organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

17α-Acet­­oxy-11β-hy­dr­oxy-6α-methyl­pregn-4-ene-3,20-dione

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Biochemistry, Faculty of Sciences, King Abdul Aziz University, Jaddah 21589, Saudi Arabia
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 4 April 2012; accepted 20 April 2012; online 13 June 2012)

The title compound, C24H34O5, a fungal-transformed metabolite of the injecta­ble contraceptive medroxyprogesterone acetate, consists of four fused rings (A, B, C and D; steroid labelling). Ring A exists in a half-chair conformation while trans-fused rings B and C adopt chair conformations. The five-membered ring D adopts an envelope conformation with the C atom bound to the methyl group at the flap. In the crystal, adjacent mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming infinite chains along the a axis.

Related literature

For biotransformational studies, see: Manosroi et al. (2006[Manosroi, J., Chisti, Y. & Manosroi, A. (2006). Appl. Biochem. Microbiol. 42, 479-483.]), Choudhary et al. (2005[Choudhary, M. I., Batool, I., Shah, S. A. A., Nawaz, S. A., & Atta-ur-Rahman (2005). Chem. Pharm. Bull. 53, 1455-1459.]). For the crystal structures of closely related compounds, see: Yousuf et al. (2011[Yousuf, S., Bibi, M. & Choudhary, M. I. (2011). Acta Cryst. E67, o2122.], 2010[Yousuf, S., Zafar, S., Choudhary, M. I. & Ng, S. W. (2010). Acta Cryst. E66, o2894.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H34O5

  • Mr = 402.51

  • Orthorhombic, P 21 21 21

  • a = 8.2020 (6) Å

  • b = 9.8957 (8) Å

  • c = 27.972 (2) Å

  • V = 2270.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.33 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.987

  • 13528 measured reflections

  • 2431 independent reflections

  • 1777 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.101

  • S = 1.01

  • 2431 reflections

  • 267 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O5i 0.82 2.01 2.831 (3) 174
C23—H23C⋯O4ii 0.96 2.60 3.494 (5) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Biotransformation has been extensively applied in the production of several therapeutically important steroids on commercial scale. Such studies are done by utilizing the capability of microorganisms to convert a wide range of organic compounds into their modified derivatives and are very much useful in the production of hydoxylated metabolites (Manosroi et al., 2006; Choudhary et al., 2005). In the current biotransformational study of commonly used injectable contraceptive medroxyprogesterone acetate (17α-acetoxy-6α-methylpregn-4-ene-3,20-dione; MPA), was carried out by using Cunninghamella blakesleeana to obtain the title compound.

The title molecule (Fig. 1), is composed of four fused rings, ring A (C1–C5/C10), B (C5–C10), C (C8–C9/C11–C14) and D (C13–C17). The ring A adopts a half-chair conformation [puckering parameters (Cremer & Pople, 1975): Q = 0.450 (3) Å, θ = 123.4 (3)° and φ = 188.9 (5)°]. The trans fused rings B [Q = 0.535 (3) Å, θ = 172.5 (3)° and φ = 45 (3)°] and C [Q = 0.456 (3) Å, θ = 171.1 (3)° and φ = 84 (2)°] are in chiar conformations, whereas ring D [Q = 0.462 (3) Å and φ = 10.3 (4)°] adopts a C13-envelop conformation with maximum deviation of atom C13 atom from the least square plane formed by the remaining ring atoms is 0.697 (0.005) Å.

The acetyl and acetoxy substituents on C-17 exist in pseudo equatorial and axial orientations, respectively. Whereas C-11 hydroxy substituent adopts an axial orientaion. In the crystal structure, the molecules are linked by O2–H2A···O5 and C23–H23C···O4 interactions to form infinite chains running along the a-axix (Fig. 2, Table 1). The bond distances and bond angles in the title molecule are similar to those found in closely related compounds (Yousuf et al., 2010; 2011).

Related literature top

For biotransformational studies, see: Manosroi et al. (2006), Choudhary et al. (2005). For the crystal structures of closely related compounds, see: Yousuf et al. (2011, 2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Fungi and Culture condition:

Cultures of Cunninghamella blakesleeana (ATCC 9244) were grown on Sabouraud dextrose agar at 298 K and stored at 277 K. Broth media was prepared by mixing the following ingredients into distilled H2O (6.0 l): glucose (60.0 g), glycerol (60.0 ml), bacteriological peptone (30.0 g), yeast extract (30.0 g), KH2PO4 (30.0 g), and NaCl (30.0 g).

Fementation of medroxyprogesterone acetate:

The fungal media were transferred into 60 conical flasks (100 ml each) and autoclaved at 394 K. Seed flasks were prepared from three-day old slants of Cunninghamella blakesleeana (ATCC 9244) and fermentation was allowed for 4 days on a rotary shaker at 299 K. The remaining flasks were inoculated from the seed flasks. After sufficient growth of culture, medroxyprogesterone acetate (0.9 g) was dissolved in acetone (60 ml) and transferred into each flask (15 mg ml-1) and kept for 10 days. The culture media were filtered and extracted with dichloromethane. The extract was dried over anhydrous Na2SO4 and evaporated under reduced pressure to get brown gummy material (1.2 g) which was subjected to fractionation on silica gel column with petroleum ethe r- ethyl acetate with increasing polarity. The fraction obtained using 45% ethyl acetate in petroleum ether was finally purified by using Reversed Phase - High Performance Liquid Chromatography (RP-HPLC) (L-80, methanol-water 80:20 as solvent, retention time 28 min) to obtain the title compound which was recrystalized from methanol.

Refinement top

H atoms on methyl, methylene, methine and oxygen were positioned geometrically with C—H = 0.96 Å, 0.97 Å, 0.93 Å and O—H = 0.82 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq (CH2, CH and OH) and 1.5Ueq(CH3). A rotating group model was applied to the methyl groups. An absolute structure could not be established due to lack of anomalous dispersion effects. Therefore, 1684 Friedel pairs were merged.

Structure description top

Biotransformation has been extensively applied in the production of several therapeutically important steroids on commercial scale. Such studies are done by utilizing the capability of microorganisms to convert a wide range of organic compounds into their modified derivatives and are very much useful in the production of hydoxylated metabolites (Manosroi et al., 2006; Choudhary et al., 2005). In the current biotransformational study of commonly used injectable contraceptive medroxyprogesterone acetate (17α-acetoxy-6α-methylpregn-4-ene-3,20-dione; MPA), was carried out by using Cunninghamella blakesleeana to obtain the title compound.

The title molecule (Fig. 1), is composed of four fused rings, ring A (C1–C5/C10), B (C5–C10), C (C8–C9/C11–C14) and D (C13–C17). The ring A adopts a half-chair conformation [puckering parameters (Cremer & Pople, 1975): Q = 0.450 (3) Å, θ = 123.4 (3)° and φ = 188.9 (5)°]. The trans fused rings B [Q = 0.535 (3) Å, θ = 172.5 (3)° and φ = 45 (3)°] and C [Q = 0.456 (3) Å, θ = 171.1 (3)° and φ = 84 (2)°] are in chiar conformations, whereas ring D [Q = 0.462 (3) Å and φ = 10.3 (4)°] adopts a C13-envelop conformation with maximum deviation of atom C13 atom from the least square plane formed by the remaining ring atoms is 0.697 (0.005) Å.

The acetyl and acetoxy substituents on C-17 exist in pseudo equatorial and axial orientations, respectively. Whereas C-11 hydroxy substituent adopts an axial orientaion. In the crystal structure, the molecules are linked by O2–H2A···O5 and C23–H23C···O4 interactions to form infinite chains running along the a-axix (Fig. 2, Table 1). The bond distances and bond angles in the title molecule are similar to those found in closely related compounds (Yousuf et al., 2010; 2011).

For biotransformational studies, see: Manosroi et al. (2006), Choudhary et al. (2005). For the crystal structures of closely related compounds, see: Yousuf et al. (2011, 2010). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. A view of the O—H···O and C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
17α-acetoxy-11β-hydroxy-6α-methylpregn-4-ene-3,20-dione top
Crystal data top
C24H34O5F(000) = 872
Mr = 402.51Dx = 1.178 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1475 reflections
a = 8.2020 (6) Åθ = 2.2–19.5°
b = 9.8957 (8) ŵ = 0.08 mm1
c = 27.972 (2) ÅT = 273 K
V = 2270.3 (3) Å3Block, colorles
Z = 40.33 × 0.20 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2431 independent reflections
Radiation source: fine-focus sealed tube1777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scanθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 97
Tmin = 0.974, Tmax = 0.987k = 1111
13528 measured reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.1706P]
where P = (Fo2 + 2Fc2)/3
2431 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C24H34O5V = 2270.3 (3) Å3
Mr = 402.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2020 (6) ŵ = 0.08 mm1
b = 9.8957 (8) ÅT = 273 K
c = 27.972 (2) Å0.33 × 0.20 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1777 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.987Rint = 0.059
13528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2431 reflectionsΔρmin = 0.14 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6641 (4)0.1828 (3)0.17149 (9)0.0882 (10)
O20.3221 (3)0.1326 (2)0.39265 (7)0.0619 (7)
H2A0.33290.12580.42170.093*
O30.0823 (3)0.60806 (19)0.42778 (7)0.0436 (6)
O40.0792 (4)0.7315 (3)0.47488 (10)0.0782 (9)
O50.1463 (4)0.4106 (3)0.50772 (7)0.0625 (7)
C10.5406 (4)0.1962 (3)0.29492 (11)0.0468 (8)
H1A0.57180.29060.29670.056*
H1B0.57410.15320.32450.056*
C20.6306 (4)0.1302 (4)0.25352 (12)0.0552 (9)
H2B0.74670.14610.25700.066*
H2C0.61250.03340.25440.066*
C30.5756 (5)0.1838 (3)0.20657 (13)0.0537 (9)
C40.4080 (4)0.2317 (3)0.20399 (12)0.0498 (9)
H4A0.37200.26660.17500.060*
C50.3024 (4)0.2291 (3)0.24025 (10)0.0370 (7)
C60.1224 (4)0.2521 (3)0.23329 (10)0.0420 (8)
H6A0.07040.16340.23660.050*
C70.0494 (4)0.3411 (3)0.27257 (9)0.0385 (7)
H7A0.08600.43330.26770.046*
H7B0.06840.34040.26940.046*
C80.0932 (4)0.2984 (3)0.32326 (9)0.0331 (7)
H8A0.04450.20990.32990.040*
C90.2785 (3)0.2875 (3)0.32747 (9)0.0316 (7)
H9A0.31880.37650.31760.038*
C100.3551 (4)0.1871 (3)0.29062 (10)0.0358 (7)
C110.3415 (4)0.2700 (3)0.37900 (10)0.0444 (8)
H11A0.45870.28940.37870.053*
C120.2616 (4)0.3688 (3)0.41426 (10)0.0414 (8)
H12A0.29370.34470.44650.050*
H12B0.30170.45930.40790.050*
C130.0766 (4)0.3693 (3)0.41118 (10)0.0353 (7)
C140.0284 (4)0.4012 (3)0.35941 (9)0.0315 (7)
H14A0.07960.48780.35150.038*
C150.1546 (4)0.4277 (3)0.36200 (10)0.0436 (8)
H15A0.21560.34380.36030.052*
H15B0.18950.48660.33620.052*
C160.1776 (4)0.4969 (3)0.41121 (10)0.0446 (8)
H16A0.20880.59070.40700.053*
H16B0.26220.45150.42940.053*
C170.0141 (4)0.4875 (3)0.43735 (10)0.0387 (8)
C180.0023 (4)0.2353 (3)0.42872 (11)0.0505 (9)
H18A0.02940.16440.40670.076*
H18B0.11400.24410.43070.076*
H18C0.04530.21380.45970.076*
C190.3006 (4)0.0393 (3)0.29747 (12)0.0489 (9)
H19A0.32790.01200.26950.073*
H19B0.18490.03640.30250.073*
H19C0.35520.00150.32470.073*
C200.0259 (5)0.4646 (3)0.49130 (11)0.0468 (9)
C210.1183 (5)0.4973 (4)0.52202 (11)0.0694 (12)
H21A0.08240.54340.55030.104*
H21B0.19210.55430.50460.104*
H21C0.17290.41520.53080.104*
C220.0342 (5)0.7246 (3)0.44810 (12)0.0529 (9)
C230.1423 (6)0.8383 (3)0.43387 (14)0.0734 (12)
H23A0.08040.92060.43290.110*
H23B0.18730.82060.40280.110*
H23C0.22910.84720.45670.110*
C240.0737 (5)0.3052 (4)0.18406 (11)0.0640 (11)
H24A0.11680.24660.15980.096*
H24B0.11670.39460.17980.096*
H24C0.04300.30780.18160.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.074 (2)0.112 (2)0.0788 (19)0.0133 (19)0.0404 (17)0.0020 (17)
O20.099 (2)0.0503 (14)0.0370 (12)0.0260 (15)0.0086 (14)0.0050 (10)
O30.0552 (15)0.0343 (11)0.0412 (12)0.0046 (11)0.0072 (10)0.0033 (9)
O40.094 (2)0.0631 (17)0.0772 (18)0.0083 (17)0.0248 (17)0.0216 (15)
O50.081 (2)0.0647 (16)0.0420 (13)0.0101 (15)0.0218 (13)0.0063 (11)
C10.037 (2)0.0492 (19)0.054 (2)0.0016 (18)0.0014 (16)0.0095 (16)
C20.038 (2)0.056 (2)0.071 (2)0.0063 (17)0.0059 (18)0.0132 (19)
C30.050 (2)0.051 (2)0.060 (2)0.0005 (19)0.014 (2)0.0104 (17)
C40.051 (2)0.0498 (19)0.0481 (19)0.0005 (17)0.0079 (17)0.0028 (16)
C50.043 (2)0.0314 (15)0.0365 (16)0.0003 (15)0.0038 (15)0.0045 (13)
C60.043 (2)0.0492 (19)0.0342 (16)0.0006 (16)0.0056 (14)0.0050 (14)
C70.0350 (19)0.0440 (17)0.0364 (17)0.0029 (16)0.0041 (14)0.0025 (13)
C80.0358 (19)0.0327 (15)0.0307 (15)0.0036 (14)0.0014 (13)0.0003 (13)
C90.0303 (18)0.0312 (15)0.0334 (15)0.0000 (14)0.0012 (12)0.0023 (13)
C100.0339 (19)0.0341 (16)0.0395 (16)0.0014 (15)0.0026 (14)0.0046 (13)
C110.048 (2)0.0449 (18)0.0406 (17)0.0092 (17)0.0057 (16)0.0037 (15)
C120.048 (2)0.0453 (19)0.0311 (16)0.0030 (16)0.0076 (14)0.0013 (15)
C130.042 (2)0.0348 (16)0.0294 (15)0.0015 (15)0.0043 (14)0.0017 (13)
C140.033 (2)0.0310 (14)0.0306 (15)0.0008 (14)0.0007 (13)0.0013 (12)
C150.037 (2)0.0497 (19)0.0442 (18)0.0005 (16)0.0013 (16)0.0033 (15)
C160.046 (2)0.0473 (19)0.0404 (18)0.0013 (18)0.0096 (17)0.0001 (15)
C170.047 (2)0.0360 (16)0.0328 (17)0.0033 (15)0.0062 (15)0.0056 (13)
C180.066 (3)0.0397 (18)0.0459 (18)0.0063 (17)0.0062 (17)0.0076 (15)
C190.055 (2)0.0379 (17)0.0534 (19)0.0024 (17)0.0007 (18)0.0057 (15)
C200.066 (3)0.0411 (18)0.0338 (17)0.0042 (19)0.0106 (17)0.0015 (14)
C210.087 (3)0.085 (3)0.036 (2)0.002 (3)0.003 (2)0.0006 (19)
C220.074 (3)0.0394 (19)0.0450 (19)0.005 (2)0.0062 (19)0.0075 (16)
C230.105 (4)0.042 (2)0.073 (3)0.015 (2)0.012 (2)0.0018 (18)
C240.065 (3)0.088 (3)0.0385 (19)0.023 (2)0.0089 (17)0.0116 (19)
Geometric parameters (Å, º) top
O1—C31.220 (4)C11—H11A0.9800
O2—C111.421 (4)C12—C131.519 (4)
O2—H2A0.8199C12—H12A0.9700
O3—C221.344 (4)C12—H12B0.9700
O3—C171.456 (3)C13—C141.534 (4)
O4—C221.196 (4)C13—C181.540 (4)
O5—C201.213 (4)C13—C171.567 (4)
C1—C21.521 (4)C14—C151.525 (4)
C1—C101.529 (4)C14—H14A0.9800
C1—H1A0.9700C15—C161.549 (4)
C1—H1B0.9700C15—H15A0.9700
C2—C31.486 (5)C15—H15B0.9700
C2—H2B0.9700C16—C171.531 (4)
C2—H2C0.9700C16—H16A0.9700
C3—C41.456 (5)C16—H16B0.9700
C4—C51.334 (4)C17—C201.529 (4)
C4—H4A0.9300C18—H18A0.9600
C5—C61.507 (4)C18—H18B0.9600
C5—C101.531 (4)C18—H18C0.9600
C6—C241.527 (4)C19—H19A0.9600
C6—C71.530 (4)C19—H19B0.9600
C6—H6A0.9800C19—H19C0.9600
C7—C81.523 (4)C20—C211.497 (5)
C7—H7A0.9700C21—H21A0.9600
C7—H7B0.9700C21—H21B0.9600
C8—C91.528 (4)C21—H21C0.9600
C8—C141.530 (4)C22—C231.487 (5)
C8—H8A0.9800C23—H23A0.9600
C9—C111.541 (4)C23—H23B0.9600
C9—C101.563 (4)C23—H23C0.9600
C9—H9A0.9800C24—H24A0.9600
C10—C191.541 (4)C24—H24B0.9600
C11—C121.536 (4)C24—H24C0.9600
C11—O2—H2A109.5C12—C13—C18112.0 (3)
C22—O3—C17117.8 (3)C14—C13—C18112.1 (2)
C2—C1—C10113.5 (3)C12—C13—C17116.8 (3)
C2—C1—H1A108.9C14—C13—C1799.5 (2)
C10—C1—H1A108.9C18—C13—C17107.8 (2)
C2—C1—H1B108.9C15—C14—C8119.2 (2)
C10—C1—H1B108.9C15—C14—C13104.1 (2)
H1A—C1—H1B107.7C8—C14—C13113.4 (2)
C3—C2—C1111.9 (3)C15—C14—H14A106.4
C3—C2—H2B109.2C8—C14—H14A106.4
C1—C2—H2B109.2C13—C14—H14A106.4
C3—C2—H2C109.2C14—C15—C16103.8 (2)
C1—C2—H2C109.2C14—C15—H15A111.0
H2B—C2—H2C107.9C16—C15—H15A111.0
O1—C3—C4121.6 (4)C14—C15—H15B111.0
O1—C3—C2121.8 (3)C16—C15—H15B111.0
C4—C3—C2116.5 (3)H15A—C15—H15B109.0
C5—C4—C3124.7 (3)C17—C16—C15106.9 (3)
C5—C4—H4A117.7C17—C16—H16A110.3
C3—C4—H4A117.7C15—C16—H16A110.3
C4—C5—C6122.4 (3)C17—C16—H16B110.3
C4—C5—C10121.4 (3)C15—C16—H16B110.3
C6—C5—C10115.9 (2)H16A—C16—H16B108.6
C5—C6—C24115.1 (3)O3—C17—C20109.7 (2)
C5—C6—C7112.2 (2)O3—C17—C16109.7 (2)
C24—C6—C7110.3 (3)C20—C17—C16115.2 (3)
C5—C6—H6A106.2O3—C17—C13105.5 (2)
C24—C6—H6A106.2C20—C17—C13112.4 (2)
C7—C6—H6A106.2C16—C17—C13103.8 (2)
C8—C7—C6114.6 (2)C13—C18—H18A109.5
C8—C7—H7A108.6C13—C18—H18B109.5
C6—C7—H7A108.6H18A—C18—H18B109.5
C8—C7—H7B108.6C13—C18—H18C109.5
C6—C7—H7B108.6H18A—C18—H18C109.5
H7A—C7—H7B107.6H18B—C18—H18C109.5
C7—C8—C9109.0 (2)C10—C19—H19A109.5
C7—C8—C14110.4 (2)C10—C19—H19B109.5
C9—C8—C14110.0 (2)H19A—C19—H19B109.5
C7—C8—H8A109.1C10—C19—H19C109.5
C9—C8—H8A109.1H19A—C19—H19C109.5
C14—C8—H8A109.1H19B—C19—H19C109.5
C8—C9—C11114.4 (2)O5—C20—C21121.4 (3)
C8—C9—C10113.2 (2)O5—C20—C17119.4 (3)
C11—C9—C10114.2 (2)C21—C20—C17119.0 (3)
C8—C9—H9A104.5C20—C21—H21A109.5
C11—C9—H9A104.5C20—C21—H21B109.5
C10—C9—H9A104.5H21A—C21—H21B109.5
C1—C10—C5109.7 (3)C20—C21—H21C109.5
C1—C10—C19109.5 (3)H21A—C21—H21C109.5
C5—C10—C19106.8 (2)H21B—C21—H21C109.5
C1—C10—C9108.1 (2)O4—C22—O3122.8 (3)
C5—C10—C9108.7 (2)O4—C22—C23126.0 (3)
C19—C10—C9113.9 (2)O3—C22—C23111.2 (3)
O2—C11—C12112.9 (3)C22—C23—H23A109.5
O2—C11—C9108.7 (2)C22—C23—H23B109.5
C12—C11—C9112.7 (2)H23A—C23—H23B109.5
O2—C11—H11A107.4C22—C23—H23C109.5
C12—C11—H11A107.4H23A—C23—H23C109.5
C9—C11—H11A107.4H23B—C23—H23C109.5
C13—C12—C11113.1 (3)C6—C24—H24A109.5
C13—C12—H12A109.0C6—C24—H24B109.5
C11—C12—H12A109.0H24A—C24—H24B109.5
C13—C12—H12B109.0C6—C24—H24C109.5
C11—C12—H12B109.0H24A—C24—H24C109.5
H12A—C12—H12B107.8H24B—C24—H24C109.5
C12—C13—C14108.2 (2)
C10—C1—C2—C354.1 (4)C11—C12—C13—C1456.1 (3)
C1—C2—C3—O1153.9 (4)C11—C12—C13—C1867.9 (3)
C1—C2—C3—C428.9 (4)C11—C12—C13—C17167.2 (2)
O1—C3—C4—C5176.4 (4)C7—C8—C14—C1560.3 (3)
C2—C3—C4—C50.8 (5)C9—C8—C14—C15179.4 (3)
C3—C4—C5—C6166.9 (3)C7—C8—C14—C13176.6 (2)
C3—C4—C5—C106.4 (5)C9—C8—C14—C1356.2 (3)
C4—C5—C6—C2411.3 (5)C12—C13—C14—C15168.9 (2)
C10—C5—C6—C24175.1 (3)C18—C13—C14—C1567.2 (3)
C4—C5—C6—C7138.6 (3)C17—C13—C14—C1546.5 (3)
C10—C5—C6—C747.9 (4)C12—C13—C14—C860.0 (3)
C5—C6—C7—C849.1 (4)C18—C13—C14—C863.9 (3)
C24—C6—C7—C8178.9 (3)C17—C13—C14—C8177.6 (2)
C6—C7—C8—C953.6 (3)C8—C14—C15—C16162.3 (2)
C6—C7—C8—C14174.5 (2)C13—C14—C15—C1634.7 (3)
C7—C8—C9—C11169.6 (2)C14—C15—C16—C178.4 (3)
C14—C8—C9—C1148.4 (3)C22—O3—C17—C2056.0 (4)
C7—C8—C9—C1057.2 (3)C22—O3—C17—C1671.5 (3)
C14—C8—C9—C10178.4 (2)C22—O3—C17—C13177.3 (3)
C2—C1—C10—C547.7 (4)C15—C16—C17—O392.2 (3)
C2—C1—C10—C1969.3 (3)C15—C16—C17—C20143.4 (3)
C2—C1—C10—C9166.1 (2)C15—C16—C17—C1320.2 (3)
C4—C5—C10—C118.1 (4)C12—C13—C17—O341.0 (3)
C6—C5—C10—C1168.3 (3)C14—C13—C17—O375.0 (3)
C4—C5—C10—C19100.6 (3)C18—C13—C17—O3168.0 (2)
C6—C5—C10—C1973.0 (3)C12—C13—C17—C2078.5 (3)
C4—C5—C10—C9136.1 (3)C14—C13—C17—C20165.5 (3)
C6—C5—C10—C950.2 (3)C18—C13—C17—C2048.5 (3)
C8—C9—C10—C1174.2 (3)C12—C13—C17—C16156.4 (3)
C11—C9—C10—C152.4 (3)C14—C13—C17—C1640.4 (3)
C8—C9—C10—C555.2 (3)C18—C13—C17—C1676.6 (3)
C11—C9—C10—C5171.5 (3)O3—C17—C20—O5149.5 (3)
C8—C9—C10—C1963.8 (3)C16—C17—C20—O525.1 (4)
C11—C9—C10—C1969.5 (3)C13—C17—C20—O593.5 (4)
C8—C9—C11—O279.6 (3)O3—C17—C20—C2136.3 (4)
C10—C9—C11—O253.2 (4)C16—C17—C20—C21160.7 (3)
C8—C9—C11—C1246.4 (4)C13—C17—C20—C2180.8 (4)
C10—C9—C11—C12179.1 (3)C17—O3—C22—O43.1 (5)
O2—C11—C12—C1373.2 (3)C17—O3—C22—C23178.5 (3)
C9—C11—C12—C1350.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O5i0.822.012.831 (3)174
C23—H23C···O4ii0.962.603.494 (5)156
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC24H34O5
Mr402.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)8.2020 (6), 9.8957 (8), 27.972 (2)
V3)2270.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.974, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
13528, 2431, 1777
Rint0.059
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.101, 1.01
No. of reflections2431
No. of parameters267
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O5i0.822.012.831 (3)174
C23—H23C···O4ii0.962.603.494 (5)156
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1.
 

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhary, M. I., Batool, I., Shah, S. A. A., Nawaz, S. A., & Atta-ur-Rahman (2005). Chem. Pharm. Bull. 53, 1455-1459.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationManosroi, J., Chisti, Y. & Manosroi, A. (2006). Appl. Biochem. Microbiol. 42, 479–483.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousuf, S., Bibi, M. & Choudhary, M. I. (2011). Acta Cryst. E67, o2122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousuf, S., Zafar, S., Choudhary, M. I. & Ng, S. W. (2010). Acta Cryst. E66, o2894.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds