organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5a,9-Tri­methyl-8-(2-phenylhydrazin-1-yl­idene)-4,5,5a,9b-tetra­hydro-3aH,8H-naphtho[1,2-b]furan-2(3H)-one

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, bDepartment of Chemistry, Allama Iqbal Open University, Islamabad, and cRiphah Institute of Pharmaceutical Sciences, Riphah International University, 7th Avenue G-7/4, Islamabad, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 12 May 2012; accepted 25 May 2012; online 16 June 2012)

The title compound, C21H24N2O2, is a phenyl hydrazine derivative of the well known anthelminthic agent α-santonin, which is composed of three fused rings (benzodieneone, cyclo­hexane and γ-lactone). The cyclo­hexa­dienone ring adopts a boat conformation, the cyclo­hexane ring is in a chair conformation and the trans-fused γ-lactone ring adopts a C-envelope conformation. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For the isolation of α-santonin, see: Kahler (1830[Kahler, M. (1830). Arch. Pharm. 34, 318.]). For the crystal structure and stereochemistry of α-santonin, see: White & Sim (1975[White, D. N. J. & Sim, G. A. (1975). J. Chem. Soc. Perkin Trans 2., pp. 1826-1831.]); Coggon & Sim (1969[Coggon, P. & Sim, G. A. (1969). J. Chem. Soc. B., pp. 237-242.]). For puckering parameters, see: Cremer & Pople (1981[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O2

  • Mr = 336.42

  • Orthorhombic, P 21 21 21

  • a = 10.5104 (12) Å

  • b = 11.5726 (14) Å

  • c = 15.4401 (18) Å

  • V = 1878.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.41 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.992

  • 11178 measured reflections

  • 1999 independent reflections

  • 1370 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.099

  • S = 1.04

  • 1999 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.88 2.12 2.978 (4) 164
C8—H8A⋯O1i 0.93 2.43 3.290 (4) 153
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

α-Santonin is an anthelminthic agent, first isolated by Kahler in 1830 from Artemisia santonica. The title compound is a derivative of α-santonin which was synthesized by reacting its dienone with phenyl hydrazine to study its biological activities.

The title molecule (Fig. 1) is composed of a phenyl hydrazine moeity (N1–N2/C1–C6) attached to the α-santonin which is composed of three fused rings. The cyclohexadienone ring (C7–C10/C17–C18) adopts a boat conformation C7 and C10 atoms 0.116 (3) and 0.140 (3) Å out of the plane formed by the remaining ring atoms (C8–C9/C17–C18). The cyclohexane ring (C10–C13/C16/C17) adopts a chair conformation with ring puckering parameters (Cremer & Pople, 1981): Q = 0.552 (3) Å, θ = 11.3 (3)° and φ = 171.3 (18)°. The trans fused γ lactone ring (O2/C13–C16 ) adopts a C13-envelope conformation with C13 0.614 (5) Å out of the plane formed by the rest of the ring atoms. The two methyl substituents on C10 and C14 exist in axial and pseudo equatorial orientations, respectively. In the crystal structure, the molecules are linked by N2–H2A···O1 and C8–H8A···O1 interactions to form infinite chains running along the a-axis (Fig. 2 and Tab. 1). The molecular dimensions in the title compound are similar to those found in structurally related compounds (White & Sim, 1975; Coggon & Sim, 1969). The stereochemistry was assigned on the basis of the published α-santonin crystal data (White & Sim, 1975; Coggon & Sim, 1969).

Related literature top

For the isolation of α-santonin, see: Kahler (1830). For the crystal structure and stereochemistry of α-santonin, see: White & Sim (1975); Coggon & Sim (1969). For puckering parameters, see: Cremer & Pople (1981).

Experimental top

In a 100 ml round bottomed-flask toluene (25 ml) and α-santonin (400 mg, 1.6 mmol) were taken and than added phenyl hydrazine (1.1 ml, 11.2 mmol) with contineous stirring. The reaction mixture was refluxed and monitored by TLC. After 24 h the reaction was completed, it was cooled and extracted with water. The organic phase was dried over anhydrous sodium sulfate, filtered and the solvent was evaporated under vacuum on a rotary evaporator. The crude product was chromatographed on a silica gel column using n-hexane:ethyl acetate (7:3) as an eluent to obtain pure yellow crystals of the title compound in 80% yield.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.88 Å and C—H = 0.95, 0.96, 0.97 and 0.98 Å, for aryl, methyl, methylene and methyne H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C non-methyl). In the absence of sufficient anomalous dispersion effects, an absolute structure was not established in this analysis and 1491 Friedel pairs were merged.

Structure description top

α-Santonin is an anthelminthic agent, first isolated by Kahler in 1830 from Artemisia santonica. The title compound is a derivative of α-santonin which was synthesized by reacting its dienone with phenyl hydrazine to study its biological activities.

The title molecule (Fig. 1) is composed of a phenyl hydrazine moeity (N1–N2/C1–C6) attached to the α-santonin which is composed of three fused rings. The cyclohexadienone ring (C7–C10/C17–C18) adopts a boat conformation C7 and C10 atoms 0.116 (3) and 0.140 (3) Å out of the plane formed by the remaining ring atoms (C8–C9/C17–C18). The cyclohexane ring (C10–C13/C16/C17) adopts a chair conformation with ring puckering parameters (Cremer & Pople, 1981): Q = 0.552 (3) Å, θ = 11.3 (3)° and φ = 171.3 (18)°. The trans fused γ lactone ring (O2/C13–C16 ) adopts a C13-envelope conformation with C13 0.614 (5) Å out of the plane formed by the rest of the ring atoms. The two methyl substituents on C10 and C14 exist in axial and pseudo equatorial orientations, respectively. In the crystal structure, the molecules are linked by N2–H2A···O1 and C8–H8A···O1 interactions to form infinite chains running along the a-axis (Fig. 2 and Tab. 1). The molecular dimensions in the title compound are similar to those found in structurally related compounds (White & Sim, 1975; Coggon & Sim, 1969). The stereochemistry was assigned on the basis of the published α-santonin crystal data (White & Sim, 1975; Coggon & Sim, 1969).

For the isolation of α-santonin, see: Kahler (1830). For the crystal structure and stereochemistry of α-santonin, see: White & Sim (1975); Coggon & Sim (1969). For puckering parameters, see: Cremer & Pople (1981).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O and C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
3,5a,9-Trimethyl-8-(2-phenylhydrazin-1-ylidene)-4,5,5a,9b- tetrahydro-3aH,8H-naphtho[1,2-b]furan-2(3H)-one top
Crystal data top
C21H24N2O2F(000) = 720
Mr = 336.42Dx = 1.190 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1104 reflections
a = 10.5104 (12) Åθ = 2.2–18.1°
b = 11.5726 (14) ŵ = 0.08 mm1
c = 15.4401 (18) ÅT = 273 K
V = 1878.0 (4) Å3Block, yellow
Z = 40.41 × 0.12 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1999 independent reflections
Radiation source: fine-focus sealed tube1370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scanθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1211
Tmin = 0.969, Tmax = 0.992k = 1414
11178 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.0789P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1999 reflectionsΔρmax = 0.12 e Å3
229 parametersΔρmin = 0.11 e Å3
0 restraintsAbsolute structure: Flack (1983), 1491 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (10)
Crystal data top
C21H24N2O2V = 1878.0 (4) Å3
Mr = 336.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.5104 (12) ŵ = 0.08 mm1
b = 11.5726 (14) ÅT = 273 K
c = 15.4401 (18) Å0.41 × 0.12 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1999 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1370 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.992Rint = 0.056
11178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.12 e Å3
S = 1.04Δρmin = 0.11 e Å3
1999 reflectionsAbsolute structure: Flack (1983), 1491 Friedel pairs
229 parametersAbsolute structure parameter: 0 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6908 (2)0.2836 (2)0.39485 (19)0.0860 (9)
O20.4891 (2)0.31375 (18)0.35869 (14)0.0599 (6)
N10.0266 (2)0.4301 (2)0.44717 (16)0.0536 (7)
N20.1011 (3)0.4328 (2)0.46280 (17)0.0604 (8)
H2A0.15130.37810.44300.073*
C10.2860 (3)0.5333 (3)0.5113 (2)0.0641 (10)
H1B0.33590.47190.49250.077*
C20.3417 (4)0.6278 (4)0.5491 (2)0.0807 (12)
H2B0.42940.62900.55690.097*
C30.2708 (5)0.7203 (4)0.5756 (3)0.0867 (13)
H3A0.30990.78430.60060.104*
C40.1405 (4)0.7178 (3)0.5648 (2)0.0763 (11)
H4A0.09150.78040.58250.092*
C50.0824 (4)0.6230 (3)0.52795 (19)0.0615 (10)
H5A0.00550.62190.52120.074*
C60.1541 (3)0.5297 (3)0.50100 (19)0.0525 (8)
C70.0722 (3)0.3454 (3)0.4016 (2)0.0514 (8)
C80.0011 (3)0.2516 (3)0.3661 (3)0.0810 (12)
H8A0.08330.23880.38620.097*
C90.0463 (3)0.1832 (4)0.3053 (3)0.0892 (14)
H9A0.00440.12320.28490.107*
C100.1765 (3)0.1967 (3)0.2675 (2)0.0590 (9)
C110.2292 (3)0.0739 (3)0.2527 (2)0.0661 (10)
H11A0.21560.02880.30490.079*
H11B0.18120.03770.20640.079*
C120.3705 (3)0.0699 (3)0.2297 (2)0.0677 (10)
H12A0.39960.00960.22710.081*
H12B0.38470.10550.17360.081*
C130.4414 (3)0.1346 (3)0.29870 (19)0.0468 (8)
H13A0.42080.09860.35440.056*
C140.5848 (3)0.1514 (3)0.2955 (2)0.0528 (9)
H14A0.60760.17560.23670.063*
C150.5995 (3)0.2533 (3)0.3539 (2)0.0585 (9)
C160.3967 (3)0.2589 (3)0.30242 (19)0.0485 (8)
H16A0.40750.29190.24440.058*
C170.2590 (3)0.2721 (3)0.32667 (19)0.0462 (8)
C180.2099 (3)0.3460 (2)0.3847 (2)0.0489 (8)
C190.2862 (3)0.4331 (3)0.4352 (2)0.0676 (10)
H19A0.36180.45250.40360.101*
H19B0.30920.40080.49030.101*
H19C0.23610.50150.44400.101*
C200.1620 (4)0.2591 (4)0.1789 (2)0.0962 (14)
H20A0.12380.33350.18760.144*
H20B0.10890.21370.14140.144*
H20C0.24430.26850.15280.144*
C210.6686 (3)0.0503 (3)0.3200 (3)0.0778 (11)
H21A0.75530.07580.32430.117*
H21B0.66220.00860.27640.117*
H21C0.64160.01960.37470.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0446 (16)0.0785 (18)0.135 (2)0.0044 (14)0.0081 (16)0.0317 (17)
O20.0391 (13)0.0468 (12)0.0939 (16)0.0028 (11)0.0040 (13)0.0164 (12)
N10.0413 (17)0.0588 (16)0.0606 (16)0.0050 (14)0.0022 (14)0.0076 (15)
N20.0418 (17)0.0653 (18)0.0742 (19)0.0057 (15)0.0050 (15)0.0194 (16)
C10.054 (2)0.071 (2)0.067 (2)0.0120 (19)0.0064 (19)0.007 (2)
C20.065 (3)0.094 (3)0.083 (3)0.022 (2)0.011 (2)0.013 (3)
C30.094 (4)0.082 (3)0.084 (3)0.030 (3)0.007 (3)0.022 (2)
C40.090 (3)0.073 (3)0.065 (2)0.009 (2)0.004 (2)0.018 (2)
C50.066 (3)0.068 (2)0.051 (2)0.008 (2)0.0021 (18)0.0071 (18)
C60.053 (2)0.061 (2)0.0441 (18)0.0110 (18)0.0035 (17)0.0011 (17)
C70.040 (2)0.052 (2)0.062 (2)0.0034 (15)0.0010 (16)0.0070 (18)
C80.037 (2)0.078 (3)0.128 (3)0.003 (2)0.009 (2)0.039 (3)
C90.042 (2)0.088 (3)0.138 (4)0.009 (2)0.000 (2)0.055 (3)
C100.050 (2)0.061 (2)0.066 (2)0.0008 (18)0.0068 (18)0.0180 (18)
C110.056 (2)0.067 (2)0.075 (2)0.0019 (19)0.0070 (19)0.0314 (19)
C120.064 (3)0.067 (2)0.073 (2)0.0121 (19)0.005 (2)0.027 (2)
C130.046 (2)0.0500 (18)0.0440 (17)0.0033 (14)0.0070 (16)0.0049 (16)
C140.044 (2)0.057 (2)0.0566 (19)0.0050 (16)0.0108 (17)0.0030 (17)
C150.038 (2)0.054 (2)0.084 (2)0.0033 (18)0.0100 (19)0.006 (2)
C160.0470 (19)0.0466 (18)0.0518 (17)0.0021 (15)0.0030 (16)0.0021 (17)
C170.0387 (19)0.0442 (18)0.0557 (18)0.0011 (14)0.0006 (15)0.0051 (16)
C180.043 (2)0.0490 (19)0.0546 (19)0.0014 (16)0.0012 (16)0.0066 (16)
C190.049 (2)0.069 (2)0.085 (2)0.0004 (19)0.004 (2)0.030 (2)
C200.103 (3)0.100 (3)0.085 (3)0.018 (3)0.043 (3)0.016 (3)
C210.065 (2)0.063 (2)0.105 (3)0.014 (2)0.007 (2)0.020 (2)
Geometric parameters (Å, º) top
O1—C151.202 (4)C10—C201.554 (5)
O2—C151.357 (4)C11—C121.528 (4)
O2—C161.449 (4)C11—H11A0.9700
N1—C71.298 (4)C11—H11B0.9700
N1—N21.365 (3)C12—C131.501 (4)
N2—C61.385 (4)C12—H12A0.9700
N2—H2A0.8779C12—H12B0.9700
C1—C21.371 (4)C13—C161.515 (4)
C1—C61.396 (4)C13—C141.520 (4)
C1—H1B0.9300C13—H13A0.9800
C2—C31.367 (6)C14—C151.492 (4)
C2—H2B0.9300C14—C211.513 (4)
C3—C41.380 (5)C14—H14A0.9800
C3—H3A0.9300C16—C171.502 (4)
C4—C51.378 (5)C16—H16A0.9800
C4—H4A0.9300C17—C181.341 (4)
C5—C61.381 (5)C18—C191.506 (4)
C5—H5A0.9300C19—H19A0.9600
C7—C81.440 (4)C19—H19B0.9600
C7—C181.471 (4)C19—H19C0.9600
C8—C91.325 (5)C20—H20A0.9600
C8—H8A0.9300C20—H20B0.9600
C9—C101.495 (5)C20—H20C0.9600
C9—H9A0.9300C21—H21A0.9600
C10—C171.533 (4)C21—H21B0.9600
C10—C111.542 (5)C21—H21C0.9600
C15—O2—C16108.3 (2)C11—C12—H12B110.2
C7—N1—N2118.4 (3)H12A—C12—H12B108.5
N1—N2—C6119.3 (3)C12—C13—C16110.3 (3)
N1—N2—H2A120.9C12—C13—C14122.2 (3)
C6—N2—H2A119.4C16—C13—C14100.8 (2)
C2—C1—C6119.8 (4)C12—C13—H13A107.6
C2—C1—H1B120.1C16—C13—H13A107.6
C6—C1—H1B120.1C14—C13—H13A107.6
C3—C2—C1121.3 (4)C15—C14—C21113.5 (3)
C3—C2—H2B119.4C15—C14—C13100.6 (3)
C1—C2—H2B119.4C21—C14—C13118.1 (3)
C2—C3—C4119.2 (4)C15—C14—H14A108.0
C2—C3—H3A120.4C21—C14—H14A108.0
C4—C3—H3A120.4C13—C14—H14A108.0
C5—C4—C3120.5 (4)O1—C15—O2120.2 (3)
C5—C4—H4A119.8O1—C15—C14129.2 (3)
C3—C4—H4A119.8O2—C15—C14110.6 (3)
C4—C5—C6120.3 (4)O2—C16—C17116.9 (2)
C4—C5—H5A119.8O2—C16—C13103.3 (2)
C6—C5—H5A119.8C17—C16—C13113.9 (3)
C5—C6—N2122.9 (3)O2—C16—H16A107.4
C5—C6—C1119.0 (3)C17—C16—H16A107.4
N2—C6—C1118.1 (3)C13—C16—H16A107.4
N1—C7—C8125.3 (3)C18—C17—C16127.0 (3)
N1—C7—C18117.1 (3)C18—C17—C10122.9 (3)
C8—C7—C18117.6 (3)C16—C17—C10109.8 (3)
C9—C8—C7121.2 (3)C17—C18—C7119.6 (3)
C9—C8—H8A119.4C17—C18—C19124.6 (3)
C7—C8—H8A119.4C7—C18—C19115.8 (3)
C8—C9—C10123.9 (4)C18—C19—H19A109.5
C8—C9—H9A118.0C18—C19—H19B109.5
C10—C9—H9A118.0H19A—C19—H19B109.5
C9—C10—C17110.2 (3)C18—C19—H19C109.5
C9—C10—C11106.8 (3)H19A—C19—H19C109.5
C17—C10—C11114.2 (3)H19B—C19—H19C109.5
C9—C10—C20107.6 (3)C10—C20—H20A109.5
C17—C10—C20108.4 (3)C10—C20—H20B109.5
C11—C10—C20109.4 (3)H20A—C20—H20B109.5
C12—C11—C10114.3 (3)C10—C20—H20C109.5
C12—C11—H11A108.7H20A—C20—H20C109.5
C10—C11—H11A108.7H20B—C20—H20C109.5
C12—C11—H11B108.7C14—C21—H21A109.5
C10—C11—H11B108.7C14—C21—H21B109.5
H11A—C11—H11B107.6H21A—C21—H21B109.5
C13—C12—C11107.6 (3)C14—C21—H21C109.5
C13—C12—H12A110.2H21A—C21—H21C109.5
C11—C12—H12A110.2H21B—C21—H21C109.5
C13—C12—H12B110.2
C7—N1—N2—C6171.3 (3)C16—O2—C15—C141.8 (3)
C6—C1—C2—C31.4 (6)C21—C14—C15—O128.7 (5)
C1—C2—C3—C40.7 (6)C13—C14—C15—O1155.9 (4)
C2—C3—C4—C50.1 (6)C21—C14—C15—O2150.0 (3)
C3—C4—C5—C60.3 (5)C13—C14—C15—O222.8 (3)
C4—C5—C6—N2179.3 (3)C15—O2—C16—C17151.9 (3)
C4—C5—C6—C10.3 (5)C15—O2—C16—C1326.1 (3)
N1—N2—C6—C53.0 (5)C12—C13—C16—O2169.4 (2)
N1—N2—C6—C1176.0 (3)C14—C13—C16—O238.9 (3)
C2—C1—C6—C51.2 (5)C12—C13—C16—C1762.9 (3)
C2—C1—C6—N2179.8 (3)C14—C13—C16—C17166.7 (3)
N2—N1—C7—C80.7 (5)O2—C16—C17—C1813.5 (5)
N2—N1—C7—C18179.0 (3)C13—C16—C17—C18133.9 (3)
N1—C7—C8—C9165.1 (4)O2—C16—C17—C10172.9 (2)
C18—C7—C8—C914.7 (5)C13—C16—C17—C1052.4 (3)
C7—C8—C9—C100.8 (7)C9—C10—C17—C1821.6 (5)
C8—C9—C10—C1717.8 (6)C11—C10—C17—C18141.8 (3)
C8—C9—C10—C11142.3 (4)C20—C10—C17—C1895.9 (4)
C8—C9—C10—C20100.2 (5)C9—C10—C17—C16164.4 (3)
C9—C10—C11—C12169.5 (3)C11—C10—C17—C1644.3 (4)
C17—C10—C11—C1247.5 (4)C20—C10—C17—C1678.0 (3)
C20—C10—C11—C1274.3 (4)C16—C17—C18—C7178.8 (3)
C10—C11—C12—C1354.0 (4)C10—C17—C18—C78.3 (5)
C11—C12—C13—C1660.2 (4)C16—C17—C18—C191.7 (5)
C11—C12—C13—C14178.2 (3)C10—C17—C18—C19171.2 (3)
C12—C13—C14—C15159.0 (3)N1—C7—C18—C17169.1 (3)
C16—C13—C14—C1536.5 (3)C8—C7—C18—C1710.7 (5)
C12—C13—C14—C2176.9 (4)N1—C7—C18—C1910.4 (4)
C16—C13—C14—C21160.6 (3)C8—C7—C18—C19169.8 (3)
C16—O2—C15—O1179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.882.122.978 (4)164
C8—H8A···O1i0.932.433.290 (4)153
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H24N2O2
Mr336.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)10.5104 (12), 11.5726 (14), 15.4401 (18)
V3)1878.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.41 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.969, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
11178, 1999, 1370
Rint0.056
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.04
No. of reflections1999
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.11
Absolute structureFlack (1983), 1491 Friedel pairs
Absolute structure parameter0 (10)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.88002.12002.978 (4)164.00
C8—H8A···O1i0.93002.43003.290 (4)153.00
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the Pakistan Academy of Sciences for funding project reference No. 5–9/PAS/1335 entitled "Biology-Oriented Syntheses (BIOS) Based Synthesis of Libraries of Santonin".

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoggon, P. & Sim, G. A. (1969). J. Chem. Soc. B., pp. 237–242.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKahler, M. (1830). Arch. Pharm. 34, 318.  CrossRef Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, D. N. J. & Sim, G. A. (1975). J. Chem. Soc. Perkin Trans 2., pp. 1826–1831.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds