organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­eth­yl)-1H-pyrazolo­[3,4-d]pyrimidin-4(5H)-one

aDepartment of Chemistry, Karnatak University, Dharwad 580 003, India, and bDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: dr_imk@yahoo.com

(Received 24 May 2012; accepted 2 June 2012; online 13 June 2012)

In the title compound, C7H7ClN4O, the pyrazolo­pyrimidine ring is essentially planar, the r.m.s. deviation of the fitted atoms being 0.0071 Å. The crystal structure features strong N—H⋯O hydrogen bonds and further consolidated by weak C—H⋯O, C—H⋯N and C—H⋯Cl inter­actions.

Related literature

For the biological activity of pyrazolo­pyrimidines, see: Carraro et al. (2006[Carraro, F., Naldini, A., Pucci, A., Locatelli, G. A., Maga, G., Schenone, S., Bruno, O., Ranise, A., Bondavalli, F., Brullo, C., Fossa, P., Menozzi, G., Mosti, L., Modugno, M., Tintori, C., Manetti, F. & Botta|, M. (2006). J. Med. Chem. 49, 1549-1561.]). For a related structure, see: Dolzhenko et al. (2009[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V., Tan, G. K. & Koh, L. L. (2009). Acta Cryst. E65, o1720-o1721.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7ClN4O

  • Mr = 198.61

  • Monoclinic, P 21 /n

  • a = 4.6448 (1) Å

  • b = 8.0792 (1) Å

  • c = 22.7335 (4) Å

  • β = 93.554 (1)°

  • V = 851.46 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]) Tmin = 0.930, Tmax = 0.937

  • 7660 measured reflections

  • 1548 independent reflections

  • 1353 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 0.87

  • 1548 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.96 2.810 (2) 170
C5—H5A⋯N4ii 0.93 2.79 3.676 (2) 160
C2—H2A⋯Cl1iii 0.97 2.84 3.779 (2) 164
C2—H2B⋯N2iv 0.97 2.59 3.463 (2) 150
C3—H3⋯O1v 0.93 2.35 3.254 (2) 163
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrazolo[3,4-d]pyrimidines are purine analogues which exhibit a number of pharmacological properties such as antitryproliferative (Carraro et al., 2006).

In the title compound (Fig. 1), the fused pyrazolopyrimidine ring is substituted with 2-chloro-ethyl group on one side and the oxo group on the other side. The pyrazolopyrimidine ring is planar with the maximum deviation from the mean statistical plane being 0.0115 (14) Å for C3. The cis orientation of 2-chloro-ethyl group with respect to the C2—N2 bond is described by the torsion angle N2—C2—N3—C3, -2.204 (4)°.

The crystal structure is stabilized by some interesting features that comprise of intermolecular N—H···O, C—H···O, C—H···N and C—H···Cl interactions (Fig. 2 and Tab. 1). The C—H···O and the N—H···O interactions result in centrosymmetric head-to-head dimers corresponding to the graph set R22(10) and R22(8) motif (Bernstein et al., 1995). There are two types of C—H···N interactions, one of which forms a helix, the other forms sheets along the crystallographic b-axis. The C—H···Cl intermolecular interaction result in one dimensional molecular chain along b-axis. The bond lengths and bond angles in the title molecule agree very well with the corresponding bond distances and bond angles reported in a closely related compound (Dolzhenko et al., 2009).

Related literature top

For the biological activity of pyrazolopyrimidines, see: Carraro et al. (2006). For a related structure, see: Dolzhenko et al. (2009). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

A mixture of 5-amino-1-(2-chloro-ethyl)-1H-pyrazole-4-carbonitrile (1 g, 5.8 mmol) and formic acid (15 ml) was heated under reflux for 10 h. The excess of formic acid was removed under reduced pressure and the solid separated was washed with water and recrystallized from ethanol. (Yield = 0.86 g, 75% and m.p. = 470–472 K).

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.86 Å and C—H = 0.93, and 0.97 Å for aryl and methylene H-atoms respectively, with Uiso(H) = 1.2Ueq(N/C).

Structure description top

Pyrazolo[3,4-d]pyrimidines are purine analogues which exhibit a number of pharmacological properties such as antitryproliferative (Carraro et al., 2006).

In the title compound (Fig. 1), the fused pyrazolopyrimidine ring is substituted with 2-chloro-ethyl group on one side and the oxo group on the other side. The pyrazolopyrimidine ring is planar with the maximum deviation from the mean statistical plane being 0.0115 (14) Å for C3. The cis orientation of 2-chloro-ethyl group with respect to the C2—N2 bond is described by the torsion angle N2—C2—N3—C3, -2.204 (4)°.

The crystal structure is stabilized by some interesting features that comprise of intermolecular N—H···O, C—H···O, C—H···N and C—H···Cl interactions (Fig. 2 and Tab. 1). The C—H···O and the N—H···O interactions result in centrosymmetric head-to-head dimers corresponding to the graph set R22(10) and R22(8) motif (Bernstein et al., 1995). There are two types of C—H···N interactions, one of which forms a helix, the other forms sheets along the crystallographic b-axis. The C—H···Cl intermolecular interaction result in one dimensional molecular chain along b-axis. The bond lengths and bond angles in the title molecule agree very well with the corresponding bond distances and bond angles reported in a closely related compound (Dolzhenko et al., 2009).

For the biological activity of pyrazolopyrimidines, see: Carraro et al. (2006). For a related structure, see: Dolzhenko et al. (2009). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the intermolecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non participating in H-bonding were ommitted for clarity.
1-(2-Chloroethyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one top
Crystal data top
C7H7ClN4OF(000) = 416
Mr = 198.61Dx = 1.565 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1548 reflections
a = 4.6448 (1) Åθ = 1.8–25.2°
b = 8.0792 (1) ŵ = 0.41 mm1
c = 22.7335 (4) ÅT = 296 K
β = 93.554 (1)°Block, yellow
V = 851.46 (3) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
1548 independent reflections
Radiation source: fine-focus sealed tube1353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 55
Tmin = 0.930, Tmax = 0.937k = 99
7660 measured reflectionsl = 2725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.5291P]
where P = (Fo2 + 2Fc2)/3
1548 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C7H7ClN4OV = 851.46 (3) Å3
Mr = 198.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.6448 (1) ŵ = 0.41 mm1
b = 8.0792 (1) ÅT = 296 K
c = 22.7335 (4) Å0.18 × 0.16 × 0.16 mm
β = 93.554 (1)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
1548 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1353 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.937Rint = 0.023
7660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.87Δρmax = 0.19 e Å3
1548 reflectionsΔρmin = 0.37 e Å3
118 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89765 (12)0.64259 (8)0.72864 (2)0.0600 (2)
O10.5103 (3)0.78930 (17)0.99906 (6)0.0516 (4)
N10.7733 (3)0.95763 (18)0.94256 (6)0.0381 (4)
H10.70211.04290.95900.046*
N21.0887 (3)0.86963 (19)0.87124 (7)0.0396 (4)
N31.0967 (3)0.57267 (18)0.86397 (6)0.0376 (4)
N40.9763 (3)0.43809 (19)0.88974 (7)0.0434 (4)
C50.9640 (4)0.9842 (2)0.90068 (8)0.0401 (4)
H5A1.00921.09350.89240.048*
C61.0057 (4)0.7151 (2)0.88711 (7)0.0331 (4)
C11.2904 (4)0.5504 (3)0.81692 (8)0.0418 (4)
H1A1.43850.47110.82950.050*
H1B1.38480.65480.80960.050*
C21.1398 (4)0.4907 (2)0.76054 (8)0.0442 (5)
H2A1.03300.39070.76830.053*
H2B1.28260.46350.73270.053*
C40.6848 (4)0.8026 (2)0.96076 (7)0.0371 (4)
C70.8174 (4)0.6729 (2)0.92974 (7)0.0349 (4)
C30.8092 (4)0.4993 (2)0.92932 (8)0.0424 (4)
H30.70020.43560.95380.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0545 (3)0.0640 (4)0.0607 (4)0.0019 (2)0.0027 (3)0.0011 (3)
O10.0692 (9)0.0403 (8)0.0488 (8)0.0011 (6)0.0335 (7)0.0006 (6)
N10.0486 (8)0.0314 (8)0.0355 (8)0.0000 (6)0.0122 (6)0.0036 (6)
N20.0475 (9)0.0357 (8)0.0370 (8)0.0044 (7)0.0137 (7)0.0006 (6)
N30.0437 (8)0.0351 (8)0.0354 (8)0.0002 (6)0.0121 (6)0.0014 (6)
N40.0550 (9)0.0326 (8)0.0436 (9)0.0000 (7)0.0117 (7)0.0026 (7)
C50.0489 (10)0.0352 (10)0.0372 (9)0.0061 (8)0.0098 (8)0.0021 (8)
C60.0360 (9)0.0343 (9)0.0295 (8)0.0008 (7)0.0060 (7)0.0005 (7)
C10.0397 (9)0.0451 (11)0.0418 (10)0.0050 (8)0.0132 (8)0.0037 (8)
C20.0505 (11)0.0395 (11)0.0442 (10)0.0004 (8)0.0159 (8)0.0060 (8)
C40.0452 (10)0.0365 (10)0.0304 (9)0.0030 (8)0.0088 (7)0.0002 (7)
C70.0413 (9)0.0347 (9)0.0293 (8)0.0019 (7)0.0076 (7)0.0006 (7)
C30.0528 (11)0.0364 (10)0.0393 (10)0.0025 (8)0.0141 (8)0.0033 (8)
Geometric parameters (Å, º) top
Cl1—C21.788 (2)C5—H5A0.9300
O1—C41.231 (2)C6—C71.388 (2)
N1—C51.357 (2)C1—C21.501 (3)
N1—C41.389 (2)C1—H1A0.9700
N1—H10.8600C1—H1B0.9700
N2—C51.299 (2)C2—H2A0.9700
N2—C61.362 (2)C2—H2B0.9700
N3—C61.344 (2)C4—C71.424 (2)
N3—N41.371 (2)C7—C31.403 (3)
N3—C11.451 (2)C3—H30.9300
N4—C31.320 (2)
C5—N1—C4124.71 (15)C2—C1—H1B109.0
C5—N1—H1117.6H1A—C1—H1B107.8
C4—N1—H1117.6C1—C2—Cl1112.00 (14)
C5—N2—C6111.97 (15)C1—C2—H2A109.2
C6—N3—N4111.42 (13)Cl1—C2—H2A109.2
C6—N3—C1128.26 (15)C1—C2—H2B109.2
N4—N3—C1120.30 (15)Cl1—C2—H2B109.2
C3—N4—N3105.48 (15)H2A—C2—H2B107.9
N2—C5—N1125.45 (17)O1—C4—N1120.63 (16)
N2—C5—H5A117.3O1—C4—C7127.58 (17)
N1—C5—H5A117.3N1—C4—C7111.79 (14)
N3—C6—N2125.45 (15)C6—C7—C3105.00 (16)
N3—C6—C7106.86 (15)C6—C7—C4118.38 (16)
N2—C6—C7127.68 (16)C3—C7—C4136.61 (17)
N3—C1—C2113.08 (15)N4—C3—C7111.23 (16)
N3—C1—H1A109.0N4—C3—H3124.4
C2—C1—H1A109.0C7—C3—H3124.4
N3—C1—H1B109.0
C6—N3—N4—C30.1 (2)C5—N1—C4—O1179.89 (18)
C1—N3—N4—C3178.72 (16)C5—N1—C4—C70.4 (2)
C6—N2—C5—N10.1 (3)N3—C6—C7—C30.2 (2)
C4—N1—C5—N20.7 (3)N2—C6—C7—C3179.13 (18)
N4—N3—C6—N2179.28 (17)N3—C6—C7—C4179.02 (15)
C1—N3—C6—N22.2 (3)N2—C6—C7—C41.6 (3)
N4—N3—C6—C70.1 (2)O1—C4—C7—C6178.81 (19)
C1—N3—C6—C7178.40 (17)N1—C4—C7—C60.6 (2)
C5—N2—C6—N3179.47 (17)O1—C4—C7—C30.1 (4)
C5—N2—C6—C71.3 (3)N1—C4—C7—C3179.6 (2)
C6—N3—C1—C2108.1 (2)N3—N4—C3—C70.2 (2)
N4—N3—C1—C270.3 (2)C6—C7—C3—N40.3 (2)
N3—C1—C2—Cl166.78 (19)C4—C7—C3—N4178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.962.810 (2)170
C5—H5A···N4ii0.932.793.676 (2)160
C2—H2A···Cl1iii0.972.843.779 (2)164
C2—H2B···N2iv0.972.593.463 (2)150
C3—H3···O1v0.932.353.254 (2)163
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+3/2, y1/2, z+3/2; (iv) x+5/2, y1/2, z+3/2; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC7H7ClN4O
Mr198.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.6448 (1), 8.0792 (1), 22.7335 (4)
β (°) 93.554 (1)
V3)851.46 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.930, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
7660, 1548, 1353
Rint0.023
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 0.87
No. of reflections1548
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.37

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.8601.9582.810 (2)170
C5—H5A···N4ii0.9302.7893.676 (2)160
C2—H2A···Cl1iii0.9702.8363.779 (2)164
C2—H2B···N2iv0.9702.5873.463 (2)150
C3—H3···O1v0.9302.3533.254 (2)163
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+3/2, y1/2, z+3/2; (iv) x+5/2, y1/2, z+3/2; (v) x+1, y+1, z+2.
 

Acknowledgements

IMK is thankful to the University Grants Commission (UGC), India, for financial assistance.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. 34, 1555–1573.  CrossRef CAS Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.  Google Scholar
First citationCarraro, F., Naldini, A., Pucci, A., Locatelli, G. A., Maga, G., Schenone, S., Bruno, O., Ranise, A., Bondavalli, F., Brullo, C., Fossa, P., Menozzi, G., Mosti, L., Modugno, M., Tintori, C., Manetti, F. & Botta|, M. (2006). J. Med. Chem. 49, 1549–1561.  Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V., Tan, G. K. & Koh, L. L. (2009). Acta Cryst. E65, o1720–o1721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds