organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(9,9-Di­hexyl­fluoren-2-yl)carbon­yl]phen­yl}(4-meth­­oxy­phen­yl)methanone

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 31 May 2012; accepted 13 June 2012; online 20 June 2012)

In the title compound, C40H44O3, the fluorene ring system is essentially planar, with a maximum deviation of 0.075 (3) Å, and forms dihedral angles of 70.62 (8) and 70.31 (8)° with the mean planes of the central benzene ring and the meth­oxy­phenyl ring, respectively. Both the hexyl side chains have different conformations, i.e. an antigaucheantigauche conformation with C—C—C—C torsion angles of −169.3 (2), 74.2 (4), −178.0 (3) and −76.0 (6)° for one hexyl side chain and an antiantiantigauche conformation with C—C—C—C torsion angles of −177.9 (2), −176.5 (3), 171.7 (4) and 80.4 (9)° for the other. Four C atoms in one and two C atoms in the other hexyl side chains are each disordered over two sets of sites, with occupancy factors of 0.761 (3):0.239 (3) and 0.660 (6):0.340 (6). In the crystal, mol­ecules are via pairs of C—H⋯O hydrogen bonds, forming inversion dimers and resulting in R22(28) graph-set motifs.

Related literature

For the uses and biological importance of diketones, see: Saragi et al. (2004[Saragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett. 84, 2334-2336.]); Beulter et al. (2007[Beulter, U., Fuenfschilling, C. & Steinkemper, A. (2007). Org. Process Res. Dev. 11, 341-345.]). For related structures, see: Narayanan et al. (2011[Narayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2120.]); Schollmeyer & Detert (2011[Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1384-o1385.]). For distorted conformations, see: Judas et al. (1995[Judas, N., Kaitner, B. & Mestrovic, E. (1995). Acta Cryst. C51, 2123-2125.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C40H44O3

  • Mr = 572.75

  • Monoclinic, P 21 /n

  • a = 16.7593 (10) Å

  • b = 11.4989 (6) Å

  • c = 17.146 (1) Å

  • β = 90.449 (2)°

  • V = 3304.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.986

  • 28941 measured reflections

  • 5850 independent reflections

  • 3875 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.153

  • S = 1.02

  • 5850 reflections

  • 415 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O2i 0.93 2.58 3.470 (3) 160
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The fluorene derivatives have attracted much attention due to their potential utilities in organic light emitting devices, organic photo transistors, nonlinear optics and photochromic materials (Saragi et al., 2004). They also possess antimalerial activity (Beulter et al., 2007). In view of these important properties, the crystal structure of the title compound has been determined and reported in this article.

The title compound (Fig. 1), comprises a benzene ring attached to a diketone, a methoxy phenyl ring and a dihexyl fluorene ring system. The carbonyl oxygen atoms are significantly deviated [O1 = -1.0104 (17) Å and O2 = -0.8195 (14) Å] from the central benzene ring (C1–C6). The molecule possess a distorted S–conformation, with the participation of the atoms (C9/C8/C1/C6/C7/C19/O1/O2), as evidenced by the dihedral angle of 57.85 (8) ° between the two acetone planes defined by (C9/C8/C1/O2) and (C6/C7/C9/O1) (Judas et al., 1995).

The fluorene ring system is essentially planar with a maximum deviation of 0.075 (3) Å for C27 atom. It forms dihedral angles of 70.62 (8) and 70.31 (8) ° with the central benzene ring (C1–C6) and methoxy phenyl ring (C9–C14), respectively. In the fluorene ring system, the five membered cyclopentadiene ring forms the dihedral angles of 1.61 (11) ° and 2.84 (12) ° with fused benzene rings (C16–C21) and (C23–C28), respectively.

Both the hexyl side chains have different conformations. One of the hexyl side chains has antigaucheantigauche conformation with C–C–C–C torsion angles -169.3 (2), 74.2 (4), -178.0 (3) and -76.0 (6) °. The other hexyl side chain has the conformation antiantiantigauche with C–C–C–C torsion angles -177.9 (2), -176.5 (3), 171.7 (4) and 80.4 (9) °. The hexyl side chains are disordered over two sets of sites, with the occupancy factors of 0.761 (3)/0.239 (3) and 0.660 (6)/0.340 (6).

In the crystal packing, molecules are linked into centrosymmetric dimers via C26—H26···O2i hydrogen bonds, resulting in R22(28) graph-set motifs (Bernstein et al., 1995) (Table 1 and Fig. 2). The bond lengths and bond angles in the title compound agree with the corresponding bond lengths and angles reported for closely related compounds (Narayanan et al., 2011); Schollmeyer & Detert, 2011).

Related literature top

For the uses and biological importance of diketones, see: Saragi et al. (2004); Beulter et al. (2007). For related structures, see: Narayanan et al. (2011); Schollmeyer & Detert (2011). For distorted conformations, see: Judas et al. (1995). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a solution of benzo[c]furan (0.50 g, 0.898 mmol) in dichloromethane (15 ml), meta-chloroperoxybenzoic acid (m-CPBA) (0.23 g, 1.347 mmol) was added and the reaction mixture was stirred at room temperature for 5 minutes. It was then poured into saturated sodium bicarbonate solution, extracted with dichloromethane (3x30 ml). The combined organic extract was washed with water (2x30 ml) and dried (Na2SO4). Removal of solvent followed by column chromatographic purification (silica gel, 5% ethyl acetate/hexane) afforded the diketone as a pale yellow solid (yield = 0.46 g, 81%). The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for XRD studies. M.P. = 403–404 K.

Refinement top

In the dihexyl side chain atoms (C31/C32/C33/C34) and (C39/C40) were disordered over two sets of sites with the occupancy factors of 0.761 (3)/0.239 (3) and 0.660 (6)/0.340 (6). The bondlengths of the both major and minor components are restrained to a standard value using the commands DFIX, EADP (Sheldrick, 2008) and s.u. of 0.01 Å. The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H-atoms, respectively, with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(non-methyl C). The rotation angles for methyl groups were optimized by least squares.

Structure description top

The fluorene derivatives have attracted much attention due to their potential utilities in organic light emitting devices, organic photo transistors, nonlinear optics and photochromic materials (Saragi et al., 2004). They also possess antimalerial activity (Beulter et al., 2007). In view of these important properties, the crystal structure of the title compound has been determined and reported in this article.

The title compound (Fig. 1), comprises a benzene ring attached to a diketone, a methoxy phenyl ring and a dihexyl fluorene ring system. The carbonyl oxygen atoms are significantly deviated [O1 = -1.0104 (17) Å and O2 = -0.8195 (14) Å] from the central benzene ring (C1–C6). The molecule possess a distorted S–conformation, with the participation of the atoms (C9/C8/C1/C6/C7/C19/O1/O2), as evidenced by the dihedral angle of 57.85 (8) ° between the two acetone planes defined by (C9/C8/C1/O2) and (C6/C7/C9/O1) (Judas et al., 1995).

The fluorene ring system is essentially planar with a maximum deviation of 0.075 (3) Å for C27 atom. It forms dihedral angles of 70.62 (8) and 70.31 (8) ° with the central benzene ring (C1–C6) and methoxy phenyl ring (C9–C14), respectively. In the fluorene ring system, the five membered cyclopentadiene ring forms the dihedral angles of 1.61 (11) ° and 2.84 (12) ° with fused benzene rings (C16–C21) and (C23–C28), respectively.

Both the hexyl side chains have different conformations. One of the hexyl side chains has antigaucheantigauche conformation with C–C–C–C torsion angles -169.3 (2), 74.2 (4), -178.0 (3) and -76.0 (6) °. The other hexyl side chain has the conformation antiantiantigauche with C–C–C–C torsion angles -177.9 (2), -176.5 (3), 171.7 (4) and 80.4 (9) °. The hexyl side chains are disordered over two sets of sites, with the occupancy factors of 0.761 (3)/0.239 (3) and 0.660 (6)/0.340 (6).

In the crystal packing, molecules are linked into centrosymmetric dimers via C26—H26···O2i hydrogen bonds, resulting in R22(28) graph-set motifs (Bernstein et al., 1995) (Table 1 and Fig. 2). The bond lengths and bond angles in the title compound agree with the corresponding bond lengths and angles reported for closely related compounds (Narayanan et al., 2011); Schollmeyer & Detert, 2011).

For the uses and biological importance of diketones, see: Saragi et al. (2004); Beulter et al. (2007). For related structures, see: Narayanan et al. (2011); Schollmeyer & Detert (2011). For distorted conformations, see: Judas et al. (1995). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing only the atoms representing major fractions of the disordered dihexyl side chains, with the atom numbering scheme. The displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a-axis, showing the centrosymmetric dimer via C—H···O hydrogen bonds. The dihexyl side chains and H atoms not involved in hydrogen bonding have been excluded for clarity.
{2-[(9,9-Dihexylfluoren-2-yl)carbonyl]phenyl}(4-methoxyphenyl)methanone top
Crystal data top
C40H44O3F(000) = 1232
Mr = 572.75Dx = 1.151 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5850 reflections
a = 16.7593 (10) Åθ = 2.1–25.1°
b = 11.4989 (6) ŵ = 0.07 mm1
c = 17.146 (1) ÅT = 293 K
β = 90.449 (2)°Block, colourless
V = 3304.2 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5850 independent reflections
Radiation source: fine-focus sealed tube3875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1819
Tmin = 0.979, Tmax = 0.986k = 1313
28941 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0686P)2 + 1.0846P]
where P = (Fo2 + 2Fc2)/3
5850 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.23 e Å3
16 restraintsΔρmin = 0.32 e Å3
Crystal data top
C40H44O3V = 3304.2 (3) Å3
Mr = 572.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.7593 (10) ŵ = 0.07 mm1
b = 11.4989 (6) ÅT = 293 K
c = 17.146 (1) Å0.30 × 0.25 × 0.20 mm
β = 90.449 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3875 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.037
28941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05016 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
5850 reflectionsΔρmin = 0.32 e Å3
415 parameters
Special details top

Experimental. 1H-NMR (300 MHz, CDCl3): δ 7.65 – 7.54 (m, 10H, ArH), 7.28 (broad s, 7H, ArH), 6.76 (d, J = 8.4 Hz, 2H, ArH), 3.75 (s, 3H, OCH3), 1.88 – 1.83 (m, 4H, CH2), 1.05 – 0.95 (m, 12H, CH2), 0.71 – 0.48 (m, 10H, CH2CH3). 13C-NMR (75 MHz, CDCl3): δ 196.7, 195.4, 163.6, 152.1, 150.8, 146.0, 140.0, 139.8, 135.8, 132.3, 130.3, 129.8, 129.7, 129.2, 128.4, 127.0, 124.0, 123.1, 120.7, 119.2, 113.6, 55.4, 55.2, 40.1, 31.5, 29.7, 23.7, 22.6, 14.0.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.31061 (12)0.03137 (16)0.35655 (11)0.0454 (5)
C20.25018 (14)0.07909 (18)0.40135 (12)0.0545 (5)
H20.19760.07480.38380.065*
C30.26725 (16)0.1332 (2)0.47205 (13)0.0651 (6)
H30.22640.16530.50140.078*
C40.34483 (17)0.1389 (2)0.49831 (13)0.0659 (7)
H40.35650.17490.54560.079*
C50.40551 (15)0.09130 (19)0.45463 (12)0.0581 (6)
H50.45780.09530.47300.070*
C60.38971 (13)0.03773 (17)0.38393 (11)0.0475 (5)
C70.45891 (13)0.01675 (18)0.34216 (12)0.0517 (5)
C80.29231 (12)0.04012 (17)0.28538 (11)0.0457 (5)
C90.22259 (12)0.01536 (16)0.23476 (11)0.0455 (5)
C100.19467 (14)0.10411 (17)0.18593 (12)0.0545 (6)
H100.22020.17590.18630.065*
C110.13056 (15)0.08704 (19)0.13784 (13)0.0651 (7)
H110.11240.14740.10630.078*
C120.09212 (14)0.02014 (19)0.13574 (13)0.0579 (6)
C130.11965 (13)0.10975 (17)0.18194 (12)0.0534 (5)
H130.09490.18210.18030.064*
C140.18427 (13)0.09142 (17)0.23073 (12)0.0506 (5)
H140.20260.15230.26170.061*
C150.01159 (18)0.1353 (2)0.07966 (18)0.0910 (9)
H15A0.03210.15670.12980.137*
H15B0.05500.12780.04310.137*
H15C0.02460.19420.06190.137*
C160.53327 (12)0.09642 (17)0.11768 (12)0.0493 (5)
C170.56149 (13)0.00727 (18)0.14841 (13)0.0574 (6)
H170.59680.05320.12030.069*
C180.53659 (13)0.04138 (18)0.22118 (13)0.0570 (6)
H180.55610.11030.24240.068*
C190.48288 (12)0.02494 (17)0.26360 (11)0.0469 (5)
C200.45431 (12)0.12945 (16)0.23247 (11)0.0468 (5)
H200.41830.17450.26030.056*
C210.47998 (12)0.16521 (16)0.16004 (11)0.0458 (5)
C220.45933 (13)0.27577 (17)0.11513 (11)0.0513 (5)
C230.50415 (14)0.25532 (17)0.03939 (12)0.0522 (5)
C240.54841 (13)0.15263 (17)0.04263 (12)0.0510 (5)
C250.59410 (15)0.1189 (2)0.02029 (14)0.0624 (6)
H250.62450.05130.01790.075*
C260.59413 (15)0.1866 (2)0.08662 (14)0.0676 (7)
H260.62440.16420.12930.081*
C270.54984 (16)0.2870 (2)0.09027 (13)0.0668 (7)
H270.55000.33150.13560.080*
C280.50491 (15)0.32279 (19)0.02722 (12)0.0616 (6)
H280.47560.39140.02970.074*
C290.36895 (14)0.29072 (19)0.10095 (13)0.0606 (6)
H29A0.34350.30060.15120.073*
H29B0.36070.36200.07180.073*
C300.32668 (15)0.1934 (2)0.05806 (15)0.0724 (7)
H30A0.32640.12580.09190.087*
H30B0.35820.17350.01280.087*
C350.49149 (16)0.38429 (18)0.15852 (13)0.0639 (7)
H35A0.47510.45280.12950.077*
H35B0.46620.38800.20910.077*
C360.58109 (18)0.3899 (2)0.17088 (16)0.0799 (8)
H36A0.59810.32040.19850.096*
H36B0.60680.38970.12040.096*
O10.49806 (10)0.09043 (15)0.37646 (9)0.0735 (5)
O20.33543 (9)0.12374 (12)0.27163 (9)0.0585 (4)
O30.02933 (12)0.02748 (15)0.08580 (11)0.0861 (6)
C310.2401 (2)0.2153 (4)0.0301 (3)0.0766 (11)0.761 (3)
H31A0.21550.14140.01690.092*0.761 (3)
H31B0.21000.24930.07250.092*0.761 (3)
C320.2353 (2)0.2937 (4)0.0388 (2)0.0987 (13)0.761 (3)
H32A0.26380.25840.08180.118*0.761 (3)
H32B0.26160.36660.02620.118*0.761 (3)
C330.1489 (3)0.3193 (5)0.0653 (3)0.1081 (15)0.761 (3)
H33A0.11800.33800.01940.130*0.761 (3)
H33B0.14950.38800.09810.130*0.761 (3)
C340.1062 (3)0.2237 (5)0.1092 (3)0.1270 (18)0.761 (3)
H34A0.13510.20540.15570.190*0.761 (3)
H34B0.05330.24910.12290.190*0.761 (3)
H34C0.10290.15570.07680.190*0.761 (3)
C31'0.2566 (7)0.2666 (10)0.0262 (10)0.0766 (11)0.238 (3)
H31C0.27590.33370.00220.092*0.239 (3)
H31D0.22270.29290.06820.092*0.239 (3)
C32'0.2105 (7)0.1834 (12)0.0288 (8)0.0987 (13)0.239 (3)
H32C0.24230.17170.07510.118*0.239 (3)
H32D0.20600.10860.00290.118*0.239 (3)
C33'0.1279 (8)0.2210 (15)0.0543 (9)0.1081 (15)0.239 (3)
H33C0.09990.25400.01030.130*0.239 (3)
H33D0.09800.15380.07240.130*0.239 (3)
C34'0.1324 (12)0.3105 (15)0.1194 (10)0.1270 (18)0.239 (3)
H34D0.13940.38660.09730.190*0.239 (3)
H34E0.08400.30860.14970.190*0.239 (3)
H34F0.17680.29290.15240.190*0.239 (3)
C370.6092 (2)0.4955 (3)0.21618 (19)0.0996 (10)
H37A0.58910.56470.19030.119*
H37B0.58600.49300.26780.119*
C380.6984 (3)0.5057 (3)0.2246 (3)0.1409 (15)
H38A0.72120.49530.17320.169*
H38B0.71660.44100.25640.169*
C390.7350 (7)0.6192 (7)0.2601 (5)0.163 (3)0.660 (6)
H39A0.79020.62620.24430.195*0.660 (6)
H39B0.70610.68620.24010.195*0.660 (6)
C400.7307 (5)0.6179 (9)0.3470 (5)0.215 (5)0.660 (6)
H40A0.67620.62610.36280.322*0.660 (6)
H40B0.76160.68120.36780.322*0.660 (6)
H40C0.75170.54570.36640.322*0.660 (6)
C39'0.7240 (15)0.5801 (13)0.2974 (8)0.163 (3)0.340 (6)
H39C0.70300.54760.34520.195*0.340 (6)
H39D0.78160.58600.30170.195*0.340 (6)
C40'0.6867 (10)0.6970 (17)0.2793 (10)0.215 (5)0.340 (6)
H40D0.68780.71040.22400.322*0.340 (6)
H40E0.71620.75720.30550.322*0.340 (6)
H40F0.63240.69770.29680.322*0.340 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0565 (13)0.0385 (10)0.0413 (10)0.0018 (9)0.0009 (9)0.0056 (9)
C20.0606 (14)0.0524 (12)0.0503 (12)0.0024 (11)0.0004 (11)0.0004 (10)
C30.0820 (18)0.0612 (14)0.0521 (13)0.0023 (13)0.0086 (12)0.0026 (11)
C40.0913 (19)0.0623 (14)0.0440 (12)0.0041 (13)0.0054 (13)0.0053 (11)
C50.0689 (15)0.0567 (13)0.0485 (12)0.0056 (12)0.0122 (11)0.0074 (11)
C60.0596 (13)0.0412 (10)0.0418 (11)0.0014 (10)0.0039 (10)0.0105 (9)
C70.0567 (13)0.0457 (11)0.0525 (12)0.0010 (10)0.0096 (10)0.0095 (10)
C80.0511 (12)0.0395 (10)0.0465 (11)0.0053 (10)0.0041 (9)0.0051 (9)
C90.0539 (12)0.0391 (10)0.0435 (11)0.0035 (9)0.0019 (9)0.0003 (9)
C100.0706 (15)0.0405 (11)0.0524 (12)0.0057 (10)0.0056 (11)0.0045 (9)
C110.0899 (18)0.0452 (12)0.0600 (14)0.0012 (12)0.0187 (13)0.0115 (10)
C120.0688 (15)0.0513 (12)0.0533 (13)0.0004 (11)0.0143 (11)0.0006 (10)
C130.0637 (14)0.0399 (11)0.0563 (13)0.0028 (10)0.0036 (11)0.0012 (10)
C140.0625 (14)0.0395 (11)0.0498 (12)0.0055 (10)0.0019 (10)0.0050 (9)
C150.097 (2)0.0810 (19)0.095 (2)0.0279 (16)0.0355 (17)0.0021 (16)
C160.0540 (13)0.0398 (11)0.0542 (12)0.0009 (9)0.0052 (10)0.0011 (9)
C170.0576 (14)0.0476 (12)0.0671 (14)0.0115 (10)0.0102 (11)0.0009 (11)
C180.0578 (13)0.0455 (12)0.0678 (15)0.0107 (10)0.0017 (11)0.0102 (11)
C190.0469 (12)0.0434 (11)0.0502 (11)0.0005 (9)0.0050 (9)0.0049 (9)
C200.0528 (12)0.0414 (10)0.0461 (11)0.0037 (9)0.0026 (9)0.0015 (9)
C210.0544 (12)0.0375 (10)0.0455 (11)0.0019 (9)0.0036 (9)0.0005 (9)
C220.0715 (15)0.0397 (11)0.0428 (11)0.0078 (10)0.0101 (10)0.0029 (9)
C230.0669 (14)0.0436 (11)0.0461 (11)0.0030 (10)0.0094 (10)0.0001 (9)
C240.0578 (13)0.0437 (11)0.0516 (12)0.0041 (10)0.0090 (10)0.0040 (9)
C250.0687 (15)0.0533 (13)0.0654 (15)0.0006 (11)0.0188 (12)0.0084 (11)
C260.0755 (17)0.0718 (16)0.0558 (14)0.0148 (14)0.0234 (12)0.0107 (12)
C270.0872 (18)0.0630 (15)0.0504 (13)0.0129 (14)0.0128 (13)0.0026 (11)
C280.0838 (17)0.0502 (12)0.0509 (13)0.0008 (12)0.0099 (12)0.0055 (10)
C290.0754 (16)0.0534 (13)0.0530 (13)0.0211 (12)0.0107 (11)0.0072 (10)
C300.0764 (18)0.0741 (16)0.0666 (15)0.0136 (14)0.0039 (13)0.0011 (13)
C350.097 (2)0.0412 (12)0.0541 (13)0.0020 (12)0.0142 (13)0.0002 (10)
C360.105 (2)0.0618 (15)0.0732 (17)0.0115 (15)0.0058 (16)0.0099 (13)
O10.0780 (11)0.0756 (11)0.0669 (10)0.0208 (9)0.0090 (9)0.0236 (9)
O20.0630 (10)0.0490 (9)0.0634 (9)0.0061 (8)0.0038 (8)0.0058 (7)
O30.1017 (14)0.0675 (11)0.0883 (13)0.0143 (10)0.0470 (11)0.0115 (9)
C310.066 (2)0.088 (3)0.076 (2)0.007 (2)0.0060 (19)0.003 (3)
C320.092 (3)0.124 (3)0.080 (2)0.000 (3)0.016 (2)0.007 (2)
C330.101 (3)0.134 (4)0.089 (3)0.019 (3)0.024 (2)0.017 (3)
C340.137 (5)0.133 (5)0.110 (3)0.003 (4)0.024 (3)0.013 (4)
C31'0.066 (2)0.088 (3)0.076 (2)0.007 (2)0.0060 (19)0.003 (3)
C32'0.092 (3)0.124 (3)0.080 (2)0.000 (3)0.016 (2)0.007 (2)
C33'0.101 (3)0.134 (4)0.089 (3)0.019 (3)0.024 (2)0.017 (3)
C34'0.137 (5)0.133 (5)0.110 (3)0.003 (4)0.024 (3)0.013 (4)
C370.125 (3)0.0766 (19)0.097 (2)0.0186 (19)0.008 (2)0.0147 (17)
C380.157 (4)0.119 (3)0.146 (4)0.047 (3)0.030 (3)0.016 (3)
C390.180 (7)0.146 (7)0.161 (8)0.059 (6)0.023 (7)0.003 (6)
C400.137 (6)0.304 (12)0.204 (9)0.032 (6)0.027 (5)0.155 (9)
C39'0.180 (7)0.146 (7)0.161 (8)0.059 (6)0.023 (7)0.003 (6)
C40'0.137 (6)0.304 (12)0.204 (9)0.032 (6)0.027 (5)0.155 (9)
Geometric parameters (Å, º) top
C1—C21.389 (3)C29—H29A0.9700
C1—C61.405 (3)C29—H29B0.9700
C1—C81.501 (3)C30—C31'1.542 (9)
C2—C31.390 (3)C30—C311.546 (4)
C2—H20.9300C30—H30A0.9700
C3—C41.374 (3)C30—H30B0.9700
C3—H30.9300C35—C361.516 (4)
C4—C51.381 (3)C35—H35A0.9700
C4—H40.9300C35—H35B0.9700
C5—C61.383 (3)C36—C371.515 (3)
C5—H50.9300C36—H36A0.9700
C6—C71.505 (3)C36—H36B0.9700
C7—O11.220 (2)C31—C321.489 (5)
C7—C191.488 (3)C31—H31A0.9700
C8—O21.227 (2)C31—H31B0.9700
C8—C91.478 (3)C32—C331.542 (5)
C9—C141.387 (3)C32—H32A0.9700
C9—C101.398 (3)C32—H32B0.9700
C10—C111.363 (3)C33—C341.510 (5)
C10—H100.9300C33—H33A0.9700
C11—C121.391 (3)C33—H33B0.9700
C11—H110.9300C34—H34A0.9600
C12—O31.354 (3)C34—H34B0.9600
C12—C131.377 (3)C34—H34C0.9600
C13—C141.379 (3)C31'—C32'1.545 (9)
C13—H130.9300C31'—H31C0.9700
C14—H140.9300C31'—H31D0.9700
C15—O31.420 (3)C32'—C33'1.513 (9)
C15—H15A0.9600C32'—H32C0.9700
C15—H15B0.9600C32'—H32D0.9700
C15—H15C0.9600C33'—C34'1.521 (10)
C16—C171.385 (3)C33'—H33C0.9700
C16—C211.400 (3)C33'—H33D0.9700
C16—C241.464 (3)C34'—H34D0.9600
C17—C181.376 (3)C34'—H34E0.9600
C17—H170.9300C34'—H34F0.9600
C18—C191.390 (3)C37—C381.507 (4)
C18—H180.9300C37—H37A0.9700
C19—C201.398 (3)C37—H37B0.9700
C20—C211.380 (3)C38—C391.563 (7)
C20—H200.9300C38—C39'1.570 (9)
C21—C221.525 (3)C38—H38A0.9700
C22—C231.524 (3)C38—H38B0.9700
C22—C291.542 (3)C39—C401.493 (8)
C22—C351.548 (3)C39—H39A0.9700
C23—C281.381 (3)C39—H39B0.9700
C23—C241.395 (3)C40—H40A0.9600
C24—C251.383 (3)C40—H40B0.9600
C25—C261.378 (3)C40—H40C0.9600
C25—H250.9300C39'—C40'1.513 (10)
C26—C271.374 (3)C39'—H39C0.9700
C26—H260.9300C39'—H39D0.9700
C27—C281.385 (3)C40'—H40D0.9600
C27—H270.9300C40'—H40E0.9600
C28—H280.9300C40'—H40F0.9600
C29—C301.512 (3)
C2—C1—C6119.00 (19)C29—C30—C31117.7 (2)
C2—C1—C8121.39 (19)C29—C30—H30A107.9
C6—C1—C8119.11 (18)C31'—C30—H30A129.9
C1—C2—C3120.9 (2)C31—C30—H30A107.9
C1—C2—H2119.6C29—C30—H30B107.9
C3—C2—H2119.6C31'—C30—H30B105.3
C4—C3—C2119.7 (2)C31—C30—H30B107.9
C4—C3—H3120.2H30A—C30—H30B107.2
C2—C3—H3120.2C36—C35—C22116.23 (19)
C3—C4—C5120.1 (2)C36—C35—H35A108.2
C3—C4—H4119.9C22—C35—H35A108.2
C5—C4—H4119.9C36—C35—H35B108.2
C4—C5—C6121.0 (2)C22—C35—H35B108.2
C4—C5—H5119.5H35A—C35—H35B107.4
C6—C5—H5119.5C37—C36—C35114.1 (2)
C5—C6—C1119.3 (2)C37—C36—H36A108.7
C5—C6—C7117.36 (19)C35—C36—H36A108.7
C1—C6—C7123.24 (18)C37—C36—H36B108.7
O1—C7—C19120.8 (2)C35—C36—H36B108.7
O1—C7—C6118.25 (19)H36A—C36—H36B107.6
C19—C7—C6120.76 (17)C12—O3—C15118.28 (19)
O2—C8—C9120.15 (18)C32—C31—C30112.9 (3)
O2—C8—C1117.95 (18)C32—C31—H31A109.0
C9—C8—C1121.84 (18)C30—C31—H31A109.0
C14—C9—C10117.62 (19)C32—C31—H31B109.0
C14—C9—C8124.29 (18)C30—C31—H31B109.0
C10—C9—C8118.06 (18)H31A—C31—H31B107.8
C11—C10—C9121.03 (19)C31—C32—C33113.2 (4)
C11—C10—H10119.5C31—C32—H32A108.9
C9—C10—H10119.5C33—C32—H32A108.9
C10—C11—C12120.4 (2)C31—C32—H32B108.9
C10—C11—H11119.8C33—C32—H32B108.9
C12—C11—H11119.8H32A—C32—H32B107.8
O3—C12—C13124.9 (2)C34—C33—C32116.6 (4)
O3—C12—C11115.41 (19)C34—C33—H33A108.1
C13—C12—C11119.7 (2)C32—C33—H33A108.1
C12—C13—C14119.50 (19)C34—C33—H33B108.1
C12—C13—H13120.2C32—C33—H33B108.1
C14—C13—H13120.2H33A—C33—H33B107.3
C13—C14—C9121.77 (18)C30—C31'—C32'104.7 (8)
C13—C14—H14119.1C30—C31'—H31C110.8
C9—C14—H14119.1C32'—C31'—H31C110.8
O3—C15—H15A109.5C30—C31'—H31D110.8
O3—C15—H15B109.5C32'—C31'—H31D110.8
H15A—C15—H15B109.5H31C—C31'—H31D108.9
O3—C15—H15C109.5C33'—C32'—C31'116.8 (12)
H15A—C15—H15C109.5C33'—C32'—H32C108.1
H15B—C15—H15C109.5C31'—C32'—H32C108.1
C17—C16—C21120.41 (19)C33'—C32'—H32D108.1
C17—C16—C24130.80 (19)C31'—C32'—H32D108.1
C21—C16—C24108.79 (17)H32C—C32'—H32D107.3
C18—C17—C16119.0 (2)C32'—C33'—C34'110.8 (13)
C18—C17—H17120.5C32'—C33'—H33C109.5
C16—C17—H17120.5C34'—C33'—H33C109.5
C17—C18—C19121.37 (19)C32'—C33'—H33D109.5
C17—C18—H18119.3C34'—C33'—H33D109.5
C19—C18—H18119.3H33C—C33'—H33D108.1
C18—C19—C20119.55 (19)C33'—C34'—H34D109.5
C18—C19—C7118.53 (18)C33'—C34'—H34E109.5
C20—C19—C7121.90 (18)H34D—C34'—H34E109.5
C21—C20—C19119.43 (18)C33'—C34'—H34F109.5
C21—C20—H20120.3H34D—C34'—H34F109.5
C19—C20—H20120.3H34E—C34'—H34F109.5
C20—C21—C16120.20 (18)C38—C37—C36114.6 (3)
C20—C21—C22129.18 (18)C38—C37—H37A108.6
C16—C21—C22110.62 (17)C36—C37—H37A108.6
C23—C22—C21100.97 (16)C38—C37—H37B108.6
C23—C22—C29111.91 (17)C36—C37—H37B108.6
C21—C22—C29113.04 (17)H37A—C37—H37B107.6
C23—C22—C35111.23 (18)C37—C38—C39119.2 (5)
C21—C22—C35110.66 (17)C37—C38—C39'112.5 (10)
C29—C22—C35108.90 (17)C37—C38—H38A107.5
C28—C23—C24120.00 (19)C39—C38—H38A107.5
C28—C23—C22128.77 (19)C39'—C38—H38A133.0
C24—C23—C22111.23 (17)C37—C38—H38B107.5
C25—C24—C23120.2 (2)C39—C38—H38B107.5
C25—C24—C16131.5 (2)C39'—C38—H38B83.6
C23—C24—C16108.23 (18)H38A—C38—H38B107.0
C26—C25—C24119.3 (2)C40—C39—C38111.1 (6)
C26—C25—H25120.4C40—C39—H39A109.4
C24—C25—H25120.4C38—C39—H39A109.4
C27—C26—C25120.6 (2)C40—C39—H39B109.4
C27—C26—H26119.7C38—C39—H39B109.4
C25—C26—H26119.7H39A—C39—H39B108.0
C26—C27—C28120.7 (2)C40'—C39'—C38102.2 (11)
C26—C27—H27119.6C40'—C39'—H39C111.3
C28—C27—H27119.6C38—C39'—H39C111.3
C23—C28—C27119.2 (2)C40'—C39'—H39D111.3
C23—C28—H28120.4C38—C39'—H39D111.3
C27—C28—H28120.4H39C—C39'—H39D109.2
C30—C29—C22116.75 (18)C39'—C40'—H40D109.5
C30—C29—H29A108.1C39'—C40'—H40E109.5
C22—C29—H29A108.1H40D—C40'—H40E109.5
C30—C29—H29B108.1C39'—C40'—H40F109.5
C22—C29—H29B108.1H40D—C40'—H40F109.5
H29A—C29—H29B107.3H40E—C40'—H40F109.5
C29—C30—C31'97.0 (5)
C6—C1—C2—C30.4 (3)C20—C21—C22—C2957.3 (3)
C8—C1—C2—C3172.24 (19)C16—C21—C22—C29123.32 (19)
C1—C2—C3—C40.5 (3)C20—C21—C22—C3565.1 (3)
C2—C3—C4—C50.1 (3)C16—C21—C22—C35114.2 (2)
C3—C4—C5—C60.3 (3)C21—C22—C23—C28175.9 (2)
C4—C5—C6—C10.3 (3)C29—C22—C23—C2855.4 (3)
C4—C5—C6—C7177.14 (19)C35—C22—C23—C2866.7 (3)
C2—C1—C6—C50.1 (3)C21—C22—C23—C243.7 (2)
C8—C1—C6—C5172.05 (17)C29—C22—C23—C24124.25 (19)
C2—C1—C6—C7176.58 (18)C35—C22—C23—C24113.7 (2)
C8—C1—C6—C74.6 (3)C28—C23—C24—C251.0 (3)
C5—C6—C7—O156.7 (3)C22—C23—C24—C25179.4 (2)
C1—C6—C7—O1120.0 (2)C28—C23—C24—C16177.0 (2)
C5—C6—C7—C19118.4 (2)C22—C23—C24—C162.6 (2)
C1—C6—C7—C1964.9 (3)C17—C16—C24—C251.1 (4)
C2—C1—C8—O2143.4 (2)C21—C16—C24—C25177.9 (2)
C6—C1—C8—O228.4 (3)C17—C16—C24—C23178.8 (2)
C2—C1—C8—C933.8 (3)C21—C16—C24—C230.2 (2)
C6—C1—C8—C9154.40 (18)C23—C24—C25—C261.3 (3)
O2—C8—C9—C14160.7 (2)C16—C24—C25—C26176.2 (2)
C1—C8—C9—C1422.2 (3)C24—C25—C26—C270.5 (4)
O2—C8—C9—C1017.3 (3)C25—C26—C27—C280.6 (4)
C1—C8—C9—C10159.81 (19)C24—C23—C28—C270.1 (3)
C14—C9—C10—C111.9 (3)C22—C23—C28—C27179.5 (2)
C8—C9—C10—C11179.9 (2)C26—C27—C28—C230.9 (4)
C9—C10—C11—C120.8 (4)C23—C22—C29—C3055.9 (2)
C10—C11—C12—O3179.9 (2)C21—C22—C29—C3057.3 (2)
C10—C11—C12—C130.7 (4)C35—C22—C29—C30179.29 (19)
O3—C12—C13—C14179.9 (2)C22—C29—C30—C31'155.6 (7)
C11—C12—C13—C141.1 (3)C22—C29—C30—C31169.3 (2)
C12—C13—C14—C90.1 (3)C23—C22—C35—C3650.8 (3)
C10—C9—C14—C131.6 (3)C21—C22—C35—C3660.6 (3)
C8—C9—C14—C13179.57 (19)C29—C22—C35—C36174.56 (19)
C21—C16—C17—C180.2 (3)C22—C35—C36—C37177.9 (2)
C24—C16—C17—C18179.1 (2)C13—C12—O3—C150.3 (4)
C16—C17—C18—C191.1 (3)C11—C12—O3—C15178.8 (2)
C17—C18—C19—C201.0 (3)C29—C30—C31—C3274.2 (4)
C17—C18—C19—C7179.6 (2)C31'—C30—C31—C3239.7 (17)
O1—C7—C19—C1817.0 (3)C30—C31—C32—C33178.0 (3)
C6—C7—C19—C18167.94 (19)C31—C32—C33—C3476.0 (6)
O1—C7—C19—C20161.6 (2)C29—C30—C31'—C32'173.4 (10)
C6—C7—C19—C2013.5 (3)C31—C30—C31'—C32'37.0 (12)
C18—C19—C20—C210.1 (3)C30—C31'—C32'—C33'166.0 (11)
C7—C19—C20—C21178.51 (19)C31'—C32'—C33'—C34'78.9 (19)
C19—C20—C21—C160.9 (3)C35—C36—C37—C38176.5 (3)
C19—C20—C21—C22178.3 (2)C36—C37—C38—C39171.7 (4)
C17—C16—C21—C200.8 (3)C36—C37—C38—C39'156.0 (7)
C24—C16—C21—C20178.26 (18)C37—C38—C39—C4080.4 (9)
C17—C16—C21—C22178.58 (19)C39'—C38—C39—C404 (2)
C24—C16—C21—C222.3 (2)C37—C38—C39'—C40'60.9 (15)
C20—C21—C22—C23177.0 (2)C39—C38—C39'—C40'49.0 (14)
C16—C21—C22—C233.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.932.583.470 (3)160
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC40H44O3
Mr572.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)16.7593 (10), 11.4989 (6), 17.146 (1)
β (°) 90.449 (2)
V3)3304.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
28941, 5850, 3875
Rint0.037
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.153, 1.02
No. of reflections5850
No. of parameters415
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O2i0.932.583.470 (3)160
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

PN and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the data collection. Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, is thanked for providing facilities in the department for carrying out this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBeulter, U., Fuenfschilling, C. & Steinkemper, A. (2007). Org. Process Res. Dev. 11, 341–345.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJudas, N., Kaitner, B. & Mestrovic, E. (1995). Acta Cryst. C51, 2123–2125.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNarayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett. 84, 2334–2336.  Web of Science CrossRef CAS Google Scholar
First citationSchollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1384–o1385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds