organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium 4,4-di­fluoro-1,3,2-di­thia­zetin-2-ide 1,1,3,3-tetra­oxide

aInstitut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany, and bInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@uni-duesseldorf.de

(Received 13 May 2012; accepted 27 May 2012; online 2 June 2012)

The asymmetric unit of the title compound, NH4+·CF2NO4S2, consists of two crystallographically independent ammonium cations and two 4,4-difluoro-1,3,2-dithia­zetin-2-ide 1,1,3,3-tetra­oxide anions all located in general positions. The S—C—S—N rings of both crystallographically independent anions are almost planar, with the N atom bent out of the plane by 9.82 (5) and 12.82 (4)°. The structure was determined from a crystal twinned by inversion, with refined components in the ratio 0.73 (4):0.27 (4). Anions and cations are connected via hydrogen bonds (N—H⋯O and N—H⋯N) to form a three-dimensional framework. This framework is composed of two different layers parallel to the ab plane, which are built by the ammonium cations on the one hand and the complex cyclic anions on the other.

Related literature

For general aspects of the chemistry of fluorinated sulfonimides and their salts, see: Antoniotti et al. (2010[Antoniotti, S., Dalla, V. & Duñach, E. (2010). Angew. Chem. Int. Ed. 49, 7860-7888.]); Foropoulos & DesMarteau (1984[Foropoulos, J. & DesMarteau, D. D. (1984). Inorg. Chem. 23, 3720-3723.]); Popov et al. (2011[Popov, V. V., Konstantinova, L. S. & Rakitin, O. A. (2011). Chem. Heterocycl. Compd, 47, 789-806.]); Vij et al. (1997[Vij, A., Kirchmeier, R. L., Shreeve, J. M. & Verma, R. D. (1997). Coord. Chem. Rev. 158, 413-432.]); DesMarteau (1995[DesMarteau, D. D. (1995). J. Fluorine Chem. 72, 203-208.]). For the synthesis and chemistry of the title compound, see: Jüschke et al. (1997[Jüschke, R., Henkel, G. & Sartori, P. (1997). Z. Naturforsch. Teil B, 52, 359-366.]). For related structures, see: DesMarteau et al. (1992[DesMarteau, D. D., Zuberi, S. S., Pennington, W. T. & Randolph, B. B. (1992). Eur. J. Solid State Inorg. Chem. 29, 777-789.]); Davidson et al. (2003[Davidson, M. G., Raithby, P. R., Johnson, A. L. & Bolton, P. D. (2003). Eur. J. Inorg. Chem. pp. 3445-3452.]). For similar layered ammonium salts, see: Reiss (2002[Reiss, G. J. (2002). Z. Kristallogr. 217, 550-556.]); Plizko & Meyer (1998[Plizko, C. & Meyer, G. (1998). Z. Kristallogr. New Cryst. Struct. 213, 475.]); Bucholz & Mattes (1988[Bucholz, N. & Mattes, R. (1988). Mater. Res. Bull. 23, 755-758.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·CF2NO4S2

  • Mr = 210.18

  • Orthorhombic, P n a 21

  • a = 11.28642 (13) Å

  • b = 10.98496 (14) Å

  • c = 10.58826 (12) Å

  • V = 1312.74 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.922, Tmax = 1.000

  • 25817 measured reflections

  • 3823 independent reflections

  • 3778 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.049

  • S = 1.00

  • 3823 reflections

  • 227 parameters

  • 9 restraints

  • All H-atom parameters refined

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1816 Friedel pairs

  • Flack parameter: 0.27 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1⋯O1 0.86 (1) 2.11 (2) 2.9044 (17) 153 (2)
N1A—H3⋯N1i 0.87 (1) 2.20 (1) 3.0395 (19) 165 (2)
N1A—H4⋯O8ii 0.85 (1) 2.13 (1) 2.9657 (17) 166 (2)
N2A—H5⋯O5 0.87 (1) 2.04 (1) 2.8985 (16) 175 (3)
N2A—H6⋯N2iii 0.86 (1) 2.20 (2) 3.0068 (18) 157 (3)
N2A—H7⋯O2iv 0.86 (1) 2.03 (2) 2.8467 (17) 158 (3)
N2A—H8⋯O7v 0.86 (1) 2.13 (2) 2.8832 (17) 146 (2)
Symmetry codes: (i) [-x+1, -y+2, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (v) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Cyclic sulfonimides of the general formula cyclo-[(F2C)n(SO2)2NH] and the corresponding anions are relevant because of a number of potential applications in various fields, e.g. electrochemistry and organic chemistry similar to the non-cyclic sulfonimides (RFSO2)2NH (Popov et al., 2011; Antoniotti et al., 2010; Vij et al., 1997; Jüschke et al., 1997; DesMarteau, 1995; DesMarteau et al., 1992; Foropoulos & DesMarteau, 1984). The synthesis of the ammonium salt of the smallest member of the cyclic sulfonimides was first reported almost 20 years ago starting from the disulfonylfluoride FO2SCF2SO2F and ammonia (Jüschke et al., 1997). The conversion of the ammonium salt to result in the potassium and rubidium salt with KOH and Rb2CO3, respectively and the crystal structures of these alkali metal salts were described, as well.

The title compound ammonium 4,4-difluoro-1,3,2-dithiazetin-2-ide 1,1,3,3-tetraoxide (Fig. 1) crystallizes in the orthorhombic non-centrosymmetric space group Pna21 with two independent cations and anions. The ammonium containing title structure is isotypical to the corresponding potassium salt whereas the rubidium salt crystallizes in the monoclinic space group P21/c (Jüschke et al., 1997). The S–C–S–N ring is almost planar and the nitrogen atom is bent out of the plane by 9.82 (5) and 12.82 (4)°, respectively in the two anions. The bond lengths and angles of the cyclic anion in its [NH4]+ and K+ salt are very similar, whereas slightly larger deviations are found for the Rb+ salt. Medium to weak hydrogen bonds connect the [NH4]+ cations and the cyclic anions to form a three-dimensional framework (Fig. 2). The cyclic anion accepts hydrogen bonds by the oxygen atoms of the SO2 group and by its amide nitrogen atom. The N—H···N hydrogen bonds are, according to the derived distances weaker than the N—H···O bonds. In general N—H···N hydrogen bonds are rare in structurally related salts. For example in the structure of the ammonium triflamide salt, [NH4][F3C—SO2—N—SO2—CF3] no hydrogen bond between the amide nitrogen and the ammonium counter cation are present (Davidson et al., 2003). The title structure can be understood as a layered material. The cations and anions are found in layers perpendicular to the c axis (Fig. 3). The ammonium cations appear ordered as a consequence of their hydrogen bonds. The resulting non-centrosymmetric, layered ammonium salt fits well in the general structural chemistry of ammonium salts with layered structures (e.g. Reiss, 2002; Plizko & Meyer, 1998; Bucholz & Mattes, 1988).

Related literature top

For general aspects on the chemistry of fluorinated sulfonimides and their salts, see: Antoniotti et al. (2010); Foropoulos & DesMarteau (1984); Popov et al. (2011); Vij et al. (1997); DesMarteau (1995). For the synthesis and chemistry of the title compound, see: Jüschke et al. (1997). For related structures, see: DesMarteau et al. (1992); Davidson et al. (2003). For similar layered ammonium salts, see: Reiss (2002); Plizko & Meyer (1998); Bucholz & Mattes (1988).

Experimental top

The title compound was synthesized according to a literature procedure (Jüschke et al., 1997).

Refinement top

In the final stages of refinement the Flack-parameter indicated inversion twinning. The refinement of the twin components (Flack, 1983; Sheldrick, 2008) gave a ratio of 0.73 (4): 0.27 (4). All hydrogen atom positions were identified in difference syntheses. In the final stages of refinement the hydrogen atom positions of these were refined with their N—H distances softly restrained to one common refined value (0.86 Å) with one common Uiso value for each group.

Structure description top

Cyclic sulfonimides of the general formula cyclo-[(F2C)n(SO2)2NH] and the corresponding anions are relevant because of a number of potential applications in various fields, e.g. electrochemistry and organic chemistry similar to the non-cyclic sulfonimides (RFSO2)2NH (Popov et al., 2011; Antoniotti et al., 2010; Vij et al., 1997; Jüschke et al., 1997; DesMarteau, 1995; DesMarteau et al., 1992; Foropoulos & DesMarteau, 1984). The synthesis of the ammonium salt of the smallest member of the cyclic sulfonimides was first reported almost 20 years ago starting from the disulfonylfluoride FO2SCF2SO2F and ammonia (Jüschke et al., 1997). The conversion of the ammonium salt to result in the potassium and rubidium salt with KOH and Rb2CO3, respectively and the crystal structures of these alkali metal salts were described, as well.

The title compound ammonium 4,4-difluoro-1,3,2-dithiazetin-2-ide 1,1,3,3-tetraoxide (Fig. 1) crystallizes in the orthorhombic non-centrosymmetric space group Pna21 with two independent cations and anions. The ammonium containing title structure is isotypical to the corresponding potassium salt whereas the rubidium salt crystallizes in the monoclinic space group P21/c (Jüschke et al., 1997). The S–C–S–N ring is almost planar and the nitrogen atom is bent out of the plane by 9.82 (5) and 12.82 (4)°, respectively in the two anions. The bond lengths and angles of the cyclic anion in its [NH4]+ and K+ salt are very similar, whereas slightly larger deviations are found for the Rb+ salt. Medium to weak hydrogen bonds connect the [NH4]+ cations and the cyclic anions to form a three-dimensional framework (Fig. 2). The cyclic anion accepts hydrogen bonds by the oxygen atoms of the SO2 group and by its amide nitrogen atom. The N—H···N hydrogen bonds are, according to the derived distances weaker than the N—H···O bonds. In general N—H···N hydrogen bonds are rare in structurally related salts. For example in the structure of the ammonium triflamide salt, [NH4][F3C—SO2—N—SO2—CF3] no hydrogen bond between the amide nitrogen and the ammonium counter cation are present (Davidson et al., 2003). The title structure can be understood as a layered material. The cations and anions are found in layers perpendicular to the c axis (Fig. 3). The ammonium cations appear ordered as a consequence of their hydrogen bonds. The resulting non-centrosymmetric, layered ammonium salt fits well in the general structural chemistry of ammonium salts with layered structures (e.g. Reiss, 2002; Plizko & Meyer, 1998; Bucholz & Mattes, 1988).

For general aspects on the chemistry of fluorinated sulfonimides and their salts, see: Antoniotti et al. (2010); Foropoulos & DesMarteau (1984); Popov et al. (2011); Vij et al. (1997); DesMarteau (1995). For the synthesis and chemistry of the title compound, see: Jüschke et al. (1997). For related structures, see: DesMarteau et al. (1992); Davidson et al. (2003). For similar layered ammonium salts, see: Reiss (2002); Plizko & Meyer (1998); Bucholz & Mattes (1988).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level; H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The asymmetric unit of the title compound positioned in the unit cell; H-atoms are drawn with arbitrary radii; hydrogen bonds shown as broken lines.
[Figure 3] Fig. 3. Layered structure of the title compound with view along [110] (ball and stick type model with arbitrary atom radii; fluorine atoms are omitted for clarity; hydrogen bonds shown as broken lines).
Ammonium 4,4-difluoro-1,3,2-dithiazetin-2-ide 1,1,3,3-tetraoxide top
Crystal data top
NH4+·CF2NO4S2F(000) = 848
Mr = 210.18Dx = 2.127 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 21999 reflections
a = 11.28642 (13) Åθ = 3.2–33.6°
b = 10.98496 (14) ŵ = 0.82 mm1
c = 10.58826 (12) ÅT = 100 K
V = 1312.74 (3) Å3Block, colourless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3823 independent reflections
Radiation source: fine-focus sealed tube3778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.2711 pixels mm-1θmax = 30.0°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.922, Tmax = 1.000l = 1414
25817 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019All H-atom parameters refined
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.027P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3823 reflectionsΔρmax = 0.42 e Å3
227 parametersΔρmin = 0.23 e Å3
9 restraintsAbsolute structure: Flack (1983), 1816 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.27 (4)
Crystal data top
NH4+·CF2NO4S2V = 1312.74 (3) Å3
Mr = 210.18Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 11.28642 (13) ŵ = 0.82 mm1
b = 10.98496 (14) ÅT = 100 K
c = 10.58826 (12) Å0.30 × 0.25 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3823 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3778 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 1.000Rint = 0.028
25817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019All H-atom parameters refined
wR(F2) = 0.049Δρmax = 0.42 e Å3
S = 1.00Δρmin = 0.23 e Å3
3823 reflectionsAbsolute structure: Flack (1983), 1816 Friedel pairs
227 parametersAbsolute structure parameter: 0.27 (4)
9 restraints
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48379 (3)0.87892 (3)0.65469 (3)0.00949 (7)
S20.35058 (3)0.70690 (3)0.59946 (3)0.00899 (7)
O10.51045 (10)0.92154 (11)0.77958 (11)0.0153 (2)
O20.53141 (10)0.94654 (10)0.55027 (12)0.0180 (2)
O30.28692 (10)0.63106 (11)0.68639 (12)0.0188 (2)
O40.32923 (10)0.68643 (11)0.46733 (11)0.0141 (2)
C10.51223 (12)0.71376 (13)0.63358 (13)0.0101 (3)
F10.58461 (8)0.68458 (9)0.53906 (9)0.01534 (18)
F20.54517 (8)0.65524 (9)0.73788 (9)0.01670 (18)
N10.34538 (11)0.84878 (11)0.63851 (13)0.0126 (2)
S30.48620 (3)0.31465 (3)0.55319 (3)0.00837 (6)
S40.67564 (3)0.29184 (3)0.67001 (3)0.00808 (6)
O60.40654 (9)0.22416 (10)0.50504 (11)0.0135 (2)
O50.45653 (9)0.43993 (9)0.52553 (10)0.0129 (2)
O70.73598 (9)0.40480 (10)0.69468 (10)0.0126 (2)
O80.73416 (9)0.18093 (10)0.70717 (11)0.0128 (2)
F30.47997 (8)0.20036 (8)0.77901 (9)0.01355 (17)
F40.49019 (8)0.39790 (9)0.79297 (9)0.01288 (17)
N20.62391 (11)0.28395 (11)0.52747 (12)0.0104 (2)
C20.51915 (12)0.30127 (13)0.72413 (14)0.0095 (2)
N1A0.72362 (11)0.99695 (12)0.91184 (12)0.0122 (2)
H10.6585 (14)0.9597 (19)0.895 (3)0.030 (3)*
H20.7758 (17)0.9398 (16)0.916 (2)0.030 (3)*
H30.715 (2)1.034 (2)0.9834 (15)0.030 (3)*
H40.739 (2)1.0475 (18)0.8532 (18)0.030 (3)*
N2A0.22203 (11)0.44588 (12)0.41410 (12)0.0132 (2)
H50.2919 (14)0.449 (2)0.448 (2)0.041 (4)*
H60.201 (2)0.3720 (13)0.426 (3)0.041 (4)*
H70.173 (2)0.496 (2)0.449 (2)0.041 (4)*
H80.230 (2)0.461 (2)0.3348 (12)0.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00951 (13)0.00917 (14)0.00979 (15)0.00032 (10)0.00095 (11)0.00005 (12)
S20.00864 (13)0.00925 (14)0.00907 (14)0.00050 (11)0.00066 (11)0.00012 (12)
O10.0149 (5)0.0167 (5)0.0143 (5)0.0003 (4)0.0040 (4)0.0052 (4)
O20.0186 (5)0.0171 (5)0.0183 (5)0.0020 (4)0.0028 (4)0.0068 (5)
O30.0179 (5)0.0187 (5)0.0199 (6)0.0036 (4)0.0056 (4)0.0072 (4)
O40.0128 (5)0.0177 (5)0.0117 (5)0.0013 (4)0.0028 (4)0.0041 (4)
C10.0096 (6)0.0106 (6)0.0101 (6)0.0015 (4)0.0002 (4)0.0011 (5)
F10.0108 (4)0.0203 (4)0.0149 (4)0.0023 (3)0.0030 (3)0.0056 (3)
F20.0204 (4)0.0158 (4)0.0139 (4)0.0033 (4)0.0070 (4)0.0036 (3)
N10.0098 (5)0.0098 (5)0.0183 (6)0.0008 (4)0.0019 (4)0.0037 (5)
S30.00810 (13)0.00965 (14)0.00735 (14)0.00008 (11)0.00006 (11)0.00046 (11)
S40.00836 (13)0.00801 (14)0.00787 (14)0.00020 (10)0.00012 (11)0.00033 (11)
O60.0124 (5)0.0157 (5)0.0123 (5)0.0035 (4)0.0003 (4)0.0038 (4)
O50.0141 (5)0.0111 (5)0.0133 (5)0.0026 (4)0.0019 (4)0.0013 (4)
O70.0142 (4)0.0115 (5)0.0122 (5)0.0040 (4)0.0006 (4)0.0013 (4)
O80.0129 (4)0.0121 (5)0.0133 (5)0.0035 (4)0.0008 (4)0.0036 (4)
F30.0140 (4)0.0138 (4)0.0128 (4)0.0027 (3)0.0018 (3)0.0048 (3)
F40.0151 (4)0.0135 (4)0.0100 (4)0.0037 (3)0.0004 (3)0.0041 (3)
N20.0083 (5)0.0149 (6)0.0079 (5)0.0011 (4)0.0001 (4)0.0009 (4)
C20.0103 (6)0.0091 (6)0.0091 (6)0.0001 (4)0.0004 (5)0.0002 (5)
N1A0.0136 (6)0.0116 (5)0.0114 (6)0.0006 (4)0.0000 (4)0.0007 (4)
N2A0.0113 (5)0.0150 (6)0.0133 (6)0.0003 (4)0.0009 (5)0.0037 (5)
Geometric parameters (Å, º) top
S1—O11.4347 (12)S4—O71.4394 (11)
S1—O21.4363 (12)S4—O81.4406 (11)
S1—N11.6060 (12)S4—N21.6206 (12)
S1—C11.8559 (14)S4—C21.8596 (15)
S2—O31.4344 (12)F3—C21.3274 (16)
S2—O41.4373 (12)F4—C21.3285 (16)
S2—N11.6135 (13)N1A—H10.860 (11)
S2—C11.8614 (14)N1A—H20.862 (11)
C1—F21.3308 (16)N1A—H30.865 (11)
C1—F11.3311 (16)N1A—H40.852 (12)
S3—O61.4340 (11)N2A—H50.866 (12)
S3—O51.4463 (11)N2A—H60.855 (12)
S3—N21.6135 (12)N2A—H70.862 (12)
S3—C21.8535 (15)N2A—H80.860 (12)
O1—S1—O2117.53 (7)O7—S4—O8117.55 (7)
O1—S1—N1111.69 (7)O7—S4—N2112.68 (7)
O2—S1—N1112.86 (7)O8—S4—N2111.98 (7)
O1—S1—C1113.18 (7)O7—S4—C2110.21 (6)
O2—S1—C1110.37 (7)O8—S4—C2113.48 (6)
N1—S1—C187.36 (6)N2—S4—C287.01 (6)
O3—S2—O4116.73 (7)S3—N2—S4100.29 (7)
O3—S2—N1112.23 (7)F3—C2—F4110.19 (12)
O4—S2—N1113.23 (7)F3—C2—S3115.27 (10)
O3—S2—C1112.95 (7)F4—C2—S3115.03 (10)
O4—S2—C1111.07 (6)F3—C2—S4113.88 (10)
N1—S2—C186.95 (6)F4—C2—S4116.57 (10)
F2—C1—F1109.64 (11)S3—C2—S483.92 (6)
F2—C1—S1114.87 (10)H1—N1A—H2104 (2)
F1—C1—S1115.60 (10)H1—N1A—H3108 (2)
F2—C1—S2114.54 (10)H2—N1A—H3112 (2)
F1—C1—S2116.48 (10)H1—N1A—H4110 (2)
S1—C1—S283.88 (6)H2—N1A—H4112 (2)
S1—N1—S2101.01 (7)H3—N1A—H4111 (2)
O6—S3—O5116.26 (7)H5—N2A—H6103 (3)
O6—S3—N2113.52 (7)H5—N2A—H7113 (3)
O5—S3—N2112.81 (6)H6—N2A—H7112 (3)
O6—S3—C2114.71 (7)H5—N2A—H8108 (2)
O5—S3—C2108.64 (6)H6—N2A—H8111 (3)
N2—S3—C287.42 (7)H7—N2A—H8111 (2)
N1—S1—C1—S26.25 (6)C2—S3—N2—S49.52 (7)
N1—S2—C1—S16.22 (6)C2—S4—N2—S39.49 (7)
C1—S1—N1—S27.31 (7)N2—S3—C2—S48.20 (6)
C1—S2—N1—S17.29 (7)N2—S4—C2—S38.17 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1···O10.86 (1)2.11 (2)2.9044 (17)153 (2)
N1A—H3···N1i0.87 (1)2.20 (1)3.0395 (19)165 (2)
N1A—H4···O8ii0.85 (1)2.13 (1)2.9657 (17)166 (2)
N2A—H5···O50.87 (1)2.04 (1)2.8985 (16)175 (3)
N2A—H6···N2iii0.86 (1)2.20 (2)3.0068 (18)157 (3)
N2A—H7···O2iv0.86 (1)2.03 (2)2.8467 (17)158 (3)
N2A—H8···O7v0.86 (1)2.13 (2)2.8832 (17)146 (2)
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x, y+1, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y+3/2, z; (v) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaNH4+·CF2NO4S2
Mr210.18
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)11.28642 (13), 10.98496 (14), 10.58826 (12)
V3)1312.74 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.922, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25817, 3823, 3778
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.00
No. of reflections3823
No. of parameters227
No. of restraints9
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.42, 0.23
Absolute structureFlack (1983), 1816 Friedel pairs
Absolute structure parameter0.27 (4)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1···O10.860 (11)2.112 (16)2.9044 (17)153 (2)
N1A—H3···N1i0.865 (11)2.196 (13)3.0395 (19)165 (2)
N1A—H4···O8ii0.852 (12)2.131 (13)2.9657 (17)166 (2)
N2A—H5···O50.866 (12)2.035 (12)2.8985 (16)175 (3)
N2A—H6···N2iii0.855 (12)2.200 (16)3.0068 (18)157 (3)
N2A—H7···O2iv0.862 (12)2.029 (15)2.8467 (17)158 (3)
N2A—H8···O7v0.860 (12)2.129 (18)2.8832 (17)146 (2)
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x, y+1, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y+3/2, z; (v) x+1, y+1, z1/2.
 

Acknowledgements

This publication was funded by the German Research Foundation (DFG) and the Heinrich-Heine-Universität Düsseldorf under the funding programme Open Access Publishing.

References

First citationAntoniotti, S., Dalla, V. & Duñach, E. (2010). Angew. Chem. Int. Ed. 49, 7860–7888.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBucholz, N. & Mattes, R. (1988). Mater. Res. Bull. 23, 755–758.  Google Scholar
First citationDavidson, M. G., Raithby, P. R., Johnson, A. L. & Bolton, P. D. (2003). Eur. J. Inorg. Chem. pp. 3445–3452.  Web of Science CSD CrossRef Google Scholar
First citationDesMarteau, D. D. (1995). J. Fluorine Chem. 72, 203–208.  CrossRef CAS Web of Science Google Scholar
First citationDesMarteau, D. D., Zuberi, S. S., Pennington, W. T. & Randolph, B. B. (1992). Eur. J. Solid State Inorg. Chem. 29, 777–789.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationForopoulos, J. & DesMarteau, D. D. (1984). Inorg. Chem. 23, 3720–3723.  CrossRef CAS Web of Science Google Scholar
First citationJüschke, R., Henkel, G. & Sartori, P. (1997). Z. Naturforsch. Teil B, 52, 359–366.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPlizko, C. & Meyer, G. (1998). Z. Kristallogr. New Cryst. Struct. 213, 475.  Google Scholar
First citationPopov, V. V., Konstantinova, L. S. & Rakitin, O. A. (2011). Chem. Heterocycl. Compd, 47, 789–806.  CrossRef CAS Google Scholar
First citationReiss, G. J. (2002). Z. Kristallogr. 217, 550–556.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVij, A., Kirchmeier, R. L., Shreeve, J. M. & Verma, R. D. (1997). Coord. Chem. Rev. 158, 413–432.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds