metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4-Bromo-N-(pyridin-2-yl­methyl­­idene)aniline-κ2N,N′]iodido(tri­phenyl­phosphane-κP)copper(I)

aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, bCollege of Chemistry, Shahrood University of Technology, Shahrood, Iran, and cInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz

(Received 20 June 2012; accepted 25 June 2012; online 30 June 2012)

In the title compound, [CuI(C12H9BrN2)(C18H15P)], the CuI ion is bonded to one I atom, one triphenyl­phosphane P atom and two N atoms of the diimine ligand in a distorted tetra­hedral geometry. The Schiff base acts as a chelating ligand and coordinates to the CuI atom via two N atoms. In the diimine ligand, the dihedral angle between the pyridine and bromo­phenyl rings is 19.2 (2)°. In the crystal, mol­ecules are connected by ππ stacking inter­actions between inversion-related pyridine rings [centroid–centroid distance = 3.404 (3) Å].

Related literature

For related structures and their applications, see: Dehghanpour et al. (2006[Dehghanpour, S., Mahmoudkhani, A. H. & Amirnasr, M. (2006). Struct. Chem. 17, 255-262.], 2008[Dehghanpour, S., Fotouhi, L., Mohammadpour Amini, M., Khavasi, H. R., Jahani, K., Nouroozi, F. & Zamanifar, E. (2008). J. Coord. Chem. 61, 455-463.]); Saha et al. (2010[Saha, G., Sarkar, K. K., Datta, P., Raghavaiah, P. & Sinha, C. (2010). Polyhedron, 29, 2098-2104.], 2011a[Saha, G., Datta, P., Sarkar, K. K., Saha, R., Mostafa, G. & Sinha, C. (2011a). Polyhedron, 30, 614-623.],b[Saha, G., Sarkar, K. K., Mondal, T. K. & Sinha, C. (2011b). Inorg. Chim. Acta, 387, 240-247.]); Habibi et al. (2007[Habibi, M. H., Montazerozohori, M., Barati, K., Harrington, R. W. & Clegg, W. (2007). Anal. Sci. 23, x45-x46.]); Morshedi et al. (2009[Morshedi, M., Amirnasr, M., Slawin, A. M. Z., Woollins, J. D. & Khalaji, A. D. (2009). Polyhedron, 28, 167-171.]); Al-Fayez et al. (2007[Al-Fayez, S., Abdel-Rahman, L. H., Shemsi, A. M., Seddigi, Z. S. & Fettouhi, M. (2007). J. Chem. Crystallogr. 37, 517-521.]); Kickelbick et al. (2003[Kickelbick, G., Amirnasr, M., Khalaji, A. D. & Dehghanpour, S. (2003). Aust. J. Chem. 56, 323-328.]); Massa et al. (2009[Massa, W., Dehghanpour, S. & Jahani, K. (2009). Inorg. Chim. Acta, 362, 2872-2878.]); Chen et al. (2012[Chen, J.-L., Cao, X.-F., Gu, W., Su, B.-T., Zhang, F., Wen, H.-R. & Hong, R. (2012). Inorg. Chem. Commun. 15, 65-68.]); Roy et al. (2011[Roy, S., Mondal, T. K., Mitra, P., Torres, E. L. & Sinha, S. (2011). Polyhedron, 30, 913-922.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C12H9BrN2)(C18H15P)]

  • Mr = 713.9

  • Monoclinic, P 21 /c

  • a = 10.3141 (5) Å

  • b = 34.7124 (16) Å

  • c = 8.3792 (4) Å

  • β = 114.321 (6)°

  • V = 2733.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.47 mm−1

  • T = 120 K

  • 0.49 × 0.04 × 0.03 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.914, Tmax = 1.000

  • 14996 measured reflections

  • 5893 independent reflections

  • 4325 reflections with I > 3σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 3σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.19

  • 5893 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

I1—Cu1 2.6386 (7)
Cu1—P1 2.2065 (15)
Cu1—N1 2.119 (5)
Cu1—N2 2.080 (4)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The coordination chemistry of copper(I) complexes with bidentate diimine ligands, such as bipyridine and phenanthroline, has received much attention over the last decade due to the many applications of these complexes (Dehghanpour et al., 2006; Saha et al., 2010, 2011a, 2011b; Habibi et al., 2007). Effort has been devoted to design and synthesis of new Schiff base ligands to control the geometry and properties of copper(I) complexes (Morshedi et al., 2009). Most of the studies have been on tetrahedral copper(I) complexes of the type [Cu(LL)2]+ and Cu(LL)P2]+ where LL is a diimine and P is a phosphane (Massa et al., 2009; Dehghanpour et al., 2008; Chen et al., 2012; Roy et al., 2011). Although reports of copper(I) complexes are numerous, limited work has been done on mixed ligand copper(I) complexes of the type [Cu(Schiff base)PX] (X= Cl, Br, I) (Dehghanpour et al., 2006; Saha et al., 2010, 2011a, 2011b; Habibi et al., 2007; Morshedi et al., 2009; Al-Fayez et al., 2007; Kickelbick et al., 2003). This study is a part of our ongoing efforts to synthesize and characterize copper(I) complexes with bidentate Schiff base ligands.

The molecular structure with the atom-numbering scheme is presented in Fig. 1, and the bond lengths (Allen et al., 1987) and angles are generally normal. The copper(I) is coordinated by two nitrogen atoms of the bidentate Schiff-base ligand, one P atom of triphenylphosphane and one I atom. Although a tetrahedral geometry might be expected for a four coordinate copper(I) centre, the geometry around the copper(I) ion is distorted by the restricting bite angle N1—Cu1—N2 [79.3 (2)°] of the chelating Schiff-base ligand.

Related literature top

For related structures and their applications, see: Dehghanpour et al. (2006, 2008); Saha et al. (2010, 2011a,b); Habibi et al. (2007); Morshedi et al. (2009); Al-Fayez et al. (2007); Kickelbick et al. (2003); Massa et al. (2009); Chen et al. (2012); Roy et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a stirring solution of 190 mg (1 mmol) CuI in 5 ml of acetonitrile was added dropwise 263 mg (1 mmol) of triphenylphosphane in 5 ml acetonitrile. The mixture was stirred for 30 min and then 261 mg (1 mmol) of ligand, 4-bromophenylpyridine-2-ylmethyleneamine, in 10 ml acetonitrile was added and stirred for an additional 20 min. The volume of the solvent was reduced under vacuum to about 5 ml. The diffusion of diethyl ether vapor into the concentration solution gave dark red crystals. The crystals were filtered off and washed with Et2O. Yield: 65%. Anal. Calc. for C30H24N2CuPBrI: C, 50.48; H, 3.38; N, 3.93%. Found: C, 50.55; H, 3.51; N, 3.78%.

Refinement top

All hydrogen atoms were positioned geometrically and treated as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom.

Structure description top

The coordination chemistry of copper(I) complexes with bidentate diimine ligands, such as bipyridine and phenanthroline, has received much attention over the last decade due to the many applications of these complexes (Dehghanpour et al., 2006; Saha et al., 2010, 2011a, 2011b; Habibi et al., 2007). Effort has been devoted to design and synthesis of new Schiff base ligands to control the geometry and properties of copper(I) complexes (Morshedi et al., 2009). Most of the studies have been on tetrahedral copper(I) complexes of the type [Cu(LL)2]+ and Cu(LL)P2]+ where LL is a diimine and P is a phosphane (Massa et al., 2009; Dehghanpour et al., 2008; Chen et al., 2012; Roy et al., 2011). Although reports of copper(I) complexes are numerous, limited work has been done on mixed ligand copper(I) complexes of the type [Cu(Schiff base)PX] (X= Cl, Br, I) (Dehghanpour et al., 2006; Saha et al., 2010, 2011a, 2011b; Habibi et al., 2007; Morshedi et al., 2009; Al-Fayez et al., 2007; Kickelbick et al., 2003). This study is a part of our ongoing efforts to synthesize and characterize copper(I) complexes with bidentate Schiff base ligands.

The molecular structure with the atom-numbering scheme is presented in Fig. 1, and the bond lengths (Allen et al., 1987) and angles are generally normal. The copper(I) is coordinated by two nitrogen atoms of the bidentate Schiff-base ligand, one P atom of triphenylphosphane and one I atom. Although a tetrahedral geometry might be expected for a four coordinate copper(I) centre, the geometry around the copper(I) ion is distorted by the restricting bite angle N1—Cu1—N2 [79.3 (2)°] of the chelating Schiff-base ligand.

For related structures and their applications, see: Dehghanpour et al. (2006, 2008); Saha et al. (2010, 2011a,b); Habibi et al. (2007); Morshedi et al. (2009); Al-Fayez et al. (2007); Kickelbick et al. (2003); Massa et al. (2009); Chen et al. (2012); Roy et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[4-Bromo-N-(pyridin-2-ylmethylidene)aniline- κ2N,N']iodido(triphenylphosphane-κP)copper(I) top
Crystal data top
[CuI(C12H9BrN2)(C18H15P)]F(000) = 1400
Mr = 713.9Dx = 1.734 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 5306 reflections
a = 10.3141 (5) Åθ = 2.9–27.0°
b = 34.7124 (16) ŵ = 3.47 mm1
c = 8.3792 (4) ÅT = 120 K
β = 114.321 (6)°Needle, red
V = 2733.7 (3) Å30.49 × 0.04 × 0.03 mm
Z = 4
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
5893 independent reflections
Radiation source: Enhance (Mo) X-ray Source4325 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.4 pixels mm-1θmax = 27.2°, θmin = 2.9°
Rotation method data acquisition using ω scansh = 1213
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 4443
Tmin = 0.914, Tmax = 1.000l = 1010
14996 measured reflections
Refinement top
Refinement on F296 constraints
R[F > 3σ(F)] = 0.038H-atom parameters constrained
wR(F) = 0.110Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.19(Δ/σ)max = 0.028
5893 reflectionsΔρmax = 0.70 e Å3
325 parametersΔρmin = 0.65 e Å3
0 restraints
Crystal data top
[CuI(C12H9BrN2)(C18H15P)]V = 2733.7 (3) Å3
Mr = 713.9Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3141 (5) ŵ = 3.47 mm1
b = 34.7124 (16) ÅT = 120 K
c = 8.3792 (4) Å0.49 × 0.04 × 0.03 mm
β = 114.321 (6)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
5893 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4325 reflections with I > 3σ(I)
Tmin = 0.914, Tmax = 1.000Rint = 0.048
14996 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0380 restraints
wR(F) = 0.110H-atom parameters constrained
S = 1.19Δρmax = 0.70 e Å3
5893 reflectionsΔρmin = 0.65 e Å3
325 parameters
Special details top

Experimental. CrysAlisPro (Agilent, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.78044 (3)0.068800 (9)0.72718 (4)0.02639 (13)
Cu10.59846 (6)0.079263 (17)0.39909 (7)0.0238 (2)
Br11.00314 (6)0.252746 (15)0.34867 (7)0.0330 (2)
P10.41099 (13)0.11517 (4)0.35881 (16)0.0221 (4)
N10.7265 (4)0.09533 (11)0.2668 (5)0.0210 (14)
N20.6081 (4)0.02740 (12)0.2802 (5)0.0239 (15)
C10.7562 (5)0.06704 (13)0.1899 (6)0.0246 (18)
C20.6948 (5)0.02930 (14)0.1929 (6)0.0249 (17)
C30.7260 (5)0.00216 (14)0.1148 (6)0.0277 (18)
C40.6666 (5)0.03762 (15)0.1227 (6)0.032 (2)
C50.5758 (5)0.03981 (15)0.2079 (6)0.0315 (19)
C60.5512 (5)0.00660 (14)0.2856 (6)0.0275 (18)
C70.7877 (5)0.13217 (14)0.2721 (6)0.0229 (17)
C80.8508 (5)0.14430 (14)0.1607 (6)0.029 (2)
C90.9133 (5)0.18024 (15)0.1828 (6)0.030 (2)
C100.9110 (5)0.20401 (14)0.3131 (6)0.0259 (18)
C110.8463 (5)0.19317 (14)0.4213 (6)0.0292 (19)
C120.7854 (5)0.15713 (14)0.4002 (6)0.0257 (18)
C130.4456 (5)0.16036 (14)0.4825 (6)0.0247 (18)
C140.5628 (5)0.16325 (14)0.6392 (6)0.0270 (19)
C150.5972 (5)0.19795 (15)0.7293 (7)0.033 (2)
C160.5145 (6)0.23034 (15)0.6643 (7)0.035 (2)
C170.3958 (6)0.22751 (15)0.5099 (7)0.037 (2)
C180.3608 (6)0.19342 (14)0.4189 (7)0.033 (2)
C190.3142 (5)0.13315 (13)0.1366 (6)0.0246 (18)
C200.3927 (5)0.15205 (14)0.0564 (6)0.0274 (19)
C210.3251 (5)0.16944 (14)0.1052 (6)0.029 (2)
C220.1783 (5)0.16791 (14)0.1889 (6)0.031 (2)
C230.1010 (5)0.14853 (14)0.1132 (6)0.0285 (19)
C240.1677 (5)0.13116 (14)0.0487 (6)0.0271 (19)
C250.2723 (5)0.09130 (14)0.4047 (6)0.0235 (17)
C260.2011 (5)0.10822 (14)0.4975 (6)0.0248 (18)
C270.0987 (5)0.08829 (14)0.5314 (6)0.0255 (18)
C280.0620 (5)0.05149 (14)0.4687 (6)0.0265 (18)
C290.1315 (5)0.03393 (15)0.3733 (6)0.030 (2)
C300.2352 (5)0.05376 (14)0.3424 (6)0.0263 (19)
H10.817890.0705790.1310670.0295*
H30.7879270.0003990.0557490.0332*
H40.6876430.0600780.0708360.0387*
H50.530860.0637140.2129690.0378*
H60.4900790.0084910.3460820.033*
H80.850540.1276070.0691470.0346*
H90.957840.1885490.1081780.0365*
H110.8437660.2104140.5095570.0351*
H120.7406910.1491880.4751330.0308*
H140.6214520.1410250.6869390.0324*
H150.6796710.1994450.8383990.0399*
H160.5397220.2543850.7261130.0422*
H170.336340.2496910.464630.0447*
H180.2774440.1921150.3106560.0391*
H200.4946590.1528420.1149230.0329*
H210.3791890.1824240.1586210.0346*
H220.1299470.1803620.3001970.0375*
H230.0007010.1471180.1739890.0341*
H240.1126990.1177910.0999320.0325*
H260.2236030.1342330.5384790.0297*
H270.053530.1001870.5986760.0306*
H280.0103080.0377870.489660.0318*
H290.1066180.0081690.3297750.0359*
H300.2820970.0416430.2775930.0315*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03169 (19)0.02779 (19)0.02021 (17)0.00070 (14)0.01123 (14)0.00064 (12)
Cu10.0255 (3)0.0265 (3)0.0224 (3)0.0003 (3)0.0128 (3)0.0009 (2)
Br10.0418 (3)0.0281 (3)0.0311 (3)0.0068 (2)0.0171 (3)0.0001 (2)
P10.0252 (6)0.0227 (6)0.0213 (6)0.0001 (5)0.0125 (5)0.0004 (5)
N10.022 (2)0.025 (2)0.0164 (19)0.0010 (17)0.0088 (17)0.0026 (15)
N20.025 (2)0.028 (2)0.0180 (19)0.0004 (18)0.0078 (17)0.0006 (16)
C10.024 (2)0.032 (3)0.020 (2)0.006 (2)0.012 (2)0.0057 (19)
C20.024 (2)0.032 (3)0.015 (2)0.001 (2)0.004 (2)0.0013 (19)
C30.031 (3)0.030 (3)0.022 (2)0.003 (2)0.010 (2)0.001 (2)
C40.045 (3)0.028 (3)0.020 (2)0.005 (2)0.010 (2)0.004 (2)
C50.033 (3)0.026 (3)0.027 (3)0.002 (2)0.004 (2)0.001 (2)
C60.027 (3)0.029 (3)0.021 (2)0.003 (2)0.005 (2)0.0006 (19)
C70.022 (2)0.028 (3)0.019 (2)0.001 (2)0.009 (2)0.0023 (19)
C80.040 (3)0.029 (3)0.022 (3)0.001 (2)0.018 (2)0.002 (2)
C90.035 (3)0.035 (3)0.027 (3)0.000 (2)0.019 (2)0.002 (2)
C100.028 (3)0.026 (3)0.022 (2)0.001 (2)0.008 (2)0.0009 (19)
C110.037 (3)0.030 (3)0.023 (2)0.002 (2)0.016 (2)0.005 (2)
C120.029 (3)0.030 (3)0.022 (2)0.002 (2)0.013 (2)0.0013 (19)
C130.029 (3)0.026 (3)0.024 (2)0.003 (2)0.016 (2)0.0022 (19)
C140.030 (3)0.028 (3)0.028 (3)0.001 (2)0.017 (2)0.002 (2)
C150.031 (3)0.039 (3)0.031 (3)0.005 (2)0.013 (2)0.007 (2)
C160.043 (3)0.023 (3)0.045 (3)0.003 (2)0.024 (3)0.008 (2)
C170.043 (3)0.022 (3)0.047 (3)0.000 (2)0.018 (3)0.004 (2)
C180.036 (3)0.028 (3)0.034 (3)0.001 (2)0.016 (3)0.001 (2)
C190.035 (3)0.019 (2)0.024 (2)0.002 (2)0.015 (2)0.0018 (18)
C200.027 (3)0.028 (3)0.030 (3)0.002 (2)0.014 (2)0.004 (2)
C210.038 (3)0.026 (3)0.030 (3)0.004 (2)0.021 (2)0.003 (2)
C220.043 (3)0.031 (3)0.020 (2)0.010 (2)0.012 (2)0.002 (2)
C230.029 (3)0.031 (3)0.025 (3)0.001 (2)0.010 (2)0.004 (2)
C240.032 (3)0.028 (3)0.025 (3)0.001 (2)0.015 (2)0.002 (2)
C250.025 (2)0.027 (3)0.019 (2)0.002 (2)0.009 (2)0.0028 (18)
C260.029 (3)0.024 (3)0.022 (2)0.000 (2)0.011 (2)0.0003 (18)
C270.025 (2)0.031 (3)0.024 (2)0.002 (2)0.013 (2)0.001 (2)
C280.023 (2)0.031 (3)0.025 (2)0.005 (2)0.009 (2)0.003 (2)
C290.035 (3)0.023 (3)0.032 (3)0.001 (2)0.013 (2)0.003 (2)
C300.029 (3)0.026 (3)0.026 (3)0.002 (2)0.014 (2)0.003 (2)
Geometric parameters (Å, º) top
I1—Cu12.6386 (7)C13—C181.408 (7)
Cu1—P12.2065 (15)C14—C151.388 (7)
Cu1—N12.119 (5)C14—H140.96
Cu1—N22.080 (4)C15—C161.380 (7)
Br1—C101.903 (5)C15—H150.96
P1—C131.832 (5)C16—C171.370 (7)
P1—C191.823 (4)C16—H160.96
P1—C251.826 (6)C17—C181.373 (7)
N1—C11.279 (7)C17—H170.96
N1—C71.419 (6)C18—H180.96
N2—C21.371 (7)C19—C201.409 (8)
N2—C61.327 (6)C19—C241.384 (7)
C1—C21.460 (7)C20—C211.381 (6)
C1—H10.96C20—H200.96
C2—C31.377 (7)C21—C221.383 (7)
C3—C41.388 (7)C21—H210.96
C3—H30.96C22—C231.382 (9)
C4—C51.394 (9)C22—H220.96
C4—H40.96C23—C241.381 (6)
C5—C61.398 (8)C23—H230.96
C5—H50.96C24—H240.96
C6—H60.96C25—C261.399 (8)
C7—C81.405 (8)C25—C301.397 (7)
C7—C121.387 (7)C26—C271.386 (8)
C8—C91.381 (7)C26—H260.96
C8—H80.96C27—C281.374 (7)
C9—C101.377 (8)C27—H270.96
C9—H90.96C28—C291.413 (8)
C10—C111.381 (8)C28—H280.96
C11—C121.378 (7)C29—C301.384 (8)
C11—H110.96C29—H290.96
C12—H120.96C30—H300.96
C13—C141.374 (6)
I1—Cu1—P1116.08 (4)P1—C13—C14119.5 (4)
I1—Cu1—N1104.61 (8)P1—C13—C18122.6 (3)
I1—Cu1—N2103.06 (9)C14—C13—C18117.8 (4)
P1—Cu1—N1117.84 (11)C13—C14—C15120.7 (4)
P1—Cu1—N2128.86 (10)C13—C14—H14119.66
N1—Cu1—N279.31 (17)C15—C14—H14119.6609
Cu1—P1—C13116.28 (16)C14—C15—C16121.0 (4)
Cu1—P1—C19115.2 (2)C14—C15—H15119.5162
Cu1—P1—C25115.14 (16)C16—C15—H15119.5164
C13—P1—C19100.5 (2)C15—C16—C17118.7 (5)
C13—P1—C25104.8 (3)C15—C16—H16120.6387
C19—P1—C25102.9 (2)C17—C16—H16120.6398
Cu1—N1—C1113.1 (3)C16—C17—C18121.0 (5)
Cu1—N1—C7125.9 (3)C16—C17—H17119.5157
C1—N1—C7120.8 (5)C18—C17—H17119.5157
Cu1—N2—C2112.6 (3)C13—C18—C17120.8 (4)
Cu1—N2—C6130.1 (4)C13—C18—H18119.5977
C2—N2—C6117.1 (4)C17—C18—H18119.598
N1—C1—C2119.0 (5)P1—C19—C20117.8 (3)
N1—C1—H1120.4965P1—C19—C24123.0 (4)
C2—C1—H1120.4972C20—C19—C24119.1 (4)
N2—C2—C1115.8 (5)C19—C20—C21120.9 (5)
N2—C2—C3123.1 (5)C19—C20—H20119.5623
C1—C2—C3121.1 (5)C21—C20—H20119.5601
C2—C3—C4119.1 (6)C20—C21—C22119.1 (5)
C2—C3—H3120.4409C20—C21—H21120.4332
C4—C3—H3120.442C22—C21—H21120.4324
C3—C4—C5118.4 (5)C21—C22—C23120.3 (4)
C3—C4—H4120.8107C21—C22—H22119.8737
C5—C4—H4120.8119C23—C22—H22119.8726
C4—C5—C6118.9 (5)C22—C23—C24121.0 (5)
C4—C5—H5120.5658C22—C23—H23119.4855
C6—C5—H5120.566C24—C23—H23119.4861
N2—C6—C5123.4 (6)C19—C24—C23119.6 (5)
N2—C6—H6118.315C19—C24—H24120.2034
C5—C6—H6118.317C23—C24—H24120.2026
N1—C7—C8124.8 (4)P1—C25—C26124.2 (4)
N1—C7—C12116.0 (5)P1—C25—C30117.5 (4)
C8—C7—C12119.2 (5)C26—C25—C30118.3 (5)
C7—C8—C9120.0 (5)C25—C26—C27121.5 (4)
C7—C8—H8120.0129C25—C26—H26119.2398
C9—C8—H8120.0148C27—C26—H26119.2411
C8—C9—C10119.2 (6)C26—C27—C28119.9 (5)
C8—C9—H9120.3841C26—C27—H27120.0454
C10—C9—H9120.3841C28—C27—H27120.0454
Br1—C10—C9119.1 (4)C27—C28—C29119.6 (5)
Br1—C10—C11119.0 (4)C27—C28—H28120.2082
C9—C10—C11121.9 (5)C29—C28—H28120.2108
C10—C11—C12118.7 (5)C28—C29—C30120.2 (5)
C10—C11—H11120.6268C28—C29—H29119.904
C12—C11—H11120.6295C30—C29—H29119.9041
C7—C12—C11120.9 (5)C25—C30—C29120.5 (5)
C7—C12—H12119.5252C25—C30—H30119.7526
C11—C12—H12119.5264C29—C30—H30119.7517

Experimental details

Crystal data
Chemical formula[CuI(C12H9BrN2)(C18H15P)]
Mr713.9
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)10.3141 (5), 34.7124 (16), 8.3792 (4)
β (°) 114.321 (6)
V3)2733.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.47
Crystal size (mm)0.49 × 0.04 × 0.03
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.914, 1.000
No. of measured, independent and
observed [I > 3σ(I)] reflections
14996, 5893, 4325
Rint0.048
(sin θ/λ)max1)0.644
Refinement
R[F > 3σ(F)], wR(F), S 0.038, 0.110, 1.19
No. of reflections5893
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.65

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
I1—Cu12.6386 (7)Cu1—N12.119 (5)
Cu1—P12.2065 (15)Cu1—N22.080 (4)
 

Acknowledgements

We acknowledge Golestan University and Shahrood University of Technology for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Fayez, S., Abdel-Rahman, L. H., Shemsi, A. M., Seddigi, Z. S. & Fettouhi, M. (2007). J. Chem. Crystallogr. 37, 517–521.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChen, J.-L., Cao, X.-F., Gu, W., Su, B.-T., Zhang, F., Wen, H.-R. & Hong, R. (2012). Inorg. Chem. Commun. 15, 65–68.  Web of Science CSD CrossRef Google Scholar
First citationDehghanpour, S., Fotouhi, L., Mohammadpour Amini, M., Khavasi, H. R., Jahani, K., Nouroozi, F. & Zamanifar, E. (2008). J. Coord. Chem. 61, 455–463.  Web of Science CSD CrossRef CAS Google Scholar
First citationDehghanpour, S., Mahmoudkhani, A. H. & Amirnasr, M. (2006). Struct. Chem. 17, 255–262.  Web of Science CSD CrossRef CAS Google Scholar
First citationHabibi, M. H., Montazerozohori, M., Barati, K., Harrington, R. W. & Clegg, W. (2007). Anal. Sci. 23, x45–x46.  CAS Google Scholar
First citationKickelbick, G., Amirnasr, M., Khalaji, A. D. & Dehghanpour, S. (2003). Aust. J. Chem. 56, 323–328.  Web of Science CSD CrossRef CAS Google Scholar
First citationMassa, W., Dehghanpour, S. & Jahani, K. (2009). Inorg. Chim. Acta, 362, 2872–2878.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorshedi, M., Amirnasr, M., Slawin, A. M. Z., Woollins, J. D. & Khalaji, A. D. (2009). Polyhedron, 28, 167–171.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRoy, S., Mondal, T. K., Mitra, P., Torres, E. L. & Sinha, S. (2011). Polyhedron, 30, 913–922.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaha, G., Datta, P., Sarkar, K. K., Saha, R., Mostafa, G. & Sinha, C. (2011a). Polyhedron, 30, 614–623.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaha, G., Sarkar, K. K., Datta, P., Raghavaiah, P. & Sinha, C. (2010). Polyhedron, 29, 2098–2104.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaha, G., Sarkar, K. K., Mondal, T. K. & Sinha, C. (2011b). Inorg. Chim. Acta, 387, 240–247.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds