler, S., Brockhinke, A., Stammler, H.-G. & Neumann, B. (2009). Dalton Trans. pp. 1339–1351.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds