organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-3-nitro­pyridinium 4-hy­dr­oxy­benzene­sulfonate

aSchool of Materials Science and Engineering, Anhui Key Laboratory of Metal Materials and Processing, Anhui University of Technology, Anhui, Maanshan 243002, People's Republic of China, and bState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: yaohui@ahut.edu.cn

(Received 29 May 2012; accepted 18 June 2012; online 23 June 2012)

In the crystal structure of the title salt, C5H6N3O2+·C6H5O4S, N—H⋯O and O—H⋯O hydrogen bonds link the cations and anions. The dihedral angle between the rings of the cation and anion is 79.91 (6)°.

Related literature

For related structures, see: Nicoud et al. (1997[Nicoud, J.-F., Masse, R., Bourgognea, C. & Evansa, C. (1997). J. Mater. Chem. 7, 35-39.]); Akriche & Rzaigui (2009a[Akriche, S. & Rzaigui, M. (2009a). Acta Cryst. E65, o1648.],b[Akriche, S. & Rzaigui, M. (2009b). Acta Cryst. E65, m123.]); Toumi Akriche et al. (2010[Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300.]); Koshima et al. (2004[Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4, 807-811.]). For the design of second-order non-linear optical materials, see: Fur et al. (1998[Fur, Y. L., Massea, R. & Nicoudb, J.-F. (1998). New J. Chem. pp. 159-163.]); Aakeröy et al. (1998[Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. 8, 1385-1389.]). For information on the determination of non-linear optical properties, see: Kurtz & Perry (1968[Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N3O2+·C6H5O4S

  • Mr = 313.29

  • Monoclinic, C c

  • a = 9.0683 (19) Å

  • b = 13.5177 (16) Å

  • c = 10.9203 (17) Å

  • β = 94.042 (14)°

  • V = 1335.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.48 × 0.31 × 0.22 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.879, Tmax = 0.942

  • 4067 measured reflections

  • 2005 independent reflections

  • 1989 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 1.07

  • 2005 reflections

  • 194 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 825 Friedel pairs

  • Flack parameter: 0.05 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5 0.86 2.01 2.862 (2) 172
N1—H1B⋯O1 0.86 2.08 2.674 (2) 126
N3—H3A⋯O6 0.86 1.88 2.734 (2) 170
N1—H1B⋯O3i 0.86 2.57 3.125 (3) 123
O3—H3⋯O4ii 0.75 (3) 1.98 (3) 2.688 (2) 158 (3)
Symmetry codes: (i) [x-1, -y, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Research on new materials with large nonlinear optical (NLO) efficiencies has been extensively developed in the past two decades. A promising crystal-engineering strategy is to design organic cocrystals, using molecules with large macroscopic susceptibility components (Nicoud et al., 1997). As an excellent donor-acceptor system with high susceptibility, 2-amino-3-nitropyridine cation has two electron-accepting centres, namely the NH2 amino-group and NH+ group in the pyridinium ring (Aakeröy et al., 1998). Therefore, it is possible to utilize the cation of 2- amino-3-nitropyridinium as a nonlinear optical component to assemble potential NLO materials. Though several crystal structures based on the 2-amino-3-nitropyridine cation had been reported (Akriche & Rzaigui, 2009a,b; Toumi Akriche et al., 2010), to the best of our knowledge, the title complex in the present work is the first example of a NLO crystal with an efficiency as large as ten times that of the KDP standard (Kurtz & Perry, 1968). The asymmetric unit contains one anion and one cation that are shown in Fig. 1. Hydrogen bonding interactions, which construct a three-dimensional network, are listed in table 1. The crystal structure is stabilized by several hydrogen-bonding interactions formed within the crystal structure. These interactions link the cations and anions together in a complex spatial geometry, displayed in Fig. 2.

Related literature top

For related structures, see: Nicoud et al. (1997); Akriche & Rzaigui (2009a,b); Toumi Akriche et al. (2010); Koshima et al. (2004). For the design of second-order non-linear optical materials, see: Fur et al. (1998); Aakeröy et al. (1998). For information on the determination of non-linear optical properties, see: Kurtz & Perry (1968).

Experimental top

The title complex was synthesized from the mixture of 2-amino-3-nitropyridine with stoichiometric 4-hydroxybenzenesulfonic acid in ethanol solution. The reaction mixture was stirred for four hours and slowly heated to 45°C yielding a clear solution. After solvent evaporation at controlled temperature for several days, yellow block-shaped crystals were obtained in 90% yield. For second-harmonic generation (SHG) experiments (Kurtz and Perry, 1968), the polycrystalline samples were ground into powder and sieved using a series of mesh sizes in the range of 74–100 µm, and the SHG intensity was compared with KDP crystal.

Refinement top

All the H atoms bound to carbon and nitrogen were placed at idealized positions with respective bond lengths of C—H = 0.93 to 0.97 Å and N—H = 0.89 Å. and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C, N). The O-bound H atom was located in a difference Fourier map and refined isotropically.

Structure description top

Research on new materials with large nonlinear optical (NLO) efficiencies has been extensively developed in the past two decades. A promising crystal-engineering strategy is to design organic cocrystals, using molecules with large macroscopic susceptibility components (Nicoud et al., 1997). As an excellent donor-acceptor system with high susceptibility, 2-amino-3-nitropyridine cation has two electron-accepting centres, namely the NH2 amino-group and NH+ group in the pyridinium ring (Aakeröy et al., 1998). Therefore, it is possible to utilize the cation of 2- amino-3-nitropyridinium as a nonlinear optical component to assemble potential NLO materials. Though several crystal structures based on the 2-amino-3-nitropyridine cation had been reported (Akriche & Rzaigui, 2009a,b; Toumi Akriche et al., 2010), to the best of our knowledge, the title complex in the present work is the first example of a NLO crystal with an efficiency as large as ten times that of the KDP standard (Kurtz & Perry, 1968). The asymmetric unit contains one anion and one cation that are shown in Fig. 1. Hydrogen bonding interactions, which construct a three-dimensional network, are listed in table 1. The crystal structure is stabilized by several hydrogen-bonding interactions formed within the crystal structure. These interactions link the cations and anions together in a complex spatial geometry, displayed in Fig. 2.

For related structures, see: Nicoud et al. (1997); Akriche & Rzaigui (2009a,b); Toumi Akriche et al. (2010); Koshima et al. (2004). For the design of second-order non-linear optical materials, see: Fur et al. (1998); Aakeröy et al. (1998). For information on the determination of non-linear optical properties, see: Kurtz & Perry (1968).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Non-hydrogen atoms are shown with the displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed along the c axis, showing hydrogen-bonding associations as dashed lines.
2-Amino-3-nitropyridinium 4-hydroxybenzenesulfonate top
Crystal data top
C5H6N3O2+·C6H5O4S2-Amino-3-nitropyridine 4-hydroxybenzenesulfonate
Mr = 313.29Dx = 1.558 Mg m3
Monoclinic, CcMelting point: 481 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 9.0683 (19) ÅCell parameters from 1991 reflections
b = 13.5177 (16) Åθ = 3.0–27.5°
c = 10.9203 (17) ŵ = 0.28 mm1
β = 94.042 (14)°T = 293 K
V = 1335.3 (4) Å3Block, yellow
Z = 40.48 × 0.31 × 0.22 mm
F(000) = 648
Data collection top
Rigaku Mercury CCD
diffractometer
2005 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ω and φ scans'θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.879, Tmax = 0.942k = 1616
4067 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.3606P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2005 reflectionsΔρmax = 0.12 e Å3
194 parametersΔρmin = 0.20 e Å3
2 restraintsAbsolute structure: Flack (1983), 825 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C5H6N3O2+·C6H5O4SV = 1335.3 (4) Å3
Mr = 313.29Z = 4
Monoclinic, CcMo Kα radiation
a = 9.0683 (19) ŵ = 0.28 mm1
b = 13.5177 (16) ÅT = 293 K
c = 10.9203 (17) Å0.48 × 0.31 × 0.22 mm
β = 94.042 (14)°
Data collection top
Rigaku Mercury CCD
diffractometer
2005 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1989 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.942Rint = 0.011
4067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063Δρmax = 0.12 e Å3
S = 1.07Δρmin = 0.20 e Å3
2005 reflectionsAbsolute structure: Flack (1983), 825 Friedel pairs
194 parametersAbsolute structure parameter: 0.05 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61553 (5)0.16714 (3)0.00229 (4)0.03441 (13)
O10.27111 (18)0.05257 (12)0.51298 (15)0.0525 (4)
O20.35055 (19)0.09208 (11)0.68818 (14)0.0566 (4)
O31.09361 (18)0.09220 (13)0.20630 (15)0.0517 (4)
O40.57072 (19)0.22726 (11)0.10356 (14)0.0554 (5)
O50.49921 (15)0.10255 (11)0.04791 (14)0.0475 (4)
O60.67629 (17)0.22667 (11)0.09397 (13)0.0468 (4)
N10.4364 (2)0.09853 (13)0.30840 (16)0.0513 (5)
H1A0.46370.10080.23140.062*
H1B0.36510.06030.33420.062*
N20.35713 (19)0.09660 (12)0.57633 (16)0.0417 (4)
N30.61555 (19)0.21303 (12)0.34220 (15)0.0407 (4)
H3A0.64040.21090.26480.049*
C30.9047 (3)0.05629 (15)0.0470 (2)0.0453 (5)
H1C0.92720.11330.00450.054*
C40.9832 (2)0.03311 (14)0.15597 (17)0.0369 (4)
C100.6574 (3)0.28190 (19)0.5342 (2)0.0583 (6)
H3B0.70710.32610.58190.070*
C60.8393 (2)0.11399 (14)0.17267 (17)0.0400 (5)
H4A0.81720.17120.21490.048*
C110.6903 (3)0.27529 (18)0.4120 (2)0.0514 (6)
H5A0.76570.31420.37530.062*
C90.5476 (3)0.22104 (17)0.58661 (19)0.0485 (5)
H6A0.52470.22310.67090.058*
C20.7930 (2)0.00511 (15)0.00116 (18)0.0417 (5)
H7A0.74030.01060.07240.050*
C70.5037 (2)0.15357 (14)0.38655 (17)0.0356 (4)
C80.4725 (2)0.15784 (13)0.51561 (17)0.0348 (4)
C50.9519 (2)0.05312 (16)0.21828 (18)0.0451 (5)
H10A1.00690.06970.29050.054*
C10.7585 (2)0.09035 (13)0.06404 (17)0.0303 (4)
H31.099 (3)0.136 (2)0.164 (3)0.073 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0370 (3)0.0340 (2)0.0317 (2)0.0036 (2)0.00145 (17)0.00220 (19)
O10.0457 (9)0.0554 (9)0.0561 (10)0.0104 (7)0.0020 (8)0.0067 (8)
O20.0704 (12)0.0594 (9)0.0378 (8)0.0024 (8)0.0123 (8)0.0111 (7)
O30.0527 (10)0.0561 (9)0.0451 (8)0.0195 (7)0.0039 (7)0.0041 (7)
O40.0701 (12)0.0529 (9)0.0430 (9)0.0280 (8)0.0026 (8)0.0038 (7)
O50.0361 (8)0.0538 (8)0.0510 (9)0.0047 (6)0.0078 (7)0.0087 (7)
O60.0572 (10)0.0455 (8)0.0361 (8)0.0100 (7)0.0073 (7)0.0109 (6)
N10.0538 (11)0.0628 (11)0.0362 (9)0.0152 (9)0.0041 (8)0.0116 (8)
N20.0412 (10)0.0407 (9)0.0418 (10)0.0083 (7)0.0063 (8)0.0073 (7)
N30.0378 (10)0.0541 (9)0.0295 (8)0.0040 (7)0.0038 (7)0.0022 (7)
C30.0538 (14)0.0403 (10)0.0411 (11)0.0096 (9)0.0008 (10)0.0083 (9)
C40.0339 (11)0.0417 (9)0.0350 (10)0.0063 (8)0.0006 (8)0.0049 (8)
C100.0507 (14)0.0799 (16)0.0439 (13)0.0221 (12)0.0014 (10)0.0151 (11)
C60.0438 (12)0.0407 (10)0.0345 (10)0.0071 (8)0.0045 (9)0.0081 (8)
C110.0420 (12)0.0671 (14)0.0444 (12)0.0167 (11)0.0025 (10)0.0023 (10)
C90.0490 (13)0.0655 (14)0.0304 (11)0.0046 (11)0.0022 (10)0.0068 (10)
C20.0472 (12)0.0412 (10)0.0352 (10)0.0068 (8)0.0081 (9)0.0083 (8)
C70.0335 (11)0.0386 (9)0.0341 (10)0.0037 (7)0.0020 (8)0.0016 (8)
C80.0303 (11)0.0424 (9)0.0312 (9)0.0028 (7)0.0017 (8)0.0002 (7)
C50.0461 (13)0.0551 (11)0.0326 (10)0.0060 (9)0.0067 (9)0.0069 (9)
C10.0305 (10)0.0322 (8)0.0281 (9)0.0021 (7)0.0019 (7)0.0017 (7)
Geometric parameters (Å, º) top
S1—O51.4470 (15)C3—C41.379 (3)
S1—O41.4532 (15)C3—H1C0.9300
S1—O61.4622 (15)C4—C51.389 (3)
S1—C11.7580 (19)C10—C111.350 (3)
O1—N21.232 (2)C10—C91.384 (3)
O2—N21.220 (2)C10—H3B0.9300
O3—C41.365 (2)C6—C51.378 (3)
O3—H30.75 (3)C6—C11.387 (3)
N1—C71.314 (2)C6—H4A0.9300
N1—H1A0.8600C11—H5A0.9300
N1—H1B0.8601C9—C81.368 (3)
N2—C81.456 (2)C9—H6A0.9300
N3—C111.350 (3)C2—C11.388 (3)
N3—C71.357 (2)C2—H7A0.9300
N3—H3A0.8600C7—C81.419 (3)
C3—C21.376 (3)C5—H10A0.9300
O5—S1—O4112.97 (10)C5—C6—C1120.34 (18)
O5—S1—O6111.18 (8)C5—C6—H4A119.8
O4—S1—O6112.28 (8)C1—C6—H4A119.8
O5—S1—C1106.70 (8)N3—C11—C10121.0 (2)
O4—S1—C1106.05 (9)N3—C11—H5A119.5
O6—S1—C1107.19 (9)C10—C11—H5A119.5
C4—O3—H3107 (2)C8—C9—C10120.65 (19)
C7—N1—H1A120.0C8—C9—H6A119.7
C7—N1—H1B120.0C10—C9—H6A119.7
H1A—N1—H1B120.0C3—C2—C1120.45 (17)
O2—N2—O1123.34 (18)C3—C2—H7A119.8
O2—N2—C8117.85 (19)C1—C2—H7A119.8
O1—N2—C8118.80 (16)N1—C7—N3118.24 (16)
C11—N3—C7124.10 (18)N1—C7—C8126.78 (17)
C11—N3—H3A117.9N3—C7—C8114.98 (17)
C7—N3—H3A117.9C9—C8—C7121.06 (18)
C2—C3—C4119.90 (18)C9—C8—N2117.87 (17)
C2—C3—H1C120.1C7—C8—N2121.05 (17)
C4—C3—H1C120.1C6—C5—C4119.74 (17)
O3—C4—C3122.25 (18)C6—C5—H10A120.1
O3—C4—C5117.58 (18)C4—C5—H10A120.1
C3—C4—C5120.17 (17)C6—C1—C2119.37 (17)
C11—C10—C9118.2 (2)C6—C1—S1121.52 (15)
C11—C10—H3B120.9C2—C1—S1119.10 (14)
C9—C10—H3B120.9
C2—C3—C4—O3179.0 (2)O2—N2—C8—C7168.96 (18)
C2—C3—C4—C51.4 (3)O1—N2—C8—C711.4 (3)
C7—N3—C11—C100.3 (4)C1—C6—C5—C41.0 (3)
C9—C10—C11—N31.8 (4)O3—C4—C5—C6178.49 (19)
C11—C10—C9—C81.6 (4)C3—C4—C5—C61.9 (3)
C4—C3—C2—C10.1 (3)C5—C6—C1—C20.5 (3)
C11—N3—C7—N1177.9 (2)C5—C6—C1—S1179.21 (16)
C11—N3—C7—C82.4 (3)C3—C2—C1—C61.0 (3)
C10—C9—C8—C70.6 (3)C3—C2—C1—S1179.78 (18)
C10—C9—C8—N2179.3 (2)O5—S1—C1—C6141.59 (17)
N1—C7—C8—C9177.7 (2)O4—S1—C1—C620.9 (2)
N3—C7—C8—C92.6 (3)O6—S1—C1—C699.23 (19)
N1—C7—C8—N20.9 (3)O5—S1—C1—C239.69 (19)
N3—C7—C8—N2178.80 (16)O4—S1—C1—C2160.38 (17)
O2—N2—C8—C912.3 (3)O6—S1—C1—C279.49 (18)
O1—N2—C8—C9167.30 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.862.012.862 (2)172
N1—H1B···O10.862.082.674 (2)126
N3—H3A···O60.861.882.734 (2)170
N1—H1B···O3i0.862.573.125 (3)123
O3—H3···O4ii0.75 (3)1.98 (3)2.688 (2)158 (3)
Symmetry codes: (i) x1, y, z1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC5H6N3O2+·C6H5O4S
Mr313.29
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)9.0683 (19), 13.5177 (16), 10.9203 (17)
β (°) 94.042 (14)
V3)1335.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.48 × 0.31 × 0.22
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.879, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
4067, 2005, 1989
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 1.07
No. of reflections2005
No. of parameters194
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.20
Absolute structureFlack (1983), 825 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.862.012.862 (2)172.4
N1—H1B···O10.862.082.674 (2)126.0
N3—H3A···O60.861.882.734 (2)170.2
N1—H1B···O3i0.862.573.125 (3)123.4
O3—H3···O4ii0.75 (3)1.98 (3)2.688 (2)158 (3)
Symmetry codes: (i) x1, y, z1/2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

The work was supported financially by the Youth Foundation of Anhui University of Technology.

References

First citationAakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. 8, 1385–1389.  Google Scholar
First citationAkriche, S. & Rzaigui, M. (2009a). Acta Cryst. E65, o1648.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkriche, S. & Rzaigui, M. (2009b). Acta Cryst. E65, m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFur, Y. L., Massea, R. & Nicoudb, J.-F. (1998). New J. Chem. pp. 159–163.  Google Scholar
First citationKoshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4, 807–811.  Web of Science CSD CrossRef CAS Google Scholar
First citationKurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798–3813.  CrossRef CAS Web of Science Google Scholar
First citationNicoud, J.-F., Masse, R., Bourgognea, C. & Evansa, C. (1997). J. Mater. Chem. 7, 35–39.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds