metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Octa­kis(di­methyl sulfoxide-κO)cerium(III) μ6-oxido-dodeca-μ2-oxido-hexa­oxidohexa­molybdate(VI) di­methyl sulfoxide tetrasolvate

aLaboratoire de Physico-Chimie des Matériaux, Université de Monastir, Faculté des Sciences de Monastir, Tunisia, and bSpectropole, Université d 'Aix-Marseille, Faculté des Science St-Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France
*Correspondence e-mail: salah_belkiria@yahoo.com

(Received 10 May 2012; accepted 7 June 2012; online 16 June 2012)

The title complex, [Ce(C2H6OS)8]2[Mo6O19]3·4C2H6OS, was obtained as a byproduct of the reaction of [(C4H9)4N]2[Mo6O19] with Ce(NO3)3·6H2O and phthalic acid in dimethyl­sulfoxide solution. The asymmetric unit consists of a complex [Ce(C2H6OS)8]3+ cation, one and a half of the Lindqvist-type [Mo6O19]2− polyanions and two dimethyl­sulfoxide solvent mol­ecules; the half polyanion lies on an inversion center. The Ce3+ ion is coordinated by eight dimethyl­sulfoxide ligands through the O atoms in the form of a distorted square antiprism. The Ce—O bond lengths range from 2.429 (6) to 2.550 (5) Å. The cohesion of the structure is ensured by S⋯O [3.115 (6), 3.242 (10) and 3.12 (3) Å], O⋯O [3.037 (10) Å] and C—H⋯O inter­actions between cations and anions. The S and C atoms of a dmso ligand are disordered over three sites in a 0.45:0.30:0.25 ratio. The dimethyl­sulfoxide solvent mol­ecules are highly disordered and could not be modelled successfully; their contribution was therefore removed from the refinement using the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. Potential solvent-accessible voids of 500.0 Å3 occur in the crystal structure.

Related literature

For general background, physical properties and applications of polyoxidometalates, see: Dolbecq et al. (2010[Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009-6048.]). For the synthesis of [(C4H9)4N]2[Mo6O19], see: Hur et al. (1990[Hur, N. H., Klemperer, W. G. & Wang, R.-C. (1990). Inorg. Synth. 27, 77-78.]). For related structures, see: Wang et al. (2003[Wang, X., Guo, Y., Li, Y., Wang, E., Hu, C. & Hu, N. (2003). Inorg. Chem. 42, 4135-4140.]); Koo & Lee (2006[Koo, B. & Lee, U. (2006). Inorg. Chim. Acta. 359, 2067-2071.]); Qiu et al. (2006[Qiu, Y., Xu, L., Gao, G., Wang, W. & Li, F. (2006). Inorg. Chim. Acta. 359, 451-458.]). For crystallographic analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce(C2H6OS)8]2[Mo6O19]3·4C2H6OS

  • Mr = 4481.72

  • Triclinic, [P \overline 1]

  • a = 13.4590 (2) Å

  • b = 15.4688 (3) Å

  • c = 17.6599 (4) Å

  • α = 90.281 (1)°

  • β = 98.468 (1)°

  • γ = 115.580 (1)°

  • V = 3270.48 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.75 mm−1

  • T = 223 K

  • 0.20 × 0.16 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.691, Tmax = 0.739

  • 69065 measured reflections

  • 12827 independent reflections

  • 10059 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.159

  • S = 1.04

  • 12827 reflections

  • 680 parameters

  • H-atom parameters constrained

  • Δρmax = 2.47 e Å−3

  • Δρmin = −1.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O13i 0.96 2.32 3.030 (14) 130
C6—H6B⋯O2ii 0.96 2.41 3.291 (18) 153
C11—H11A⋯O10 0.96 2.50 3.437 (15) 166
C14—H14A⋯O5iii 0.96 2.46 3.386 (19) 163
C14—H14B⋯O20iv 0.96 2.36 3.255 (17) 154
C16—H16C⋯O14iii 0.96 2.53 3.420 (17) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y-1, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL-DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C.W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polyoxidometalates (POM's) is an important class of molecular metal oxides in which early transition metal cations, bridged by oxide anions, form oligomeric aggregates. They have various chemical compositions and fascinating molecular structures (Dolbecq et al., 2010). The title complex was obtained as a byproduct of the reaction of [(C4H9)4N]2[Mo6O19] with Ce(NO3)3.6H2O and phthalic acid in dimethylsulfoxide solution.

The asymmetric unit of the title compound contains one and a half of the Lindqvist-type [Mo6O19]2- polyanion, one [Ce(dmso)8]3+ cation and two dimethylsulfoxide solvent molecules. The S2 and C3/C4 atoms of a dmso ligand were disordered over three sites in 0.45:0.30:0.25 ratio. There are two dimethylsulfoxide solvent molecules in an asymmetric unit which were disordered and were therefore, removed. The Ce3+ cation is octacoordinated to dimethylsulfoxide ligands through the oxygen atoms. The molecular structure of the cation and the anions of the title compound is presented in Figure 1. The Ce—O bond lengths, ranging from 2.429 (6) to 2.550 (5) Å, are typical for similar cerium complexes in Lindqvist-type polyoxidometalates (Wang et al., 2003). The two crystallographically independant polyanions [Mo6O19]2- are both constructed of six [MoO6] distorted octahedra sharing common edges and one common vertex at the central O atoms. The latters are respectively located on general and special positions. The Mo —O bond lengths, ranging from 1.671 (7) to 2.321 (5) Å, agree with those reported for [Mo6O19]2- polyanions (Koo & Lee, 2006).

The cations and anions of the structure are interlinked through contact interactions and form supramolecular cluster anions assembly as shown in Figure 2. The cluster of anions are connected with the cation, through strong non typical contact interactions between sulfur atoms S1, S5 and S2C of the dmso ligand and oxygen atoms O13, O17 and O28 of cluster anions with interatomic distances O13···S1i, 3.115 (6) Å, O28···S5, 3.242 (10) Å and O17···S2Cii, 3.12 (3) Å. In addition, the cluster anions are directly interlinked through bridged and terminal oxygen atoms respectively O8 and O20 with interatomic distance O8···O20, 3.037 (10) Å (Koo & Lee, 2006; Qiu et al., 2006); symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y + 1, z.

Related literature top

For general background, physical properties and applications of polyoxidometalates, see: Dolbecq et al. (2010). For the synthesis of [(C4H9)4N]2[Mo6O19] salt, see: Hur et al. (1990). For related structures, see: Wang et al.(2003); Koo et al. (2006); Qiu et al. (2006). For crystallographic analysis, see: Spek (2009).

Experimental top

The [(C4H9)4N]2[Mo6O19] salt was synthesized as described in the literature (Hur et al., 1990). A dimethylsulfoxide solution of Ce(NO3)3.6H2O (1 mmol, 0.433 g dissolved in 3 ml) was added dropwise to a yellow dmso solution of [(Bu)4N]2[Mo6O19] (0.2 mmol, 0.273 g dissolved in 13 ml). The resulting mixture was heated under stirring at 333 K for about 1 h. Then, phthalic acid (1 mmol, 0.166 g dissolved in 4 ml dmso) was added to the reaction mixture, followed by stirring and heating at 333 K for 1 h. Single crystals of the title compound, suitable for X-ray crystallographic studies, were obtained by diffusion of 2-propanol through the dimethylsulfoxide solution.

Refinement top

The two dimethylsulfoxide solvent molecules of the asymmetric unit were disordered and were therefore removed by the command SQUEEZE of PLATON (Spek, 2009). The solvent-free model was employed for the final refinement. All H atoms were refined using a riding model with C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) and were allowed to rotate freely around the C—C bond except those bound to disordered carbon atoms. The S2 and C3/C4 atoms of a dmso ligand were disordered over three sites in 0.45:0.30:0.25 ratio which were modeled with the commands EADP and EXYZ in SHELXL-97.

Structure description top

Polyoxidometalates (POM's) is an important class of molecular metal oxides in which early transition metal cations, bridged by oxide anions, form oligomeric aggregates. They have various chemical compositions and fascinating molecular structures (Dolbecq et al., 2010). The title complex was obtained as a byproduct of the reaction of [(C4H9)4N]2[Mo6O19] with Ce(NO3)3.6H2O and phthalic acid in dimethylsulfoxide solution.

The asymmetric unit of the title compound contains one and a half of the Lindqvist-type [Mo6O19]2- polyanion, one [Ce(dmso)8]3+ cation and two dimethylsulfoxide solvent molecules. The S2 and C3/C4 atoms of a dmso ligand were disordered over three sites in 0.45:0.30:0.25 ratio. There are two dimethylsulfoxide solvent molecules in an asymmetric unit which were disordered and were therefore, removed. The Ce3+ cation is octacoordinated to dimethylsulfoxide ligands through the oxygen atoms. The molecular structure of the cation and the anions of the title compound is presented in Figure 1. The Ce—O bond lengths, ranging from 2.429 (6) to 2.550 (5) Å, are typical for similar cerium complexes in Lindqvist-type polyoxidometalates (Wang et al., 2003). The two crystallographically independant polyanions [Mo6O19]2- are both constructed of six [MoO6] distorted octahedra sharing common edges and one common vertex at the central O atoms. The latters are respectively located on general and special positions. The Mo —O bond lengths, ranging from 1.671 (7) to 2.321 (5) Å, agree with those reported for [Mo6O19]2- polyanions (Koo & Lee, 2006).

The cations and anions of the structure are interlinked through contact interactions and form supramolecular cluster anions assembly as shown in Figure 2. The cluster of anions are connected with the cation, through strong non typical contact interactions between sulfur atoms S1, S5 and S2C of the dmso ligand and oxygen atoms O13, O17 and O28 of cluster anions with interatomic distances O13···S1i, 3.115 (6) Å, O28···S5, 3.242 (10) Å and O17···S2Cii, 3.12 (3) Å. In addition, the cluster anions are directly interlinked through bridged and terminal oxygen atoms respectively O8 and O20 with interatomic distance O8···O20, 3.037 (10) Å (Koo & Lee, 2006; Qiu et al., 2006); symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y + 1, z.

For general background, physical properties and applications of polyoxidometalates, see: Dolbecq et al. (2010). For the synthesis of [(C4H9)4N]2[Mo6O19] salt, see: Hur et al. (1990). For related structures, see: Wang et al.(2003); Koo et al. (2006); Qiu et al. (2006). For crystallographic analysis, see: Spek (2009).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: HKL-DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL-DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation and anion complexes of the title compound. Displacement ellipsoids are drawn at the 30% probability level for non hydrogen atoms.
[Figure 2] Fig. 2. The lattice framework of the title compound, showing supramolecular ring-like clusters assembly via non-typical S···O and O···O contact interactions. The C—H···O hydrogen bonds are omitted for clarity.
Octakis(dimethyl sulfoxide-κO)cerium(III) µ6-oxido-dodeca-µ2-oxido-hexaoxidohexamolybdate(VI) dimethyl sulfoxide tetrasolvate top
Crystal data top
[Ce(C2H6OS)8]2[Mo6O19]3·4C2H6OSZ = 1
Mr = 4481.72F(000) = 2168
Triclinic, P1Dx = 2.117 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.4590 (2) ÅCell parameters from 80805 reflections
b = 15.4688 (3) Åθ = 2.3–29.9°
c = 17.6599 (4) ŵ = 2.75 mm1
α = 90.281 (1)°T = 223 K
β = 98.468 (1)°Prism, yellow
γ = 115.580 (1)°0.20 × 0.16 × 0.08 mm
V = 3270.48 (11) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
12827 independent reflections
Radiation source: fine-focus sealed tube10059 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ & ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1616
Tmin = 0.691, Tmax = 0.739k = 1919
69065 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.082P)2 + 11.5151P]
where P = (Fo2 + 2Fc2)/3
12827 reflections(Δ/σ)max < 0.001
680 parametersΔρmax = 2.47 e Å3
0 restraintsΔρmin = 1.81 e Å3
Crystal data top
[Ce(C2H6OS)8]2[Mo6O19]3·4C2H6OSγ = 115.580 (1)°
Mr = 4481.72V = 3270.48 (11) Å3
Triclinic, P1Z = 1
a = 13.4590 (2) ÅMo Kα radiation
b = 15.4688 (3) ŵ = 2.75 mm1
c = 17.6599 (4) ÅT = 223 K
α = 90.281 (1)°0.20 × 0.16 × 0.08 mm
β = 98.468 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
12827 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
10059 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.739Rint = 0.063
69065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.082P)2 + 11.5151P]
where P = (Fo2 + 2Fc2)/3
12827 reflectionsΔρmax = 2.47 e Å3
680 parametersΔρmin = 1.81 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce10.37882 (3)0.20892 (3)0.24041 (2)0.03716 (12)
Mo10.67824 (6)0.92294 (5)0.16090 (4)0.04819 (18)
Mo20.54384 (6)0.69998 (5)0.19987 (4)0.05286 (19)
Mo80.00354 (7)0.45025 (6)0.12342 (4)0.0570 (2)
Mo40.77556 (7)0.98658 (5)0.34389 (4)0.0617 (2)
Mo70.18589 (6)0.60787 (6)0.03598 (5)0.0629 (2)
Mo60.64036 (7)0.76231 (5)0.38286 (4)0.0564 (2)
Mo30.81409 (6)0.81761 (6)0.25863 (5)0.0596 (2)
Mo50.50644 (7)0.87007 (7)0.28498 (5)0.0656 (2)
Mo90.05413 (8)0.61545 (6)0.03477 (5)0.0679 (2)
S10.24857 (17)0.08769 (17)0.40375 (12)0.0534 (5)
S2A0.2195 (8)0.0474 (7)0.1700 (6)0.062 (2)0.45
C3A0.3010 (13)0.0760 (10)0.1039 (10)0.107 (4)0.45
H3A10.26210.08690.05210.160*0.45
H3A20.30880.13270.11880.160*0.45
H3A30.37360.02300.10720.160*0.45
C4A0.0865 (19)0.097 (2)0.107 (3)0.142 (19)0.45
H4A10.03730.07550.12630.213*0.45
H4A20.05450.16620.10550.213*0.45
H4A30.09670.07690.05660.213*0.45
S2B0.2032 (7)0.0376 (6)0.1133 (5)0.0618 (19)0.30
C3B0.3010 (13)0.0760 (10)0.1039 (10)0.107 (4)0.30
H3B10.34440.04100.06630.160*0.30
H3B20.26510.14340.08780.160*0.30
H3B30.34910.06560.15230.160*0.30
C4B0.151 (3)0.121 (2)0.186 (2)0.133 (12)0.30
H4B10.09040.11350.20260.200*0.30
H4B20.21010.10720.22840.200*0.30
H4B30.12560.18530.16420.200*0.30
S2C0.2722 (17)0.0281 (16)0.1755 (13)0.083 (6)0.25
C3C0.3010 (13)0.0760 (10)0.1039 (10)0.107 (4)0.25
H3C10.37070.03120.09060.160*0.25
H3C20.24280.09130.06040.160*0.25
H3C30.30650.13360.11880.160*0.25
C4C0.151 (3)0.121 (2)0.186 (2)0.133 (12)0.25
H4C10.12040.10340.22560.200*0.25
H4C20.16420.17540.19890.200*0.25
H4C30.09970.13610.13830.200*0.25
S30.07310 (18)0.13552 (17)0.20031 (15)0.0617 (6)
S40.30340 (18)0.37390 (15)0.34142 (14)0.0560 (5)
S50.30121 (18)0.31060 (16)0.06817 (12)0.0511 (5)
S60.60406 (19)0.45084 (16)0.24827 (15)0.0590 (5)
S70.5942 (2)0.22013 (18)0.13221 (16)0.0656 (6)
S80.5973 (2)0.2100 (2)0.39721 (14)0.0680 (6)
O10.5842 (5)0.7923 (4)0.1237 (3)0.0553 (14)
O20.7666 (6)1.0238 (4)0.2402 (4)0.0665 (17)
O30.8010 (5)0.8888 (4)0.1729 (3)0.0564 (14)
O40.5505 (6)0.9284 (5)0.1907 (4)0.0659 (17)
O50.6949 (6)0.9812 (5)0.0800 (4)0.0744 (19)
O60.5536 (5)0.6627 (4)0.3044 (4)0.0633 (16)
O70.6927 (6)0.7071 (5)0.2042 (4)0.0648 (16)
O80.4430 (5)0.7471 (5)0.2238 (4)0.0658 (17)
O90.4633 (7)0.5952 (5)0.1479 (4)0.084 (2)
O100.7699 (5)0.7586 (5)0.3529 (4)0.0665 (17)
O110.8772 (5)0.9393 (5)0.3200 (4)0.0699 (18)
O120.9270 (7)0.8005 (8)0.2518 (6)0.105 (3)
O130.7362 (6)0.8943 (4)0.4187 (3)0.0646 (17)
O140.6301 (7)0.9819 (5)0.3400 (4)0.079 (2)
O150.8613 (8)1.0899 (5)0.3958 (5)0.102 (3)
O160.5197 (6)0.7980 (5)0.3720 (4)0.0687 (18)
O170.3937 (8)0.8861 (8)0.2945 (6)0.115 (3)
O180.6276 (8)0.7041 (6)0.4632 (4)0.093 (3)
O190.6601 (4)0.8432 (3)0.2719 (3)0.0357 (10)
O200.3191 (6)0.6918 (6)0.0598 (5)0.097 (3)
O210.1477 (5)0.5494 (4)0.1283 (3)0.0607 (15)
O220.1947 (6)0.4962 (7)0.0006 (4)0.082 (2)
O230.1046 (6)0.6812 (4)0.0549 (4)0.0746 (19)
O240.0059 (7)0.4147 (6)0.2128 (4)0.086 (2)
O250.0428 (6)0.3671 (4)0.0728 (4)0.0675 (17)
O260.0469 (6)0.5526 (6)0.1282 (3)0.0725 (19)
O270.1511 (5)0.3721 (5)0.0729 (4)0.074 (2)
O280.0966 (9)0.6975 (7)0.0588 (6)0.112 (3)
O290.00000.50000.00000.0404 (15)
O320.2459 (5)0.1094 (6)0.3214 (4)0.083 (2)
O330.2578 (7)0.0589 (5)0.1608 (5)0.088 (2)
O340.1906 (5)0.2087 (5)0.1954 (4)0.0674 (18)
O350.3861 (6)0.3394 (5)0.3216 (4)0.0667 (17)
O360.3887 (5)0.3088 (4)0.1325 (3)0.0561 (14)
O370.5755 (4)0.3460 (4)0.2596 (4)0.0529 (13)
O380.4921 (5)0.1623 (5)0.1676 (5)0.0730 (19)
O390.4834 (5)0.1710 (5)0.3498 (4)0.0627 (16)
C10.215 (2)0.0349 (12)0.4032 (12)0.157 (9)
H1A0.14980.07020.36570.235*
H1B0.20070.05660.45310.235*
H1C0.27640.04510.39070.235*
C20.1235 (10)0.0805 (15)0.4247 (7)0.118 (6)
H2A0.10060.12090.39280.178*
H2B0.13330.10140.47770.178*
H2C0.06730.01520.41530.178*
C50.0023 (11)0.1194 (16)0.1039 (8)0.147 (8)
H5A0.01920.18110.08410.221*
H5B0.07680.08510.10280.221*
H5C0.02630.08340.07270.221*
C60.0146 (11)0.2028 (11)0.2400 (12)0.122 (6)
H6A0.04330.21700.29400.184*
H6B0.06510.16670.23250.184*
H6C0.03360.26180.21540.184*
C70.3831 (9)0.4713 (7)0.4113 (6)0.071 (3)
H7A0.41010.44820.45630.107*
H7B0.33710.50040.42450.107*
H7C0.44530.51800.39090.107*
C80.2828 (10)0.4397 (8)0.2643 (7)0.083 (3)
H8A0.35340.49030.25750.124*
H8B0.23400.46690.27520.124*
H8C0.24990.39770.21820.124*
C90.3816 (10)0.3976 (8)0.0101 (6)0.079 (3)
H9A0.40850.46060.03540.119*
H9B0.33610.39360.03830.119*
H9C0.44380.38610.00170.119*
C100.2637 (11)0.2072 (9)0.0099 (6)0.079 (3)
H10A0.32980.20240.00070.118*
H10B0.22160.20980.03820.118*
H10C0.21910.15200.03480.118*
C110.7005 (16)0.5176 (9)0.3288 (10)0.134 (7)
H11A0.70700.58190.33070.201*
H11B0.77200.51950.32550.201*
H11C0.67550.48810.37450.201*
C120.6920 (16)0.4827 (9)0.1786 (10)0.120 (6)
H12A0.74660.45820.19020.180*
H12B0.72920.55140.17870.180*
H12C0.64840.45580.12890.180*
C130.7069 (10)0.2150 (10)0.1954 (9)0.094 (4)
H13A0.67950.15740.22200.141*
H13B0.74010.27000.23200.141*
H13C0.76180.21490.16640.141*
C140.5824 (14)0.1392 (10)0.0555 (8)0.103 (4)
H14A0.61580.09810.07420.155*
H14B0.62010.17510.01580.155*
H14C0.50500.10080.03510.155*
C150.6047 (13)0.3028 (10)0.4582 (8)0.098 (4)
H15A0.57850.34320.42890.147*
H15B0.68060.34020.48240.147*
H15C0.55890.27590.49670.147*
C160.5840 (13)0.1237 (10)0.4661 (7)0.096 (4)
H16A0.50920.09580.47720.143*
H16B0.63570.15460.51240.143*
H16C0.60000.07420.44600.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.0368 (2)0.0356 (2)0.0368 (2)0.01406 (17)0.00461 (15)0.00387 (15)
Mo10.0585 (4)0.0430 (4)0.0388 (4)0.0190 (3)0.0054 (3)0.0099 (3)
Mo20.0586 (4)0.0373 (4)0.0421 (4)0.0049 (3)0.0013 (3)0.0038 (3)
Mo80.0630 (4)0.0590 (4)0.0385 (4)0.0203 (4)0.0025 (3)0.0123 (3)
Mo40.0741 (5)0.0387 (4)0.0449 (4)0.0031 (3)0.0025 (3)0.0052 (3)
Mo70.0478 (4)0.0588 (5)0.0571 (5)0.0057 (4)0.0093 (3)0.0092 (4)
Mo60.0700 (5)0.0473 (4)0.0356 (4)0.0119 (4)0.0042 (3)0.0096 (3)
Mo30.0480 (4)0.0693 (5)0.0680 (5)0.0320 (4)0.0080 (3)0.0134 (4)
Mo50.0579 (5)0.0801 (6)0.0713 (5)0.0390 (4)0.0193 (4)0.0070 (4)
Mo90.0907 (6)0.0627 (5)0.0598 (5)0.0488 (5)0.0080 (4)0.0070 (4)
S10.0471 (10)0.0615 (13)0.0419 (10)0.0161 (10)0.0029 (8)0.0059 (9)
S2A0.074 (5)0.044 (5)0.054 (4)0.011 (4)0.015 (5)0.002 (3)
C3A0.117 (11)0.066 (7)0.131 (12)0.034 (7)0.020 (9)0.008 (7)
C4A0.039 (12)0.076 (19)0.27 (5)0.005 (12)0.03 (2)0.08 (3)
S2B0.077 (5)0.059 (4)0.040 (4)0.024 (4)0.001 (4)0.008 (3)
C3B0.117 (11)0.066 (7)0.131 (12)0.034 (7)0.020 (9)0.008 (7)
C4B0.16 (3)0.073 (17)0.15 (3)0.019 (19)0.08 (3)0.014 (17)
S2C0.102 (13)0.057 (10)0.073 (9)0.017 (11)0.014 (12)0.014 (7)
C3C0.117 (11)0.066 (7)0.131 (12)0.034 (7)0.020 (9)0.008 (7)
C4C0.16 (3)0.073 (17)0.15 (3)0.019 (19)0.08 (3)0.014 (17)
S30.0461 (11)0.0552 (12)0.0770 (15)0.0163 (10)0.0080 (10)0.0262 (11)
S40.0509 (11)0.0455 (11)0.0668 (14)0.0143 (9)0.0176 (10)0.0035 (9)
S50.0577 (11)0.0559 (12)0.0407 (10)0.0245 (10)0.0123 (9)0.0128 (9)
S60.0571 (12)0.0432 (11)0.0741 (15)0.0198 (10)0.0099 (11)0.0076 (10)
S70.0771 (15)0.0561 (13)0.0763 (16)0.0358 (12)0.0292 (13)0.0122 (11)
S80.0561 (13)0.1000 (19)0.0481 (12)0.0357 (13)0.0042 (10)0.0070 (12)
O10.062 (3)0.055 (3)0.032 (3)0.013 (3)0.003 (2)0.001 (2)
O20.082 (4)0.042 (3)0.060 (4)0.015 (3)0.003 (3)0.005 (3)
O30.052 (3)0.063 (4)0.050 (3)0.019 (3)0.017 (3)0.008 (3)
O40.071 (4)0.070 (4)0.066 (4)0.045 (4)0.006 (3)0.004 (3)
O50.097 (5)0.068 (4)0.050 (4)0.029 (4)0.012 (3)0.025 (3)
O60.075 (4)0.042 (3)0.050 (3)0.006 (3)0.004 (3)0.006 (3)
O70.082 (4)0.062 (4)0.062 (4)0.043 (4)0.011 (3)0.003 (3)
O80.040 (3)0.077 (4)0.062 (4)0.010 (3)0.003 (3)0.002 (3)
O90.105 (6)0.043 (3)0.061 (4)0.003 (4)0.002 (4)0.011 (3)
O100.064 (4)0.063 (4)0.066 (4)0.026 (3)0.007 (3)0.014 (3)
O110.043 (3)0.066 (4)0.069 (4)0.001 (3)0.010 (3)0.008 (3)
O120.080 (5)0.148 (9)0.122 (7)0.080 (6)0.023 (5)0.031 (6)
O130.080 (4)0.054 (3)0.032 (3)0.007 (3)0.003 (3)0.002 (2)
O140.112 (6)0.063 (4)0.075 (5)0.045 (4)0.036 (4)0.003 (3)
O150.122 (7)0.051 (4)0.075 (5)0.010 (4)0.005 (5)0.023 (4)
O160.069 (4)0.079 (4)0.046 (3)0.016 (3)0.024 (3)0.004 (3)
O170.089 (6)0.157 (9)0.139 (9)0.082 (7)0.046 (6)0.020 (7)
O180.125 (7)0.075 (5)0.046 (4)0.016 (5)0.005 (4)0.021 (3)
O190.036 (2)0.029 (2)0.032 (2)0.0066 (19)0.0001 (19)0.0017 (18)
O200.060 (4)0.094 (6)0.088 (6)0.005 (4)0.014 (4)0.017 (5)
O210.060 (3)0.058 (4)0.045 (3)0.017 (3)0.017 (3)0.004 (3)
O220.054 (4)0.129 (7)0.066 (4)0.044 (4)0.003 (3)0.019 (4)
O230.098 (5)0.034 (3)0.070 (4)0.016 (3)0.010 (4)0.002 (3)
O240.099 (5)0.103 (6)0.047 (4)0.038 (5)0.005 (4)0.029 (4)
O250.095 (5)0.050 (3)0.055 (4)0.037 (3)0.009 (3)0.010 (3)
O260.096 (5)0.098 (5)0.037 (3)0.056 (4)0.006 (3)0.001 (3)
O270.057 (4)0.070 (4)0.067 (4)0.004 (3)0.003 (3)0.027 (3)
O280.158 (9)0.113 (7)0.098 (6)0.103 (7)0.013 (6)0.018 (5)
O290.043 (4)0.036 (4)0.034 (4)0.013 (3)0.006 (3)0.002 (3)
O320.055 (4)0.103 (6)0.054 (4)0.002 (4)0.006 (3)0.035 (4)
O330.085 (5)0.037 (3)0.118 (7)0.003 (3)0.016 (4)0.032 (4)
O340.040 (3)0.068 (4)0.095 (5)0.023 (3)0.013 (3)0.036 (4)
O350.075 (4)0.066 (4)0.065 (4)0.037 (3)0.008 (3)0.008 (3)
O360.057 (3)0.059 (3)0.042 (3)0.016 (3)0.005 (2)0.016 (3)
O370.044 (3)0.037 (3)0.066 (4)0.007 (2)0.009 (3)0.007 (2)
O380.060 (4)0.062 (4)0.101 (5)0.025 (3)0.032 (4)0.005 (4)
O390.053 (3)0.069 (4)0.063 (4)0.028 (3)0.005 (3)0.015 (3)
C10.28 (3)0.083 (10)0.135 (15)0.095 (15)0.066 (16)0.039 (10)
C20.074 (7)0.24 (2)0.052 (6)0.083 (10)0.008 (5)0.006 (9)
C50.073 (8)0.22 (2)0.068 (8)0.002 (10)0.014 (6)0.035 (10)
C60.064 (7)0.109 (11)0.203 (18)0.030 (7)0.071 (10)0.033 (11)
C70.080 (7)0.055 (5)0.072 (6)0.023 (5)0.009 (5)0.012 (5)
C80.083 (7)0.068 (7)0.092 (8)0.030 (6)0.007 (6)0.003 (6)
C90.091 (7)0.069 (6)0.062 (6)0.019 (6)0.019 (5)0.031 (5)
C100.104 (8)0.085 (7)0.051 (5)0.046 (7)0.009 (5)0.006 (5)
C110.170 (15)0.057 (7)0.117 (12)0.021 (9)0.057 (11)0.010 (7)
C120.184 (16)0.063 (7)0.127 (12)0.045 (9)0.095 (12)0.034 (8)
C130.064 (6)0.090 (9)0.128 (11)0.034 (6)0.014 (7)0.032 (8)
C140.139 (12)0.091 (9)0.090 (9)0.053 (9)0.046 (9)0.001 (7)
C150.116 (10)0.086 (8)0.076 (8)0.033 (8)0.006 (7)0.004 (6)
C160.141 (11)0.103 (9)0.065 (7)0.082 (9)0.009 (7)0.008 (6)
Geometric parameters (Å, º) top
Ce1—O352.429 (6)C4A—H4A30.9600
Ce1—O362.441 (5)S2B—O331.526 (10)
Ce1—O392.445 (6)S2B—C4B1.81 (3)
Ce1—O322.453 (6)C4B—H4B10.9600
Ce1—O382.453 (6)C4B—H4B20.9600
Ce1—O332.459 (6)C4B—H4B30.9600
Ce1—O342.539 (6)S2C—O331.46 (3)
Ce1—O372.550 (5)S3—O341.512 (6)
Mo1—O51.684 (6)S3—C61.749 (15)
Mo1—O41.906 (7)S3—C51.785 (13)
Mo1—O11.911 (6)S4—O351.507 (7)
Mo1—O21.923 (6)S4—C81.765 (12)
Mo1—O31.925 (6)S4—C71.771 (10)
Mo1—O192.309 (4)S5—O361.521 (6)
Mo2—O91.680 (6)S5—C101.735 (12)
Mo2—O81.890 (7)S5—C91.765 (9)
Mo2—O11.926 (6)S6—O371.518 (6)
Mo2—O61.940 (6)S6—C111.749 (13)
Mo2—O71.949 (7)S6—C121.757 (13)
Mo2—O192.317 (4)S7—O381.508 (7)
Mo8—O241.675 (6)S7—C131.776 (12)
Mo8—O271.896 (6)S7—C141.782 (13)
Mo8—O261.915 (7)S8—O391.495 (6)
Mo8—O251.922 (7)S8—C151.749 (14)
Mo8—O211.938 (6)S8—C161.780 (12)
Mo8—O292.3153 (7)O22—Mo9i1.942 (8)
Mo4—O151.676 (7)O25—Mo9i1.938 (7)
Mo4—O111.901 (8)O27—Mo7i1.969 (7)
Mo4—O131.907 (6)O29—Mo9i2.3113 (8)
Mo4—O141.918 (8)O29—Mo8i2.3153 (7)
Mo4—O21.925 (6)O29—Mo7i2.3160 (7)
Mo4—O192.316 (4)C1—H1A0.9600
Mo7—O201.685 (7)C1—H1B0.9600
Mo7—O221.892 (9)C1—H1C0.9600
Mo7—O211.897 (6)C2—H2A0.9600
Mo7—O231.943 (8)C2—H2B0.9600
Mo7—O27i1.969 (7)C2—H2C0.9600
Mo7—O292.3160 (7)C5—H5A0.9600
Mo6—O181.674 (7)C5—H5B0.9600
Mo6—O61.899 (6)C5—H5C0.9600
Mo6—O161.915 (7)C6—H6A0.9600
Mo6—O101.919 (7)C6—H6B0.9600
Mo6—O131.925 (6)C6—H6C0.9600
Mo6—O192.316 (4)C7—H7A0.9600
Mo3—O121.672 (7)C7—H7B0.9600
Mo3—O71.904 (7)C7—H7C0.9600
Mo3—O31.908 (6)C8—H8A0.9600
Mo3—O111.941 (7)C8—H8B0.9600
Mo3—O101.948 (7)C8—H8C0.9600
Mo3—O192.314 (5)C9—H9A0.9600
Mo5—O171.671 (7)C9—H9B0.9600
Mo5—O141.931 (8)C9—H9C0.9600
Mo5—O161.935 (7)C10—H10A0.9600
Mo5—O41.944 (7)C10—H10B0.9600
Mo5—O81.954 (7)C10—H10C0.9600
Mo5—O192.321 (5)C11—H11A0.9600
Mo9—O281.676 (8)C11—H11B0.9600
Mo9—O231.903 (8)C11—H11C0.9600
Mo9—O261.930 (7)C12—H12A0.9600
Mo9—O25i1.938 (7)C12—H12B0.9600
Mo9—O22i1.942 (8)C12—H12C0.9600
Mo9—O292.3113 (8)C13—H13A0.9600
S1—O321.492 (7)C13—H13B0.9600
S1—C21.734 (11)C13—H13C0.9600
S1—C11.749 (15)C14—H14A0.9600
S2A—O331.514 (13)C14—H14B0.9600
S2A—C4A1.80 (3)C14—H14C0.9600
S2A—C3A1.884 (18)C15—H15A0.9600
C3A—H3A10.9600C15—H15B0.9600
C3A—H3A20.9600C15—H15C0.9600
C3A—H3A30.9600C16—H16A0.9600
C4A—H4A10.9600C16—H16B0.9600
C4A—H4A20.9600C16—H16C0.9600
O8···O203.037 (11)O13···S1ii3.115 (6)
O28···S5i3.242 (12)O17···S2Ciii3.12 (3)
O35—Ce1—O3687.8 (2)O33—S2B—C4B101.6 (12)
O35—Ce1—O3988.2 (2)S2B—C4B—H4B1109.5
O36—Ce1—O39146.3 (2)S2B—C4B—H4B2109.5
O35—Ce1—O3282.8 (3)H4B1—C4B—H4B2109.5
O36—Ce1—O32140.4 (2)S2B—C4B—H4B3109.5
O39—Ce1—O3271.9 (2)H4B1—C4B—H4B3109.5
O35—Ce1—O38142.6 (2)H4B2—C4B—H4B3109.5
O36—Ce1—O3880.2 (2)O34—S3—C6103.8 (5)
O39—Ce1—O3882.9 (3)O34—S3—C5103.1 (6)
O32—Ce1—O38127.6 (3)C6—S3—C598.3 (10)
O35—Ce1—O33146.0 (3)O35—S4—C8105.7 (5)
O36—Ce1—O3393.3 (3)O35—S4—C7104.3 (5)
O39—Ce1—O33108.2 (3)C8—S4—C798.6 (6)
O32—Ce1—O3374.9 (3)O36—S5—C10104.0 (5)
O38—Ce1—O3370.6 (3)O36—S5—C9103.2 (5)
O35—Ce1—O3477.2 (2)C10—S5—C999.7 (6)
O36—Ce1—O3469.5 (2)O37—S6—C11106.5 (5)
O39—Ce1—O34141.4 (2)O37—S6—C12105.3 (5)
O32—Ce1—O3471.0 (2)C11—S6—C1299.7 (10)
O38—Ce1—O34129.1 (3)O38—S7—C13104.8 (5)
O33—Ce1—O3471.5 (3)O38—S7—C14102.3 (6)
O35—Ce1—O3770.7 (2)C13—S7—C1499.2 (8)
O36—Ce1—O3772.73 (19)O39—S8—C15105.0 (6)
O39—Ce1—O3774.4 (2)O39—S8—C16103.4 (6)
O32—Ce1—O37137.3 (2)C15—S8—C1698.2 (6)
O38—Ce1—O3771.9 (2)Mo1—O1—Mo2116.5 (3)
O33—Ce1—O37141.7 (2)Mo1—O2—Mo4116.8 (3)
O34—Ce1—O37130.61 (19)Mo3—O3—Mo1116.7 (3)
O5—Mo1—O4104.1 (3)Mo1—O4—Mo5116.3 (3)
O5—Mo1—O1103.2 (3)Mo6—O6—Mo2117.0 (3)
O4—Mo1—O187.7 (3)Mo3—O7—Mo2116.9 (3)
O5—Mo1—O2103.1 (3)Mo2—O8—Mo5117.2 (3)
O4—Mo1—O286.9 (3)Mo6—O10—Mo3116.5 (3)
O1—Mo1—O2153.7 (2)Mo4—O11—Mo3117.0 (3)
O5—Mo1—O3101.8 (3)Mo4—O13—Mo6117.8 (3)
O4—Mo1—O3154.1 (3)Mo4—O14—Mo5116.2 (3)
O1—Mo1—O387.0 (3)Mo6—O16—Mo5116.5 (3)
O2—Mo1—O386.6 (3)Mo1—O19—Mo389.79 (16)
O5—Mo1—O19178.5 (3)Mo1—O19—Mo490.22 (15)
O4—Mo1—O1977.4 (2)Mo3—O19—Mo490.06 (15)
O1—Mo1—O1977.11 (19)Mo1—O19—Mo6179.5 (2)
O2—Mo1—O1976.6 (2)Mo3—O19—Mo690.51 (16)
O3—Mo1—O1976.7 (2)Mo4—O19—Mo690.18 (15)
O9—Mo2—O8104.9 (4)Mo1—O19—Mo289.70 (15)
O9—Mo2—O1103.7 (3)Mo3—O19—Mo290.26 (16)
O8—Mo2—O188.4 (3)Mo4—O19—Mo2179.7 (2)
O9—Mo2—O6103.4 (3)Mo6—O19—Mo289.89 (15)
O8—Mo2—O687.5 (3)Mo1—O19—Mo589.87 (16)
O1—Mo2—O6152.7 (2)Mo3—O19—Mo5179.5 (2)
O9—Mo2—O7102.1 (4)Mo4—O19—Mo589.64 (16)
O8—Mo2—O7153.0 (3)Mo6—O19—Mo589.83 (16)
O1—Mo2—O785.8 (3)Mo2—O19—Mo590.04 (15)
O6—Mo2—O785.7 (3)Mo7—O21—Mo8116.7 (3)
O9—Mo2—O19178.0 (3)Mo7—O22—Mo9i116.7 (3)
O8—Mo2—O1977.0 (2)Mo9—O23—Mo7117.0 (3)
O1—Mo2—O1976.6 (2)Mo8—O25—Mo9i116.2 (3)
O6—Mo2—O1976.2 (2)Mo8—O26—Mo9116.4 (3)
O7—Mo2—O1976.0 (2)Mo8—O27—Mo7i116.4 (3)
O24—Mo8—O27102.8 (3)Mo9—O29—Mo9i180.00 (4)
O24—Mo8—O26102.9 (4)Mo9—O29—Mo8i90.16 (3)
O27—Mo8—O2687.2 (3)Mo9i—O29—Mo8i89.84 (3)
O24—Mo8—O25103.2 (4)Mo9—O29—Mo889.84 (3)
O27—Mo8—O2587.7 (3)Mo9i—O29—Mo890.16 (3)
O26—Mo8—O25153.9 (3)Mo8i—O29—Mo8180.00 (4)
O24—Mo8—O21103.4 (3)Mo9—O29—Mo790.27 (4)
O27—Mo8—O21153.7 (3)Mo9i—O29—Mo789.73 (4)
O26—Mo8—O2186.5 (3)Mo8i—O29—Mo790.36 (3)
O25—Mo8—O2186.8 (3)Mo8—O29—Mo789.64 (3)
O24—Mo8—O29179.8 (4)Mo9—O29—Mo7i89.73 (4)
O27—Mo8—O2977.30 (19)Mo9i—O29—Mo7i90.27 (4)
O26—Mo8—O2976.98 (19)Mo8i—O29—Mo7i89.64 (3)
O25—Mo8—O2976.94 (18)Mo8—O29—Mo7i90.36 (3)
O21—Mo8—O2976.45 (17)Mo7—O29—Mo7i180.0
O15—Mo4—O11102.0 (4)S1—O32—Ce1137.2 (4)
O15—Mo4—O13103.8 (4)S2C—O33—S2B51.3 (9)
O11—Mo4—O1387.8 (3)S2C—O33—Ce1119.9 (10)
O15—Mo4—O14103.9 (4)S2A—O33—Ce1136.0 (7)
O11—Mo4—O14154.1 (3)S2B—O33—Ce1168.8 (6)
O13—Mo4—O1486.8 (3)S3—O34—Ce1131.5 (3)
O15—Mo4—O2103.6 (4)S4—O35—Ce1136.2 (4)
O11—Mo4—O287.4 (3)S5—O36—Ce1133.1 (3)
O13—Mo4—O2152.5 (3)S6—O37—Ce1125.4 (3)
O14—Mo4—O285.7 (3)S7—O38—Ce1132.4 (4)
O15—Mo4—O19178.9 (4)S8—O39—Ce1140.7 (4)
O11—Mo4—O1976.8 (2)S1—C1—H1A109.5
O13—Mo4—O1976.2 (2)S1—C1—H1B109.5
O14—Mo4—O1977.2 (2)H1A—C1—H1B109.5
O2—Mo4—O1976.4 (2)S1—C1—H1C109.5
O20—Mo7—O22105.6 (4)H1A—C1—H1C109.5
O20—Mo7—O21105.0 (3)H1B—C1—H1C109.5
O22—Mo7—O2188.7 (3)S1—C2—H2A109.5
O20—Mo7—O23101.3 (4)S1—C2—H2B109.5
O22—Mo7—O23153.0 (3)H2A—C2—H2B109.5
O21—Mo7—O2387.1 (3)S1—C2—H2C109.5
O20—Mo7—O27i101.8 (3)H2A—C2—H2C109.5
O22—Mo7—O27i86.6 (3)H2B—C2—H2C109.5
O21—Mo7—O27i153.1 (3)S3—C5—H5A109.5
O23—Mo7—O27i85.2 (3)S3—C5—H5B109.5
O20—Mo7—O29176.4 (3)H5A—C5—H5B109.5
O22—Mo7—O2977.2 (2)S3—C5—H5C109.5
O21—Mo7—O2977.18 (17)H5A—C5—H5C109.5
O23—Mo7—O2975.9 (2)H5B—C5—H5C109.5
O27i—Mo7—O2975.94 (18)S3—C6—H6A109.5
O18—Mo6—O6103.3 (3)S3—C6—H6B109.5
O18—Mo6—O16103.5 (4)H6A—C6—H6B109.5
O6—Mo6—O1687.7 (3)S3—C6—H6C109.5
O18—Mo6—O10102.7 (4)H6A—C6—H6C109.5
O6—Mo6—O1087.2 (3)H6B—C6—H6C109.5
O16—Mo6—O10153.8 (3)S4—C7—H7A109.5
O18—Mo6—O13103.9 (3)S4—C7—H7B109.5
O6—Mo6—O13152.8 (2)H7A—C7—H7B109.5
O16—Mo6—O1386.5 (3)S4—C7—H7C109.5
O10—Mo6—O1386.3 (3)H7A—C7—H7C109.5
O18—Mo6—O19179.3 (4)H7B—C7—H7C109.5
O6—Mo6—O1976.9 (2)S4—C8—H8A109.5
O16—Mo6—O1977.1 (2)S4—C8—H8B109.5
O10—Mo6—O1976.7 (2)H8A—C8—H8B109.5
O13—Mo6—O1975.9 (2)S4—C8—H8C109.5
O12—Mo3—O7104.5 (4)H8A—C8—H8C109.5
O12—Mo3—O3104.3 (4)H8B—C8—H8C109.5
O7—Mo3—O388.2 (3)S5—C9—H9A109.5
O12—Mo3—O11102.5 (4)S5—C9—H9B109.5
O7—Mo3—O11153.0 (3)H9A—C9—H9B109.5
O3—Mo3—O1186.2 (3)S5—C9—H9C109.5
O12—Mo3—O10102.6 (4)H9A—C9—H9C109.5
O7—Mo3—O1087.3 (3)H9B—C9—H9C109.5
O3—Mo3—O10153.0 (3)S5—C10—H10A109.5
O11—Mo3—O1085.8 (3)S5—C10—H10B109.5
O12—Mo3—O19178.3 (4)H10A—C10—H10B109.5
O7—Mo3—O1976.9 (2)S5—C10—H10C109.5
O3—Mo3—O1976.8 (2)H10A—C10—H10C109.5
O11—Mo3—O1976.2 (2)H10B—C10—H10C109.5
O10—Mo3—O1976.2 (2)S6—C11—H11A109.5
O17—Mo5—O14104.5 (5)S6—C11—H11B109.5
O17—Mo5—O16102.5 (4)H11A—C11—H11B109.5
O14—Mo5—O1688.1 (3)S6—C11—H11C109.5
O17—Mo5—O4104.5 (4)H11A—C11—H11C109.5
O14—Mo5—O487.4 (3)H11B—C11—H11C109.5
O16—Mo5—O4152.9 (3)S6—C12—H12A109.5
O17—Mo5—O8102.9 (5)S6—C12—H12B109.5
O14—Mo5—O8152.6 (3)H12A—C12—H12B109.5
O16—Mo5—O885.9 (3)S6—C12—H12C109.5
O4—Mo5—O885.9 (3)H12A—C12—H12C109.5
O17—Mo5—O19178.4 (4)H12B—C12—H12C109.5
O14—Mo5—O1976.9 (2)S7—C13—H13A109.5
O16—Mo5—O1976.6 (2)S7—C13—H13B109.5
O4—Mo5—O1976.4 (2)H13A—C13—H13B109.5
O8—Mo5—O1975.8 (2)S7—C13—H13C109.5
O28—Mo9—O23104.6 (5)H13A—C13—H13C109.5
O28—Mo9—O26103.5 (4)H13B—C13—H13C109.5
O23—Mo9—O2688.0 (3)S7—C14—H14A109.5
O28—Mo9—O25i102.9 (4)S7—C14—H14B109.5
O23—Mo9—O25i86.8 (3)H14A—C14—H14B109.5
O26—Mo9—O25i153.5 (3)S7—C14—H14C109.5
O28—Mo9—O22i102.3 (5)H14A—C14—H14C109.5
O23—Mo9—O22i153.1 (3)H14B—C14—H14C109.5
O26—Mo9—O22i86.6 (3)S8—C15—H15A109.5
O25i—Mo9—O22i86.4 (3)S8—C15—H15B109.5
O28—Mo9—O29178.6 (4)H15A—C15—H15B109.5
O23—Mo9—O2976.7 (2)S8—C15—H15C109.5
O26—Mo9—O2976.8 (2)H15A—C15—H15C109.5
O25i—Mo9—O2976.73 (19)H15B—C15—H15C109.5
O22i—Mo9—O2976.4 (2)S8—C16—H16A109.5
O32—S1—C2104.2 (5)S8—C16—H16B109.5
O32—S1—C1105.1 (7)H16A—C16—H16B109.5
C2—S1—C197.7 (11)S8—C16—H16C109.5
O33—S2A—C4A101.0 (15)H16A—C16—H16C109.5
O33—S2A—C3A100.7 (7)H16B—C16—H16C109.5
C4A—S2A—C3A97.5 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O13ii0.962.323.030 (14)130
C6—H6B···O2iv0.962.413.291 (18)153
C11—H11A···O100.962.503.437 (15)166
C14—H14A···O5v0.962.463.386 (19)163
C14—H14B···O20vi0.962.363.255 (17)154
C16—H16C···O14v0.962.533.420 (17)154
Symmetry codes: (ii) x+1, y+1, z+1; (iv) x1, y1, z; (v) x, y1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ce(C2H6OS)8]2[Mo6O19]3·4C2H6OS
Mr4481.72
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)13.4590 (2), 15.4688 (3), 17.6599 (4)
α, β, γ (°)90.281 (1), 98.468 (1), 115.580 (1)
V3)3270.48 (11)
Z1
Radiation typeMo Kα
µ (mm1)2.75
Crystal size (mm)0.20 × 0.16 × 0.08
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.691, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
69065, 12827, 10059
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.159, 1.04
No. of reflections12827
No. of parameters680
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.082P)2 + 11.5151P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.47, 1.81

Computer programs: COLLECT (Nonius, 2002), HKL-DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O13i0.962.323.030 (14)130
C6—H6B···O2ii0.962.413.291 (18)153
C11—H11A···O100.962.503.437 (15)166
C14—H14A···O5iii0.962.463.386 (19)163
C14—H14B···O20iv0.962.363.255 (17)154
C16—H16C···O14iii0.962.533.420 (17)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z; (iii) x, y1, z; (iv) x+1, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHur, N. H., Klemperer, W. G. & Wang, R.-C. (1990). Inorg. Synth. 27, 77–78.  Google Scholar
First citationKoo, B. & Lee, U. (2006). Inorg. Chim. Acta. 359, 2067–2071.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C.W. Carter Jr. & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQiu, Y., Xu, L., Gao, G., Wang, W. & Li, F. (2006). Inorg. Chim. Acta. 359, 451–458.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Guo, Y., Li, Y., Wang, E., Hu, C. & Hu, N. (2003). Inorg. Chem. 42, 4135–4140.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds