organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{2-[4-(4-Nitro­phen­yl)piperazin-1-yl]eth­yl}-4-aza-1-azoniabi­cyclo­[2.2.2]octane iodide

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40014 JY, Finland
*Correspondence e-mail: manu.lahtinen@jyu.fi

(Received 16 May 2012; accepted 29 May 2012; online 2 June 2012)

The title compound, C18H28N5O2+·I, was observed as a main product in an intended 1:1 reaction between 4-iodo­nitro­benzene and 1,4-diaza­bicyclo­[2.2.2]octane (DABCO). In the reaction, DABCO undergoes a ring opening to yield a quaternary salt of DABCO and 1-ethyl-4-(4-nitro­phen­yl)piperazine with an iodide anion. The crystal structure determination was carried out as no crystal structure had been previously reported in the investigations describing the corresponding reaction with 4-chloro­nitro­benze. Indeed, the crystal structure of the title compound confirms the mol­ecular composition proposed earlier for the analogous chloride salt. The cation conformation is similar to the previously reported dinitro analogue 1-{2-[4-(2,4-dinitro­phen­yl)piperazin-1-yl]eth­yl}-4-aza-1-azoniabicyclo­[2.2.2]octane chloride [Clegg et al. (2004[Clegg, W., Golding, B. T., Harrington, R. W. & Scott, R. (2004). Acta Cryst. E60, o291-o293.]). Acta Cryst. E60, o291–o293]. The crystal packing is dominated by cation⋯I inter­actions in addition to weak inter­molecular C—H⋯O2N and C—H⋯N inter­actions between the cations.

Related literature

For a possible route of synthesis for the chloride salt of the title compound, see: Ross & Finkelstein (1963[Ross, S. & Finkelstein, M. (1963). J. Am. Chem. Soc. 85, 2603-2607.]). For a related structure, see: Clegg et al. (2004[Clegg, W., Golding, B. T., Harrington, R. W. & Scott, R. (2004). Acta Cryst. E60, o291-o293.]). For the synthesis of the intended 1:1 product of DABCO and 4-iodo­nitro­benzene, see Ibata et al. (1987[Ibata, T., Isogame, Y. & Toyoda, J. (1987). Chem. Lett. 16, 1187-1190.]).

[Scheme 1]

Experimental

Crystal data
  • C18H28N5O2+·I

  • Mr = 473.35

  • Monoclinic, P 21 /c

  • a = 9.758 (1) Å

  • b = 10.702 (1) Å

  • c = 20.187 (2) Å

  • β = 110.124 (3)°

  • V = 1979.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 123 K

  • 0.40 × 0.24 × 0.16 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer with an APEXII detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.617, Tmax = 0.746

  • 12011 measured reflections

  • 3855 independent reflections

  • 3473 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.060

  • S = 1.10

  • 3855 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.99 2.52 3.051 (3) 113
C5—H5A⋯O2ii 0.99 2.47 3.414 (3) 160
C6—H6B⋯O1ii 0.99 2.59 3.141 (3) 116
C14—H14⋯I1i 0.95 3.02 3.914 (3) 158
C17—H17⋯O2iii 0.95 2.48 3.412 (3) 168
C18—H18⋯N1iv 0.95 2.45 3.384 (3) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al. 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The reaction between DABCO and 4-chloronitrobenzene has first been reported by Ross & Finkelstein (1963). The product obtained was identified as the chloride salt analogue of the title compound, 1-(4-nitrophenyl)-4-aza-1-azoniabicyclo[2.2.2]octane chloride, instead of the expected 1:1 product. We were interested in the synthesis of the elusive 1:1 product for its potential applications in supramolecular chemistry based on halogen bonding interactions. We tried to use 4-iodonitrobenzene in order to obtain the 1:1 product. Regardless of the milder conditions (THF at reflux for 48 h) and a different halobenzene, the corresponding reaction proceeds according to the aforementioned route yielding an analogous iodide salt, 1-(4-nitrophenyl)-4-aza-1-azoniabicyclo[2.2.2]octane iodide, to the compound described above. Nonetheless, despite the failure in the intended synthesis, the crystal structure of the title compound provides a crystallographic evidence for the previously described reaction between DABCO and a 4-halonitrobenzene. Furthermore, our investigation suggests that changing the halogen atom in the 4-halonitrobenzene from chloride to iodine has evidently no effect in the outcome of the reaction (except that of different anion). A possible route for the anticipated 1:1 product is described by Ibata et al. (1987).

The cation of the title salt lies in a conformation similar to the previously reported dinitrobenzene analogue (Clegg et al., 2004). The labeling scheme is shown in Fig. 1. The intermolecular interactions in the crystal structure comprise mostly of weak C—H···O2N interactions between DABCO –CH2 groups and the –NO2 groups [C···O distances range from 3.051 (3) to 3.414 (3)]. These short intermolecular contacts are most likely due to the attractive interactions between highly electronegative O atoms in the nitro groups and electropositive H atoms near the quaternary ammonium center. These are accompanied by presumably weaker aryl –CH···O2N [d(C17···O2) = 3.412 (3)], aryl –CH···I- [d(C14···I1) = 3.914 (3)] and aryl –CH···N (DABCO) [d(C18···N1) = 3.412 (3)] interactions (Fig. 2). The ordering of the ion pairs are shown in Fig. 3.

Related literature top

For a possible route of synthesis for the chloride salt of the title compound, see: Ross & Finkelstein (1963). For a related structure, see: Clegg et al. (2004). For the synthesis of the intended 1:1 product of DABCO and 4-iodonitrobenzene, see Ibata et al. (1987).

Experimental top

The title compound was obtained as a major product in a reaction between DABCO (2.0 mmol) and 4-iodonitrobenzene (2.0 mmol) carried out in THF (48 h at reflux). After the removal of solvent the yellow oily residue was precipitated with dichloromethane, filtered and recrystallized from water/acetone mixture to yield a batch of yellow crystals of the title compound.

Refinement top

All H atoms were refined as riding atoms with fixed isotropic displacement parameters 1.2 times larger than corresponding host carbon atoms. C—H distances were refined as 0.95 Å for aromatic and 0.99 Å for methylene H atoms. All non-hydrogen atoms were refined anisotropically.

Structure description top

The reaction between DABCO and 4-chloronitrobenzene has first been reported by Ross & Finkelstein (1963). The product obtained was identified as the chloride salt analogue of the title compound, 1-(4-nitrophenyl)-4-aza-1-azoniabicyclo[2.2.2]octane chloride, instead of the expected 1:1 product. We were interested in the synthesis of the elusive 1:1 product for its potential applications in supramolecular chemistry based on halogen bonding interactions. We tried to use 4-iodonitrobenzene in order to obtain the 1:1 product. Regardless of the milder conditions (THF at reflux for 48 h) and a different halobenzene, the corresponding reaction proceeds according to the aforementioned route yielding an analogous iodide salt, 1-(4-nitrophenyl)-4-aza-1-azoniabicyclo[2.2.2]octane iodide, to the compound described above. Nonetheless, despite the failure in the intended synthesis, the crystal structure of the title compound provides a crystallographic evidence for the previously described reaction between DABCO and a 4-halonitrobenzene. Furthermore, our investigation suggests that changing the halogen atom in the 4-halonitrobenzene from chloride to iodine has evidently no effect in the outcome of the reaction (except that of different anion). A possible route for the anticipated 1:1 product is described by Ibata et al. (1987).

The cation of the title salt lies in a conformation similar to the previously reported dinitrobenzene analogue (Clegg et al., 2004). The labeling scheme is shown in Fig. 1. The intermolecular interactions in the crystal structure comprise mostly of weak C—H···O2N interactions between DABCO –CH2 groups and the –NO2 groups [C···O distances range from 3.051 (3) to 3.414 (3)]. These short intermolecular contacts are most likely due to the attractive interactions between highly electronegative O atoms in the nitro groups and electropositive H atoms near the quaternary ammonium center. These are accompanied by presumably weaker aryl –CH···O2N [d(C17···O2) = 3.412 (3)], aryl –CH···I- [d(C14···I1) = 3.914 (3)] and aryl –CH···N (DABCO) [d(C18···N1) = 3.412 (3)] interactions (Fig. 2). The ordering of the ion pairs are shown in Fig. 3.

For a possible route of synthesis for the chloride salt of the title compound, see: Ross & Finkelstein (1963). For a related structure, see: Clegg et al. (2004). For the synthesis of the intended 1:1 product of DABCO and 4-iodonitrobenzene, see Ibata et al. (1987).

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: Mercury (Macrae et al. 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. Asymmetric unit and labeling scheme of the title compound. Ellipsoids are presented at the 50% probability level.
[Figure 2] Fig. 2. Anion-cation and cation-cation interactions viewed along the crystallographic a-axis. Ellipsoids are presented at the 50% probability level.
[Figure 3] Fig. 3. Packing of the ion pairs viewed along the crystallographic b-axis. The hydrogen atoms have been omitted for clarity.
1-{2-[4-(4-Nitrophenyl)piperazin-1-yl]ethyl}-4-aza-1-azoniabicyclo[2.2.2]octane iodide top
Crystal data top
C18H28N5O2+·IF(000) = 960
Mr = 473.35Dx = 1.588 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 489 reflections
a = 9.758 (1) Åθ = 1.0–26.0°
b = 10.702 (1) ŵ = 1.64 mm1
c = 20.187 (2) ÅT = 123 K
β = 110.124 (3)°Block, yellow
V = 1979.4 (3) Å30.40 × 0.24 × 0.16 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer with ApexII detector
3855 independent reflections
Radiation source: fine-focus sealed tube3473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 2.2°
φ and ω scansh = 1210
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
k = 1213
Tmin = 0.617, Tmax = 0.746l = 2424
12011 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.P)2 + 2.7637P]
where P = (Fo2 + 2Fc2)/3
3855 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C18H28N5O2+·IV = 1979.4 (3) Å3
Mr = 473.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.758 (1) ŵ = 1.64 mm1
b = 10.702 (1) ÅT = 123 K
c = 20.187 (2) Å0.40 × 0.24 × 0.16 mm
β = 110.124 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer with ApexII detector
3855 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
3473 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.746Rint = 0.032
12011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.10Δρmax = 0.48 e Å3
3855 reflectionsΔρmin = 0.44 e Å3
235 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8248 (3)0.5722 (3)0.22628 (15)0.0253 (6)
H1A0.78380.65320.23410.030*
H1B0.90680.58950.20940.030*
C20.8816 (3)0.4998 (2)0.29637 (14)0.0191 (6)
H2A0.98910.50780.31740.023*
H2B0.83810.53390.33020.023*
C30.6055 (3)0.4544 (3)0.20373 (14)0.0212 (6)
H3A0.52010.41840.16630.025*
H3B0.57080.52500.22550.025*
C40.6750 (3)0.3538 (2)0.26039 (14)0.0180 (6)
H4A0.64540.36730.30210.022*
H4B0.64230.26950.24120.022*
C50.7831 (3)0.3924 (3)0.15276 (14)0.0234 (6)
H5A0.84250.42130.12470.028*
H5B0.70790.33430.12320.028*
C60.8814 (3)0.3235 (2)0.21871 (13)0.0178 (6)
H6A0.86820.23210.21190.021*
H6B0.98510.34360.22730.021*
C70.9208 (3)0.2816 (2)0.34290 (14)0.0199 (6)
H7A1.02380.27590.34550.024*
H7B0.87870.19650.33320.024*
C80.9188 (3)0.3226 (3)0.41463 (14)0.0215 (6)
H8A0.98510.26750.45110.026*
H8B0.95830.40860.42390.026*
C90.7828 (3)0.3793 (2)0.48911 (14)0.0210 (6)
H9A0.82140.46530.49120.025*
H9B0.85020.33130.52900.025*
C100.6337 (3)0.3833 (2)0.49568 (15)0.0218 (6)
H10A0.64160.42000.54190.026*
H10B0.56920.43780.45820.026*
C110.7208 (3)0.1927 (2)0.42183 (15)0.0219 (6)
H11A0.78760.14560.46230.026*
H11B0.71860.15030.37790.026*
C120.5692 (3)0.1928 (2)0.42620 (14)0.0205 (6)
H12A0.50060.23410.38390.025*
H12B0.53610.10560.42720.025*
C130.4545 (3)0.2381 (2)0.51467 (13)0.0163 (5)
C140.4455 (3)0.3041 (2)0.57372 (13)0.0172 (5)
H140.51650.36620.59540.021*
C150.3362 (3)0.2803 (2)0.60037 (14)0.0171 (5)
H150.33080.32650.63960.021*
C160.2337 (3)0.1884 (2)0.56971 (13)0.0158 (5)
C170.2390 (3)0.1219 (2)0.51154 (13)0.0176 (6)
H170.16820.05910.49100.021*
C180.3463 (3)0.1465 (2)0.48361 (14)0.0179 (6)
H180.34810.10190.44320.021*
N10.7115 (2)0.5005 (2)0.17234 (12)0.0215 (5)
N20.8396 (2)0.36461 (18)0.28111 (11)0.0152 (4)
N30.7755 (2)0.32088 (19)0.42256 (11)0.0167 (5)
N40.5684 (2)0.25860 (19)0.48977 (11)0.0174 (5)
N50.1165 (2)0.1644 (2)0.59637 (11)0.0189 (5)
O10.0900 (2)0.24296 (17)0.63502 (10)0.0241 (4)
O20.0460 (2)0.06682 (18)0.57861 (11)0.0287 (5)
I10.289527 (19)0.471091 (16)0.287677 (10)0.02555 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0279 (16)0.0193 (13)0.0288 (16)0.0030 (12)0.0102 (13)0.0036 (12)
C20.0184 (14)0.0169 (12)0.0216 (15)0.0027 (11)0.0065 (12)0.0036 (11)
C30.0163 (14)0.0280 (14)0.0207 (15)0.0031 (11)0.0081 (12)0.0045 (11)
C40.0124 (13)0.0227 (13)0.0201 (14)0.0022 (10)0.0069 (11)0.0016 (11)
C50.0238 (15)0.0323 (15)0.0174 (14)0.0008 (12)0.0115 (12)0.0004 (12)
C60.0195 (14)0.0218 (13)0.0170 (14)0.0006 (11)0.0123 (12)0.0034 (10)
C70.0156 (14)0.0217 (13)0.0235 (15)0.0046 (11)0.0083 (12)0.0063 (11)
C80.0169 (14)0.0284 (15)0.0185 (14)0.0022 (11)0.0051 (12)0.0038 (11)
C90.0214 (15)0.0242 (14)0.0178 (14)0.0051 (11)0.0075 (12)0.0018 (11)
C100.0261 (15)0.0172 (13)0.0259 (15)0.0026 (11)0.0140 (13)0.0040 (11)
C110.0282 (16)0.0191 (13)0.0235 (15)0.0021 (11)0.0154 (13)0.0010 (11)
C120.0274 (16)0.0176 (13)0.0200 (15)0.0039 (11)0.0127 (12)0.0039 (11)
C130.0186 (14)0.0162 (12)0.0152 (13)0.0039 (10)0.0073 (11)0.0023 (10)
C140.0188 (14)0.0158 (12)0.0173 (14)0.0018 (10)0.0067 (11)0.0033 (10)
C150.0200 (14)0.0176 (13)0.0160 (13)0.0039 (11)0.0091 (11)0.0024 (10)
C160.0147 (13)0.0190 (13)0.0147 (13)0.0019 (10)0.0062 (11)0.0025 (10)
C170.0206 (14)0.0135 (12)0.0187 (14)0.0003 (10)0.0066 (12)0.0018 (10)
C180.0210 (14)0.0177 (13)0.0147 (13)0.0019 (11)0.0060 (11)0.0029 (10)
N10.0206 (12)0.0265 (12)0.0198 (13)0.0000 (10)0.0101 (10)0.0049 (10)
N20.0148 (11)0.0148 (10)0.0190 (12)0.0001 (8)0.0098 (9)0.0011 (9)
N30.0164 (12)0.0188 (11)0.0164 (12)0.0005 (9)0.0076 (9)0.0003 (9)
N40.0216 (12)0.0156 (10)0.0184 (12)0.0019 (9)0.0115 (10)0.0033 (9)
N50.0190 (12)0.0227 (12)0.0166 (12)0.0017 (9)0.0080 (10)0.0004 (9)
O10.0269 (11)0.0262 (10)0.0244 (11)0.0014 (8)0.0154 (9)0.0056 (8)
O20.0246 (11)0.0314 (11)0.0348 (12)0.0116 (9)0.0161 (10)0.0109 (9)
I10.01937 (11)0.02237 (11)0.03199 (13)0.00198 (7)0.00509 (8)0.00562 (7)
Geometric parameters (Å, º) top
C1—N11.472 (4)C9—N31.461 (3)
C1—C21.539 (4)C9—C101.506 (4)
C1—H1A0.9900C9—H9A0.9900
C1—H1B0.9900C9—H9B0.9900
C2—N21.507 (3)C10—N41.466 (3)
C2—H2A0.9900C10—H10A0.9900
C2—H2B0.9900C10—H10B0.9900
C3—N11.472 (3)C11—N31.470 (3)
C3—C41.547 (4)C11—C121.511 (4)
C3—H3A0.9900C11—H11A0.9900
C3—H3B0.9900C11—H11B0.9900
C4—N21.519 (3)C12—N41.466 (3)
C4—H4A0.9900C12—H12A0.9900
C4—H4B0.9900C12—H12B0.9900
C5—N11.474 (3)C13—N41.386 (3)
C5—C61.535 (4)C13—C141.414 (3)
C5—H5A0.9900C13—C181.418 (4)
C5—H5B0.9900C14—C151.374 (4)
C6—N21.517 (3)C14—H140.9500
C6—H6A0.9900C15—C161.388 (4)
C6—H6B0.9900C15—H150.9500
C7—N21.515 (3)C16—C171.389 (4)
C7—C81.520 (4)C16—N51.444 (3)
C7—H7A0.9900C17—C181.375 (4)
C7—H7B0.9900C17—H170.9500
C8—N31.461 (3)C18—H180.9500
C8—H8A0.9900N5—O11.233 (3)
C8—H8B0.9900N5—O21.234 (3)
N1—C1—C2111.1 (2)N4—C10—C9111.9 (2)
N1—C1—H1A109.4N4—C10—H10A109.2
C2—C1—H1A109.4C9—C10—H10A109.2
N1—C1—H1B109.4N4—C10—H10B109.2
C2—C1—H1B109.4C9—C10—H10B109.2
H1A—C1—H1B108.0H10A—C10—H10B107.9
N2—C2—C1108.0 (2)N3—C11—C12111.0 (2)
N2—C2—H2A110.1N3—C11—H11A109.4
C1—C2—H2A110.1C12—C11—H11A109.4
N2—C2—H2B110.1N3—C11—H11B109.4
C1—C2—H2B110.1C12—C11—H11B109.4
H2A—C2—H2B108.4H11A—C11—H11B108.0
N1—C3—C4110.9 (2)N4—C12—C11110.6 (2)
N1—C3—H3A109.5N4—C12—H12A109.5
C4—C3—H3A109.5C11—C12—H12A109.5
N1—C3—H3B109.5N4—C12—H12B109.5
C4—C3—H3B109.5C11—C12—H12B109.5
H3A—C3—H3B108.0H12A—C12—H12B108.1
N2—C4—C3107.7 (2)N4—C13—C14121.1 (2)
N2—C4—H4A110.2N4—C13—C18121.1 (2)
C3—C4—H4A110.2C14—C13—C18117.7 (2)
N2—C4—H4B110.2C15—C14—C13121.2 (2)
C3—C4—H4B110.2C15—C14—H14119.4
H4A—C4—H4B108.5C13—C14—H14119.4
N1—C5—C6110.9 (2)C14—C15—C16119.6 (2)
N1—C5—H5A109.5C14—C15—H15120.2
C6—C5—H5A109.5C16—C15—H15120.2
N1—C5—H5B109.5C15—C16—C17120.6 (2)
C6—C5—H5B109.5C15—C16—N5120.1 (2)
H5A—C5—H5B108.0C17—C16—N5119.3 (2)
N2—C6—C5108.3 (2)C18—C17—C16120.2 (2)
N2—C6—H6A110.0C18—C17—H17119.9
C5—C6—H6A110.0C16—C17—H17119.9
N2—C6—H6B110.0C17—C18—C13120.5 (2)
C5—C6—H6B110.0C17—C18—H18119.8
H6A—C6—H6B108.4C13—C18—H18119.8
N2—C7—C8116.1 (2)C3—N1—C1108.4 (2)
N2—C7—H7A108.3C3—N1—C5108.7 (2)
C8—C7—H7A108.3C1—N1—C5107.6 (2)
N2—C7—H7B108.3C2—N2—C7111.5 (2)
C8—C7—H7B108.3C2—N2—C6108.47 (19)
H7A—C7—H7B107.4C7—N2—C6107.45 (19)
N3—C8—C7115.3 (2)C2—N2—C4108.49 (19)
N3—C8—H8A108.4C7—N2—C4112.71 (19)
C7—C8—H8A108.4C6—N2—C4108.07 (19)
N3—C8—H8B108.4C8—N3—C9110.5 (2)
C7—C8—H8B108.4C8—N3—C11111.7 (2)
H8A—C8—H8B107.5C9—N3—C11108.1 (2)
N3—C9—C10110.5 (2)C13—N4—C10119.7 (2)
N3—C9—H9A109.6C13—N4—C12119.2 (2)
C10—C9—H9A109.6C10—N4—C12112.1 (2)
N3—C9—H9B109.6O1—N5—O2122.9 (2)
C10—C9—H9B109.6O1—N5—C16118.7 (2)
H9A—C9—H9B108.1O2—N5—C16118.4 (2)
N1—C1—C2—N217.9 (3)C8—C7—N2—C6168.3 (2)
N1—C3—C4—N217.4 (3)C8—C7—N2—C472.8 (3)
N1—C5—C6—N216.5 (3)C5—C6—N2—C267.9 (3)
N2—C7—C8—N365.3 (3)C5—C6—N2—C7171.4 (2)
N3—C9—C10—N456.7 (3)C5—C6—N2—C449.5 (3)
N3—C11—C12—N457.3 (3)C3—C4—N2—C248.9 (3)
N4—C13—C14—C15177.3 (2)C3—C4—N2—C7172.9 (2)
C18—C13—C14—C150.2 (4)C3—C4—N2—C668.5 (2)
C13—C14—C15—C161.1 (4)C7—C8—N3—C9171.5 (2)
C14—C15—C16—C171.2 (4)C7—C8—N3—C1168.1 (3)
C14—C15—C16—N5178.7 (2)C10—C9—N3—C8177.2 (2)
C15—C16—C17—C180.0 (4)C10—C9—N3—C1160.3 (3)
N5—C16—C17—C18177.5 (2)C12—C11—N3—C8177.0 (2)
C16—C17—C18—C131.3 (4)C12—C11—N3—C961.3 (3)
N4—C13—C18—C17176.0 (2)C14—C13—N4—C1032.4 (4)
C14—C13—C18—C171.4 (4)C18—C13—N4—C10150.2 (2)
C4—C3—N1—C168.6 (3)C14—C13—N4—C12176.9 (2)
C4—C3—N1—C548.1 (3)C18—C13—N4—C125.8 (4)
C2—C1—N1—C347.9 (3)C9—C10—N4—C13161.0 (2)
C2—C1—N1—C569.5 (3)C9—C10—N4—C1252.2 (3)
C6—C5—N1—C368.3 (3)C11—C12—N4—C13161.0 (2)
C6—C5—N1—C148.9 (3)C11—C12—N4—C1052.0 (3)
C1—C2—N2—C7166.4 (2)C15—C16—N5—O115.9 (3)
C1—C2—N2—C648.3 (3)C17—C16—N5—O1161.6 (2)
C1—C2—N2—C468.9 (3)C15—C16—N5—O2165.1 (2)
C8—C7—N2—C249.5 (3)C17—C16—N5—O217.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.992.523.051 (3)113
C5—H5A···O2ii0.992.473.414 (3)160
C6—H6B···O1ii0.992.593.141 (3)116
C14—H14···I1i0.953.023.914 (3)158
C17—H17···O2iii0.952.483.412 (3)168
C18—H18···N1iv0.952.453.384 (3)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z1/2; (iii) x, y, z+1; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H28N5O2+·I
Mr473.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)9.758 (1), 10.702 (1), 20.187 (2)
β (°) 110.124 (3)
V3)1979.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.40 × 0.24 × 0.16
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer with ApexII detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.617, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12011, 3855, 3473
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.060, 1.10
No. of reflections3855
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.44

Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), Mercury (Macrae et al. 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.992.523.051 (3)113.4
C5—H5A···O2ii0.992.473.414 (3)159.6
C6—H6B···O1ii0.992.593.141 (3)115.5
C14—H14···I1i0.953.023.914 (3)157.6
C17—H17···O2iii0.952.483.412 (3)167.6
C18—H18···N1iv0.952.453.384 (3)165.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z1/2; (iii) x, y, z+1; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors would like to thank the Inorganic Materials Chemistry Graduate Program for financial support.

References

First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Golding, B. T., Harrington, R. W. & Scott, R. (2004). Acta Cryst. E60, o291–o293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIbata, T., Isogame, Y. & Toyoda, J. (1987). Chem. Lett. 16, 1187–1190.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRoss, S. & Finkelstein, M. (1963). J. Am. Chem. Soc. 85, 2603–2607.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds