organic compounds
Ammonium 4,4-difluoro-1,3,2-dithiazetin-2-ide 1,1,3,3-tetraoxide
aInstitut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany, and bInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@uni-duesseldorf.de
The 4+·CF2NO4S2−, consists of two crystallographically independent ammonium cations and two 4,4-difluoro-1,3,2-dithiazetin-2-ide 1,1,3,3-tetraoxide anions all located in general positions. The S—C—S—N rings of both crystallographically independent anions are almost planar, with the N atom bent out of the plane by 9.82 (5) and 12.82 (4)°. The structure was determined from a crystal twinned by inversion, with refined components in the ratio 0.73 (4):0.27 (4). Anions and cations are connected via hydrogen bonds (N—H⋯O and N—H⋯N) to form a three-dimensional framework. This framework is composed of two different layers parallel to the ab plane, which are built by the ammonium cations on the one hand and the complex cyclic anions on the other.
of the title compound, NHRelated literature
For general aspects of the chemistry of fluorinated et al. (2010); Foropoulos & DesMarteau (1984); Popov et al. (2011); Vij et al. (1997); DesMarteau (1995). For the synthesis and chemistry of the title compound, see: Jüschke et al. (1997). For related structures, see: DesMarteau et al. (1992); Davidson et al. (2003). For similar layered ammonium salts, see: Reiss (2002); Plizko & Meyer (1998); Bucholz & Mattes (1988).
and their salts, see: AntoniottiExperimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812024221/pk2414sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812024221/pk2414Isup2.hkl
The title compound was synthesized according to a literature procedure (Jüschke et al., 1997).
In the final stages of
the Flack-parameter indicated inversion The of the twin components (Flack, 1983; Sheldrick, 2008) gave a ratio of 0.73 (4): 0.27 (4). All hydrogen atom positions were identified in difference syntheses. In the final stages of the hydrogen atom positions of these were refined with their N—H distances softly restrained to one common refined value (0.86 Å) with one common Uiso value for each group.Cyclic
of the general formula cyclo-[(F2C)n(SO2)2NH] and the corresponding anions are relevant because of a number of potential applications in various fields, e.g. electrochemistry and organic chemistry similar to the non-cyclic (RFSO2)2NH (Popov et al., 2011; Antoniotti et al., 2010; Vij et al., 1997; Jüschke et al., 1997; DesMarteau, 1995; DesMarteau et al., 1992; Foropoulos & DesMarteau, 1984). The synthesis of the ammonium salt of the smallest member of the cyclic was first reported almost 20 years ago starting from the disulfonylfluoride FO2SCF2SO2F and ammonia (Jüschke et al., 1997). The conversion of the ammonium salt to result in the potassium and rubidium salt with KOH and Rb2CO3, respectively and the crystal structures of these alkali metal salts were described, as well.The title compound ammonium 4,4-difluoro-1,3,2-dithiazetin-2-ide 1,1,3,3-tetraoxide (Fig. 1) crystallizes in the orthorhombic non-centrosymmetric
Pna21 with two independent cations and anions. The ammonium containing title structure is isotypical to the corresponding potassium salt whereas the rubidium salt crystallizes in the monoclinic P21/c (Jüschke et al., 1997). The S–C–S–N ring is almost planar and the nitrogen atom is bent out of the plane by 9.82 (5) and 12.82 (4)°, respectively in the two anions. The bond lengths and angles of the cyclic anion in its [NH4]+ and K+ salt are very similar, whereas slightly larger deviations are found for the Rb+ salt. Medium to weak hydrogen bonds connect the [NH4]+ cations and the cyclic anions to form a three-dimensional framework (Fig. 2). The cyclic anion accepts hydrogen bonds by the oxygen atoms of the SO2 group and by its amide nitrogen atom. The N—H···N hydrogen bonds are, according to the derived distances weaker than the N—H···O bonds. In general N—H···N hydrogen bonds are rare in structurally related salts. For example in the structure of the ammonium triflamide salt, [NH4][F3C—SO2—N—SO2—CF3] no hydrogen bond between the amide nitrogen and the ammonium counter cation are present (Davidson et al., 2003). The title structure can be understood as a layered material. The cations and anions are found in layers perpendicular to the c axis (Fig. 3). The ammonium cations appear ordered as a consequence of their hydrogen bonds. The resulting non-centrosymmetric, layered ammonium salt fits well in the general structural chemistry of ammonium salts with layered structures (e.g. Reiss, 2002; Plizko & Meyer, 1998; Bucholz & Mattes, 1988).For general aspects on the chemistry of fluorinated
and their salts, see: Antoniotti et al. (2010); Foropoulos & DesMarteau (1984); Popov et al. (2011); Vij et al. (1997); DesMarteau (1995). For the synthesis and chemistry of the title compound, see: Jüschke et al. (1997). For related structures, see: DesMarteau et al. (1992); Davidson et al. (2003). For similar layered ammonium salts, see: Reiss (2002); Plizko & Meyer (1998); Bucholz & Mattes (1988).Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level; H atoms are drawn as spheres of arbitrary radius. | |
Fig. 2. The asymmetric unit of the title compound positioned in the unit cell; H-atoms are drawn with arbitrary radii; hydrogen bonds shown as broken lines. | |
Fig. 3. Layered structure of the title compound with view along [110] (ball and stick type model with arbitrary atom radii; fluorine atoms are omitted for clarity; hydrogen bonds shown as broken lines). |
NH4+·CF2NO4S2− | F(000) = 848 |
Mr = 210.18 | Dx = 2.127 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 21999 reflections |
a = 11.28642 (13) Å | θ = 3.2–33.6° |
b = 10.98496 (14) Å | µ = 0.82 mm−1 |
c = 10.58826 (12) Å | T = 100 K |
V = 1312.74 (3) Å3 | Block, colourless |
Z = 8 | 0.30 × 0.25 × 0.20 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 3823 independent reflections |
Radiation source: fine-focus sealed tube | 3778 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 16.2711 pixels mm-1 | θmax = 30.0°, θmin = 3.2° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −15→15 |
Tmin = 0.922, Tmax = 1.000 | l = −14→14 |
25817 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | All H-atom parameters refined |
wR(F2) = 0.049 | w = 1/[σ2(Fo2) + (0.027P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
3823 reflections | Δρmax = 0.42 e Å−3 |
227 parameters | Δρmin = −0.23 e Å−3 |
9 restraints | Absolute structure: Flack (1983), 1816 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.27 (4) |
NH4+·CF2NO4S2− | V = 1312.74 (3) Å3 |
Mr = 210.18 | Z = 8 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 11.28642 (13) Å | µ = 0.82 mm−1 |
b = 10.98496 (14) Å | T = 100 K |
c = 10.58826 (12) Å | 0.30 × 0.25 × 0.20 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 3823 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 3778 reflections with I > 2σ(I) |
Tmin = 0.922, Tmax = 1.000 | Rint = 0.028 |
25817 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | All H-atom parameters refined |
wR(F2) = 0.049 | Δρmax = 0.42 e Å−3 |
S = 1.00 | Δρmin = −0.23 e Å−3 |
3823 reflections | Absolute structure: Flack (1983), 1816 Friedel pairs |
227 parameters | Absolute structure parameter: 0.27 (4) |
9 restraints |
Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.48379 (3) | 0.87892 (3) | 0.65469 (3) | 0.00949 (7) | |
S2 | 0.35058 (3) | 0.70690 (3) | 0.59946 (3) | 0.00899 (7) | |
O1 | 0.51045 (10) | 0.92154 (11) | 0.77958 (11) | 0.0153 (2) | |
O2 | 0.53141 (10) | 0.94654 (10) | 0.55027 (12) | 0.0180 (2) | |
O3 | 0.28692 (10) | 0.63106 (11) | 0.68639 (12) | 0.0188 (2) | |
O4 | 0.32923 (10) | 0.68643 (11) | 0.46733 (11) | 0.0141 (2) | |
C1 | 0.51223 (12) | 0.71376 (13) | 0.63358 (13) | 0.0101 (3) | |
F1 | 0.58461 (8) | 0.68458 (9) | 0.53906 (9) | 0.01534 (18) | |
F2 | 0.54517 (8) | 0.65524 (9) | 0.73788 (9) | 0.01670 (18) | |
N1 | 0.34538 (11) | 0.84878 (11) | 0.63851 (13) | 0.0126 (2) | |
S3 | 0.48620 (3) | 0.31465 (3) | 0.55319 (3) | 0.00837 (6) | |
S4 | 0.67564 (3) | 0.29184 (3) | 0.67001 (3) | 0.00808 (6) | |
O6 | 0.40654 (9) | 0.22416 (10) | 0.50504 (11) | 0.0135 (2) | |
O5 | 0.45653 (9) | 0.43993 (9) | 0.52553 (10) | 0.0129 (2) | |
O7 | 0.73598 (9) | 0.40480 (10) | 0.69468 (10) | 0.0126 (2) | |
O8 | 0.73416 (9) | 0.18093 (10) | 0.70717 (11) | 0.0128 (2) | |
F3 | 0.47997 (8) | 0.20036 (8) | 0.77901 (9) | 0.01355 (17) | |
F4 | 0.49019 (8) | 0.39790 (9) | 0.79297 (9) | 0.01288 (17) | |
N2 | 0.62391 (11) | 0.28395 (11) | 0.52747 (12) | 0.0104 (2) | |
C2 | 0.51915 (12) | 0.30127 (13) | 0.72413 (14) | 0.0095 (2) | |
N1A | 0.72362 (11) | 0.99695 (12) | 0.91184 (12) | 0.0122 (2) | |
H1 | 0.6585 (14) | 0.9597 (19) | 0.895 (3) | 0.030 (3)* | |
H2 | 0.7758 (17) | 0.9398 (16) | 0.916 (2) | 0.030 (3)* | |
H3 | 0.715 (2) | 1.034 (2) | 0.9834 (15) | 0.030 (3)* | |
H4 | 0.739 (2) | 1.0475 (18) | 0.8532 (18) | 0.030 (3)* | |
N2A | 0.22203 (11) | 0.44588 (12) | 0.41410 (12) | 0.0132 (2) | |
H5 | 0.2919 (14) | 0.449 (2) | 0.448 (2) | 0.041 (4)* | |
H6 | 0.201 (2) | 0.3720 (13) | 0.426 (3) | 0.041 (4)* | |
H7 | 0.173 (2) | 0.496 (2) | 0.449 (2) | 0.041 (4)* | |
H8 | 0.230 (2) | 0.461 (2) | 0.3348 (12) | 0.041 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.00951 (13) | 0.00917 (14) | 0.00979 (15) | −0.00032 (10) | −0.00095 (11) | −0.00005 (12) |
S2 | 0.00864 (13) | 0.00925 (14) | 0.00907 (14) | −0.00050 (11) | 0.00066 (11) | 0.00012 (12) |
O1 | 0.0149 (5) | 0.0167 (5) | 0.0143 (5) | 0.0003 (4) | −0.0040 (4) | −0.0052 (4) |
O2 | 0.0186 (5) | 0.0171 (5) | 0.0183 (5) | −0.0020 (4) | 0.0028 (4) | 0.0068 (5) |
O3 | 0.0179 (5) | 0.0187 (5) | 0.0199 (6) | −0.0036 (4) | 0.0056 (4) | 0.0072 (4) |
O4 | 0.0128 (5) | 0.0177 (5) | 0.0117 (5) | 0.0013 (4) | −0.0028 (4) | −0.0041 (4) |
C1 | 0.0096 (6) | 0.0106 (6) | 0.0101 (6) | 0.0015 (4) | −0.0002 (4) | −0.0011 (5) |
F1 | 0.0108 (4) | 0.0203 (4) | 0.0149 (4) | 0.0023 (3) | 0.0030 (3) | −0.0056 (3) |
F2 | 0.0204 (4) | 0.0158 (4) | 0.0139 (4) | 0.0033 (4) | −0.0070 (4) | 0.0036 (3) |
N1 | 0.0098 (5) | 0.0098 (5) | 0.0183 (6) | 0.0008 (4) | −0.0019 (4) | −0.0037 (5) |
S3 | 0.00810 (13) | 0.00965 (14) | 0.00735 (14) | 0.00008 (11) | −0.00006 (11) | −0.00046 (11) |
S4 | 0.00836 (13) | 0.00801 (14) | 0.00787 (14) | 0.00020 (10) | −0.00012 (11) | 0.00033 (11) |
O6 | 0.0124 (5) | 0.0157 (5) | 0.0123 (5) | −0.0035 (4) | −0.0003 (4) | −0.0038 (4) |
O5 | 0.0141 (5) | 0.0111 (5) | 0.0133 (5) | 0.0026 (4) | −0.0019 (4) | 0.0013 (4) |
O7 | 0.0142 (4) | 0.0115 (5) | 0.0122 (5) | −0.0040 (4) | 0.0006 (4) | −0.0013 (4) |
O8 | 0.0129 (4) | 0.0121 (5) | 0.0133 (5) | 0.0035 (4) | 0.0008 (4) | 0.0036 (4) |
F3 | 0.0140 (4) | 0.0138 (4) | 0.0128 (4) | −0.0027 (3) | 0.0018 (3) | 0.0048 (3) |
F4 | 0.0151 (4) | 0.0135 (4) | 0.0100 (4) | 0.0037 (3) | 0.0004 (3) | −0.0041 (3) |
N2 | 0.0083 (5) | 0.0149 (6) | 0.0079 (5) | 0.0011 (4) | 0.0001 (4) | −0.0009 (4) |
C2 | 0.0103 (6) | 0.0091 (6) | 0.0091 (6) | −0.0001 (4) | 0.0004 (5) | 0.0002 (5) |
N1A | 0.0136 (6) | 0.0116 (5) | 0.0114 (6) | −0.0006 (4) | 0.0000 (4) | 0.0007 (4) |
N2A | 0.0113 (5) | 0.0150 (6) | 0.0133 (6) | −0.0003 (4) | −0.0009 (5) | 0.0037 (5) |
S1—O1 | 1.4347 (12) | S4—O7 | 1.4394 (11) |
S1—O2 | 1.4363 (12) | S4—O8 | 1.4406 (11) |
S1—N1 | 1.6060 (12) | S4—N2 | 1.6206 (12) |
S1—C1 | 1.8559 (14) | S4—C2 | 1.8596 (15) |
S2—O3 | 1.4344 (12) | F3—C2 | 1.3274 (16) |
S2—O4 | 1.4373 (12) | F4—C2 | 1.3285 (16) |
S2—N1 | 1.6135 (13) | N1A—H1 | 0.860 (11) |
S2—C1 | 1.8614 (14) | N1A—H2 | 0.862 (11) |
C1—F2 | 1.3308 (16) | N1A—H3 | 0.865 (11) |
C1—F1 | 1.3311 (16) | N1A—H4 | 0.852 (12) |
S3—O6 | 1.4340 (11) | N2A—H5 | 0.866 (12) |
S3—O5 | 1.4463 (11) | N2A—H6 | 0.855 (12) |
S3—N2 | 1.6135 (12) | N2A—H7 | 0.862 (12) |
S3—C2 | 1.8535 (15) | N2A—H8 | 0.860 (12) |
O1—S1—O2 | 117.53 (7) | O7—S4—O8 | 117.55 (7) |
O1—S1—N1 | 111.69 (7) | O7—S4—N2 | 112.68 (7) |
O2—S1—N1 | 112.86 (7) | O8—S4—N2 | 111.98 (7) |
O1—S1—C1 | 113.18 (7) | O7—S4—C2 | 110.21 (6) |
O2—S1—C1 | 110.37 (7) | O8—S4—C2 | 113.48 (6) |
N1—S1—C1 | 87.36 (6) | N2—S4—C2 | 87.01 (6) |
O3—S2—O4 | 116.73 (7) | S3—N2—S4 | 100.29 (7) |
O3—S2—N1 | 112.23 (7) | F3—C2—F4 | 110.19 (12) |
O4—S2—N1 | 113.23 (7) | F3—C2—S3 | 115.27 (10) |
O3—S2—C1 | 112.95 (7) | F4—C2—S3 | 115.03 (10) |
O4—S2—C1 | 111.07 (6) | F3—C2—S4 | 113.88 (10) |
N1—S2—C1 | 86.95 (6) | F4—C2—S4 | 116.57 (10) |
F2—C1—F1 | 109.64 (11) | S3—C2—S4 | 83.92 (6) |
F2—C1—S1 | 114.87 (10) | H1—N1A—H2 | 104 (2) |
F1—C1—S1 | 115.60 (10) | H1—N1A—H3 | 108 (2) |
F2—C1—S2 | 114.54 (10) | H2—N1A—H3 | 112 (2) |
F1—C1—S2 | 116.48 (10) | H1—N1A—H4 | 110 (2) |
S1—C1—S2 | 83.88 (6) | H2—N1A—H4 | 112 (2) |
S1—N1—S2 | 101.01 (7) | H3—N1A—H4 | 111 (2) |
O6—S3—O5 | 116.26 (7) | H5—N2A—H6 | 103 (3) |
O6—S3—N2 | 113.52 (7) | H5—N2A—H7 | 113 (3) |
O5—S3—N2 | 112.81 (6) | H6—N2A—H7 | 112 (3) |
O6—S3—C2 | 114.71 (7) | H5—N2A—H8 | 108 (2) |
O5—S3—C2 | 108.64 (6) | H6—N2A—H8 | 111 (3) |
N2—S3—C2 | 87.42 (7) | H7—N2A—H8 | 111 (2) |
N1—S1—C1—S2 | 6.25 (6) | C2—S3—N2—S4 | −9.52 (7) |
N1—S2—C1—S1 | −6.22 (6) | C2—S4—N2—S3 | 9.49 (7) |
C1—S1—N1—S2 | −7.31 (7) | N2—S3—C2—S4 | 8.20 (6) |
C1—S2—N1—S1 | 7.29 (7) | N2—S4—C2—S3 | −8.17 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1···O1 | 0.86 (1) | 2.11 (2) | 2.9044 (17) | 153 (2) |
N1A—H3···N1i | 0.87 (1) | 2.20 (1) | 3.0395 (19) | 165 (2) |
N1A—H4···O8ii | 0.85 (1) | 2.13 (1) | 2.9657 (17) | 166 (2) |
N2A—H5···O5 | 0.87 (1) | 2.04 (1) | 2.8985 (16) | 175 (3) |
N2A—H6···N2iii | 0.86 (1) | 2.20 (2) | 3.0068 (18) | 157 (3) |
N2A—H7···O2iv | 0.86 (1) | 2.03 (2) | 2.8467 (17) | 158 (3) |
N2A—H8···O7v | 0.86 (1) | 2.13 (2) | 2.8832 (17) | 146 (2) |
Symmetry codes: (i) −x+1, −y+2, z+1/2; (ii) x, y+1, z; (iii) x−1/2, −y+1/2, z; (iv) x−1/2, −y+3/2, z; (v) −x+1, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | NH4+·CF2NO4S2− |
Mr | 210.18 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 100 |
a, b, c (Å) | 11.28642 (13), 10.98496 (14), 10.58826 (12) |
V (Å3) | 1312.74 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.82 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.922, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25817, 3823, 3778 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.049, 1.00 |
No. of reflections | 3823 |
No. of parameters | 227 |
No. of restraints | 9 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.42, −0.23 |
Absolute structure | Flack (1983), 1816 Friedel pairs |
Absolute structure parameter | 0.27 (4) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1···O1 | 0.860 (11) | 2.112 (16) | 2.9044 (17) | 153 (2) |
N1A—H3···N1i | 0.865 (11) | 2.196 (13) | 3.0395 (19) | 165 (2) |
N1A—H4···O8ii | 0.852 (12) | 2.131 (13) | 2.9657 (17) | 166 (2) |
N2A—H5···O5 | 0.866 (12) | 2.035 (12) | 2.8985 (16) | 175 (3) |
N2A—H6···N2iii | 0.855 (12) | 2.200 (16) | 3.0068 (18) | 157 (3) |
N2A—H7···O2iv | 0.862 (12) | 2.029 (15) | 2.8467 (17) | 158 (3) |
N2A—H8···O7v | 0.860 (12) | 2.129 (18) | 2.8832 (17) | 146 (2) |
Symmetry codes: (i) −x+1, −y+2, z+1/2; (ii) x, y+1, z; (iii) x−1/2, −y+1/2, z; (iv) x−1/2, −y+3/2, z; (v) −x+1, −y+1, z−1/2. |
Acknowledgements
This publication was funded by the German Research Foundation (DFG) and the Heinrich-Heine-Universität Düsseldorf under the funding programme Open Access Publishing.
References
Antoniotti, S., Dalla, V. & Duñach, E. (2010). Angew. Chem. Int. Ed. 49, 7860–7888. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bucholz, N. & Mattes, R. (1988). Mater. Res. Bull. 23, 755–758. Google Scholar
Davidson, M. G., Raithby, P. R., Johnson, A. L. & Bolton, P. D. (2003). Eur. J. Inorg. Chem. pp. 3445–3452. Web of Science CSD CrossRef Google Scholar
DesMarteau, D. D. (1995). J. Fluorine Chem. 72, 203–208. CrossRef CAS Web of Science Google Scholar
DesMarteau, D. D., Zuberi, S. S., Pennington, W. T. & Randolph, B. B. (1992). Eur. J. Solid State Inorg. Chem. 29, 777–789. CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Foropoulos, J. & DesMarteau, D. D. (1984). Inorg. Chem. 23, 3720–3723. CrossRef CAS Web of Science Google Scholar
Jüschke, R., Henkel, G. & Sartori, P. (1997). Z. Naturforsch. Teil B, 52, 359–366. Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Plizko, C. & Meyer, G. (1998). Z. Kristallogr. New Cryst. Struct. 213, 475. Google Scholar
Popov, V. V., Konstantinova, L. S. & Rakitin, O. A. (2011). Chem. Heterocycl. Compd, 47, 789–806. CrossRef CAS Google Scholar
Reiss, G. J. (2002). Z. Kristallogr. 217, 550–556. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vij, A., Kirchmeier, R. L., Shreeve, J. M. & Verma, R. D. (1997). Coord. Chem. Rev. 158, 413–432. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cyclic sulfonimides of the general formula cyclo-[(F2C)n(SO2)2NH] and the corresponding anions are relevant because of a number of potential applications in various fields, e.g. electrochemistry and organic chemistry similar to the non-cyclic sulfonimides (RFSO2)2NH (Popov et al., 2011; Antoniotti et al., 2010; Vij et al., 1997; Jüschke et al., 1997; DesMarteau, 1995; DesMarteau et al., 1992; Foropoulos & DesMarteau, 1984). The synthesis of the ammonium salt of the smallest member of the cyclic sulfonimides was first reported almost 20 years ago starting from the disulfonylfluoride FO2SCF2SO2F and ammonia (Jüschke et al., 1997). The conversion of the ammonium salt to result in the potassium and rubidium salt with KOH and Rb2CO3, respectively and the crystal structures of these alkali metal salts were described, as well.
The title compound ammonium 4,4-difluoro-1,3,2-dithiazetin-2-ide 1,1,3,3-tetraoxide (Fig. 1) crystallizes in the orthorhombic non-centrosymmetric space group Pna21 with two independent cations and anions. The ammonium containing title structure is isotypical to the corresponding potassium salt whereas the rubidium salt crystallizes in the monoclinic space group P21/c (Jüschke et al., 1997). The S–C–S–N ring is almost planar and the nitrogen atom is bent out of the plane by 9.82 (5) and 12.82 (4)°, respectively in the two anions. The bond lengths and angles of the cyclic anion in its [NH4]+ and K+ salt are very similar, whereas slightly larger deviations are found for the Rb+ salt. Medium to weak hydrogen bonds connect the [NH4]+ cations and the cyclic anions to form a three-dimensional framework (Fig. 2). The cyclic anion accepts hydrogen bonds by the oxygen atoms of the SO2 group and by its amide nitrogen atom. The N—H···N hydrogen bonds are, according to the derived distances weaker than the N—H···O bonds. In general N—H···N hydrogen bonds are rare in structurally related salts. For example in the structure of the ammonium triflamide salt, [NH4][F3C—SO2—N—SO2—CF3] no hydrogen bond between the amide nitrogen and the ammonium counter cation are present (Davidson et al., 2003). The title structure can be understood as a layered material. The cations and anions are found in layers perpendicular to the c axis (Fig. 3). The ammonium cations appear ordered as a consequence of their hydrogen bonds. The resulting non-centrosymmetric, layered ammonium salt fits well in the general structural chemistry of ammonium salts with layered structures (e.g. Reiss, 2002; Plizko & Meyer, 1998; Bucholz & Mattes, 1988).