organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Butyl-2-methyl-1′,2,2′,3,4,9-hexa­hydro­spiro­[benzo[f]iso­indole-1,3′-indole]-2′,4,9-trione

aDepartment of Physics, Dr MGR Educational and Research Institute, Dr MGR University, Chennai 600 095, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 31 May 2012; accepted 13 June 2012; online 20 June 2012)

In the title compound, C24H22N2O3, the indoline and pyrrole-fused naphtho­quinone units are both essentially planar [r.m.s. deviations = 0.042 (3) and 0.133 (3) Å, respectively]. The pyrrole ring adopts a C-envelope conformation. The dihedral angle between the mean planes of the two five-membered rings is 89.94 (9)°. The O atoms deviate from the mean planes of the pyrrolidine and naphthalene rings by 0.0311 (2), 0.2570 (2) and 0.1669 (2) Å. In the crystal, C—H⋯O inter­actions generate dimers with R22(16) and R22(18) graph-set motifs. The carbonyl O atom is involved in bifurcated hydrogen bonding. C—H⋯π inter­actions also occur.

Related literature

For the biological activity of indole derivatives, see: Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2699.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]); Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]). For a related structure, see: McSweeney et al. (2004)[McSweeney, N., Pratt, A. C., Creaven, B. S., Long, C. & Howie, R. A. (2004). Acta Cryst. E60, o2025-o2028.]. For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N2O3

  • Mr = 386.44

  • Monoclinic, C 2/c

  • a = 21.5855 (12) Å

  • b = 15.7999 (7) Å

  • c = 14.7469 (7) Å

  • β = 127.207 (3)°

  • V = 4005.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.979

  • 32353 measured reflections

  • 3336 independent reflections

  • 2446 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.178

  • S = 1.00

  • 3336 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.39 3.232 (4) 151
C9—H9A⋯O2ii 0.97 2.45 3.230 (3) 137
C20—H20⋯O1iii 0.93 2.52 3.205 (3) 131
C11—H11BCg1iv 0.97 2.82 3.759 (4) 164
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [-x, y, -z+{\script{3\over 2}}]; (iv) [-x+1, y, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000) and are also proven to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999), antimicrobial and antifungal activities (Amal Raj et al., 2003).

In the title molecule (Fig. 1), the indoline moiety (N1/C1–C8) is essentially planar with rmsd 0.042 (3) Å. The pyrrole fused naphthoquinone moiety (N2/C7/C14–C24) is also planar with rmsd 0.133 (3) Å. The dihedral angle between the two five membered rings (C5/C6/C7/C8/N1) and (C7/C14/C15/C24/N2) is 89.94 (9) °.

The molecular structure of the title compound C24H22N2O3, is shown in Fig. 1. The dihedral angle between the two five membered rings (C5/C6/C7/C8/N1) and (C7/C14/C15/C24/N2) is 89.94 (9) °. The five-membered ring (C7/C14/C15/C24/N2) adopts a C13-envelope conformation with C13 0.142 (3) Å out of the plane formed by the rest of the ring atoms. The atom O1 deviates from the mean plane of the pyrrolidine ring (C5/C6/C7/C8/N1) by 0.0311 (2) Å. The atoms O2 and O3 deviate from the mean plane of the naphthalene ring (C15–C24) by 0.2570 (2) Å and 0.1669 (2) Å, respectively. The title compound exhibits the structural similarities with the already reported related structure (McSweeney et al., 2004).

The crystal packing is stabilized by intermolecular C—H···O and C—H···π interactions. The C9—H9A···O2 and C20—H20···O1 hydrogen bonds generate dimers R22(16) and R22(18) graph set motifs, respectively (Bernstein, et al., 1995); the carbonyl-group O1 atom is involved in bifurcated hydrogen bonding (Tab. 1 & Fig. 2). The crystal packing is further stabilized by C11—H11B···Cg1 interaction where Cg1 is center of gravity of (C1–C6) ring.

Related literature top

For the biological activity of indole derivatives, see: Stevenson et al. (2000); Rajeswaran et al. (1999); Amal Raj et al. (2003). For a related structure, see: McSweeney et al. (2004). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of napthaquinone (1 mmol), 1-butylisatin (1.05 mmol), and sarcosine (1.1 mmol), were stirred at 353 K about for 90 minutes. The reaction mixture was poured into water and extracted with ethyl acetate (2x25 ml). The combined extract was dried over anhydrous Na2SO4 and concentrated in vacuum. The resulting product was purified by column chromatography on silica gel (Merck, 60–120 mesh, ethyl acetate-hexane, 3:7) to afford the pure product which was subjected to crystallization by slow evaporation of a solution of ethanol resulting in single crystals of the title compound suitable for XRD studies.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H-atoms, respectively, with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(non-methyl C). The rotation angles for methyl groups were optimized by least squares.

Structure description top

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000) and are also proven to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999), antimicrobial and antifungal activities (Amal Raj et al., 2003).

In the title molecule (Fig. 1), the indoline moiety (N1/C1–C8) is essentially planar with rmsd 0.042 (3) Å. The pyrrole fused naphthoquinone moiety (N2/C7/C14–C24) is also planar with rmsd 0.133 (3) Å. The dihedral angle between the two five membered rings (C5/C6/C7/C8/N1) and (C7/C14/C15/C24/N2) is 89.94 (9) °.

The molecular structure of the title compound C24H22N2O3, is shown in Fig. 1. The dihedral angle between the two five membered rings (C5/C6/C7/C8/N1) and (C7/C14/C15/C24/N2) is 89.94 (9) °. The five-membered ring (C7/C14/C15/C24/N2) adopts a C13-envelope conformation with C13 0.142 (3) Å out of the plane formed by the rest of the ring atoms. The atom O1 deviates from the mean plane of the pyrrolidine ring (C5/C6/C7/C8/N1) by 0.0311 (2) Å. The atoms O2 and O3 deviate from the mean plane of the naphthalene ring (C15–C24) by 0.2570 (2) Å and 0.1669 (2) Å, respectively. The title compound exhibits the structural similarities with the already reported related structure (McSweeney et al., 2004).

The crystal packing is stabilized by intermolecular C—H···O and C—H···π interactions. The C9—H9A···O2 and C20—H20···O1 hydrogen bonds generate dimers R22(16) and R22(18) graph set motifs, respectively (Bernstein, et al., 1995); the carbonyl-group O1 atom is involved in bifurcated hydrogen bonding (Tab. 1 & Fig. 2). The crystal packing is further stabilized by C11—H11B···Cg1 interaction where Cg1 is center of gravity of (C1–C6) ring.

For the biological activity of indole derivatives, see: Stevenson et al. (2000); Rajeswaran et al. (1999); Amal Raj et al. (2003). For a related structure, see: McSweeney et al. (2004). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the intermolecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non participating in H-bonding were ommitted for clarity.
1'-Butyl-2-methyl-1',2,2',3,4,9-hexahydrospiro[benzo[f]isoindole- 1,3'-indole]-2',4,9-trione top
Crystal data top
C24H22N2O3F(000) = 1632
Mr = 386.44Dx = 1.282 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3336 reflections
a = 21.5855 (12) Åθ = 2.6–24.5°
b = 15.7999 (7) ŵ = 0.09 mm1
c = 14.7469 (7) ÅT = 293 K
β = 127.207 (3)°Block, colourless
V = 4005.7 (3) Å30.30 × 0.30 × 0.25 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3336 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 24.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2425
Tmin = 0.975, Tmax = 0.979k = 1818
32353 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1024P)2 + 2.8296P]
where P = (Fo2 + 2Fc2)/3
3336 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H22N2O3V = 4005.7 (3) Å3
Mr = 386.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.5855 (12) ŵ = 0.09 mm1
b = 15.7999 (7) ÅT = 293 K
c = 14.7469 (7) Å0.30 × 0.30 × 0.25 mm
β = 127.207 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3336 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2446 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.979Rint = 0.031
32353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.00Δρmax = 0.53 e Å3
3336 reflectionsΔρmin = 0.26 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29896 (13)0.09126 (16)1.2560 (2)0.0614 (6)
H10.28360.04571.27810.074*
C20.32375 (15)0.16635 (19)1.3171 (2)0.0729 (7)
H20.32460.17151.38070.088*
C30.34705 (16)0.23335 (18)1.2847 (2)0.0726 (7)
H30.36340.28311.32690.087*
C40.34673 (14)0.22839 (15)1.1912 (2)0.0627 (6)
H40.36270.27371.16970.075*
C50.32181 (12)0.15374 (14)1.13096 (18)0.0528 (5)
C60.29768 (12)0.08615 (14)1.16220 (18)0.0517 (5)
C70.27195 (12)0.01504 (14)1.07856 (18)0.0530 (5)
C80.28365 (13)0.05586 (15)0.99368 (19)0.0570 (6)
C90.34151 (14)0.18855 (18)0.9826 (2)0.0682 (7)
H9A0.32200.24540.97520.082*
H9B0.32020.16820.90680.082*
C100.42958 (16)0.1916 (2)1.0533 (3)0.0835 (8)
H10A0.44390.23891.02750.100*
H10B0.45090.20231.13200.100*
C110.4655 (2)0.1146 (2)1.0486 (3)0.1005 (10)
H11A0.44170.06551.05560.121*
H11B0.52040.11421.11230.121*
C120.4562 (3)0.1083 (3)0.9369 (4)0.1450 (17)
H12A0.40260.11720.87360.217*
H12B0.47220.05320.93110.217*
H12C0.48780.15060.93630.217*
C130.39189 (15)0.06776 (18)1.1579 (3)0.0791 (8)
H13A0.38760.06621.08930.119*
H13B0.41710.11931.19840.119*
H13C0.42190.02021.20490.119*
C140.26445 (14)0.13602 (16)1.0647 (2)0.0708 (7)
H14A0.27380.18271.11440.085*
H14B0.27160.15551.00920.085*
C150.18559 (13)0.09920 (15)1.0084 (2)0.0585 (6)
C160.11206 (14)0.14631 (16)0.94742 (19)0.0608 (6)
C170.04098 (13)0.09477 (16)0.90004 (18)0.0575 (6)
C180.03032 (16)0.13453 (19)0.8497 (2)0.0751 (7)
H180.03350.19330.84580.090*
C190.09628 (16)0.0870 (2)0.8056 (2)0.0864 (9)
H190.14380.11380.77220.104*
C200.09242 (15)0.0007 (2)0.8106 (2)0.0816 (8)
H200.13730.03080.78070.098*
C210.02266 (14)0.03991 (18)0.8594 (2)0.0679 (7)
H210.02050.09870.86210.081*
C220.04459 (12)0.00674 (15)0.90473 (17)0.0544 (6)
C230.11946 (13)0.03774 (15)0.95638 (18)0.0557 (6)
C240.18925 (12)0.01533 (14)1.01543 (18)0.0517 (5)
N10.31470 (11)0.13398 (12)1.03225 (15)0.0557 (5)
N20.31480 (11)0.06413 (12)1.12956 (18)0.0637 (5)
O10.26952 (10)0.02136 (12)0.90967 (14)0.0752 (5)
O20.12328 (10)0.11375 (12)0.94839 (17)0.0800 (6)
O30.11025 (11)0.22243 (12)0.93678 (18)0.0870 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0563 (13)0.0760 (16)0.0590 (13)0.0028 (11)0.0386 (11)0.0025 (12)
C20.0712 (16)0.094 (2)0.0621 (14)0.0040 (14)0.0448 (13)0.0125 (14)
C30.0728 (16)0.0749 (17)0.0730 (16)0.0092 (13)0.0455 (14)0.0187 (13)
C40.0618 (14)0.0595 (14)0.0696 (15)0.0063 (11)0.0413 (12)0.0041 (12)
C50.0454 (11)0.0626 (14)0.0508 (12)0.0019 (9)0.0292 (10)0.0007 (10)
C60.0413 (11)0.0606 (13)0.0526 (12)0.0003 (9)0.0281 (10)0.0001 (10)
C70.0468 (11)0.0573 (13)0.0564 (12)0.0012 (9)0.0320 (10)0.0013 (10)
C80.0451 (12)0.0731 (16)0.0541 (13)0.0041 (10)0.0306 (10)0.0044 (11)
C90.0639 (15)0.0821 (17)0.0672 (14)0.0016 (12)0.0441 (13)0.0125 (13)
C100.0699 (17)0.101 (2)0.0929 (19)0.0033 (15)0.0563 (16)0.0024 (16)
C110.084 (2)0.107 (3)0.115 (3)0.0042 (18)0.063 (2)0.003 (2)
C120.150 (4)0.175 (4)0.137 (3)0.007 (3)0.101 (3)0.034 (3)
C130.0517 (14)0.0852 (19)0.0931 (19)0.0096 (12)0.0399 (14)0.0035 (15)
C140.0615 (15)0.0609 (15)0.0879 (18)0.0039 (11)0.0441 (14)0.0010 (13)
C150.0546 (13)0.0578 (14)0.0625 (13)0.0003 (10)0.0351 (11)0.0022 (11)
C160.0642 (15)0.0571 (15)0.0627 (14)0.0050 (11)0.0392 (12)0.0010 (11)
C170.0549 (13)0.0713 (15)0.0502 (12)0.0077 (11)0.0339 (11)0.0039 (11)
C180.0649 (16)0.0880 (19)0.0735 (16)0.0184 (14)0.0423 (14)0.0115 (14)
C190.0568 (16)0.124 (3)0.0774 (18)0.0200 (16)0.0404 (15)0.0171 (18)
C200.0521 (15)0.121 (3)0.0659 (16)0.0077 (15)0.0326 (13)0.0033 (16)
C210.0536 (14)0.0880 (18)0.0578 (14)0.0083 (12)0.0315 (12)0.0010 (12)
C220.0477 (12)0.0713 (15)0.0448 (11)0.0013 (10)0.0283 (10)0.0014 (10)
C230.0550 (13)0.0609 (15)0.0529 (12)0.0029 (10)0.0335 (11)0.0030 (10)
C240.0484 (12)0.0550 (13)0.0524 (12)0.0002 (9)0.0308 (10)0.0016 (10)
N10.0547 (11)0.0645 (12)0.0546 (10)0.0010 (9)0.0365 (9)0.0006 (9)
N20.0489 (11)0.0605 (12)0.0736 (13)0.0066 (8)0.0328 (10)0.0030 (10)
O10.0700 (11)0.0974 (13)0.0652 (10)0.0079 (9)0.0446 (9)0.0194 (10)
O20.0657 (11)0.0588 (11)0.1013 (14)0.0054 (8)0.0430 (10)0.0115 (9)
O30.0802 (13)0.0600 (12)0.1113 (15)0.0097 (9)0.0528 (12)0.0038 (10)
Geometric parameters (Å, º) top
C1—C61.369 (3)C12—H12B0.9600
C1—C21.386 (4)C12—H12C0.9600
C1—H10.9300C13—N21.451 (3)
C2—C31.376 (4)C13—H13A0.9600
C2—H20.9300C13—H13B0.9600
C3—C41.376 (3)C13—H13C0.9600
C3—H30.9300C14—N21.459 (3)
C4—C51.375 (3)C14—C151.489 (3)
C4—H40.9300C14—H14A0.9700
C5—C61.384 (3)C14—H14B0.9700
C5—N11.403 (3)C15—C241.328 (3)
C6—C71.505 (3)C15—C161.468 (3)
C7—N21.464 (3)C16—O31.211 (3)
C7—C241.508 (3)C16—C171.486 (3)
C7—C81.558 (3)C17—C221.392 (3)
C8—O11.212 (3)C17—C181.390 (3)
C8—N11.355 (3)C18—C191.377 (4)
C9—N11.459 (3)C18—H180.9300
C9—C101.519 (4)C19—C201.365 (4)
C9—H9A0.9700C19—H190.9300
C9—H9B0.9700C20—C211.373 (4)
C10—C111.467 (5)C20—H200.9300
C10—H10A0.9700C21—C221.387 (3)
C10—H10B0.9700C21—H210.9300
C11—C121.536 (5)C22—C231.482 (3)
C11—H11A0.9700C23—O21.214 (3)
C11—H11B0.9700C23—C241.464 (3)
C12—H12A0.9600
C6—C1—C2118.1 (2)H12B—C12—H12C109.5
C6—C1—H1121.0N2—C13—H13A109.5
C2—C1—H1121.0N2—C13—H13B109.5
C3—C2—C1120.7 (2)H13A—C13—H13B109.5
C3—C2—H2119.6N2—C13—H13C109.5
C1—C2—H2119.6H13A—C13—H13C109.5
C2—C3—C4121.5 (2)H13B—C13—H13C109.5
C2—C3—H3119.2N2—C14—C15102.05 (19)
C4—C3—H3119.2N2—C14—H14A111.4
C3—C4—C5117.3 (2)C15—C14—H14A111.4
C3—C4—H4121.3N2—C14—H14B111.4
C5—C4—H4121.3C15—C14—H14B111.4
C4—C5—C6121.7 (2)H14A—C14—H14B109.2
C4—C5—N1128.0 (2)C24—C15—C16123.0 (2)
C6—C5—N1110.27 (19)C24—C15—C14110.6 (2)
C1—C6—C5120.6 (2)C16—C15—C14126.3 (2)
C1—C6—C7130.1 (2)O3—C16—C15121.4 (2)
C5—C6—C7109.27 (19)O3—C16—C17122.7 (2)
N2—C7—C6114.30 (18)C15—C16—C17115.9 (2)
N2—C7—C24100.92 (17)C22—C17—C18119.2 (2)
C6—C7—C24117.14 (18)C22—C17—C16120.9 (2)
N2—C7—C8114.02 (18)C18—C17—C16119.9 (2)
C6—C7—C8100.99 (18)C19—C18—C17120.0 (3)
C24—C7—C8110.01 (17)C19—C18—H18120.0
O1—C8—N1126.4 (2)C17—C18—H18120.0
O1—C8—C7124.9 (2)C20—C19—C18120.5 (3)
N1—C8—C7108.61 (18)C20—C19—H19119.7
N1—C9—C10112.7 (2)C18—C19—H19119.7
N1—C9—H9A109.1C19—C20—C21120.4 (3)
C10—C9—H9A109.1C19—C20—H20119.8
N1—C9—H9B109.1C21—C20—H20119.8
C10—C9—H9B109.1C20—C21—C22120.0 (3)
H9A—C9—H9B107.8C20—C21—H21120.0
C11—C10—C9114.7 (3)C22—C21—H21120.0
C11—C10—H10A108.6C21—C22—C17119.7 (2)
C9—C10—H10A108.6C21—C22—C23119.6 (2)
C11—C10—H10B108.6C17—C22—C23120.67 (19)
C9—C10—H10B108.6O2—C23—C24121.2 (2)
H10A—C10—H10B107.6O2—C23—C22122.4 (2)
C10—C11—C12111.9 (3)C24—C23—C22116.4 (2)
C10—C11—H11A109.2C15—C24—C23122.3 (2)
C12—C11—H11A109.2C15—C24—C7110.99 (19)
C10—C11—H11B109.2C23—C24—C7126.4 (2)
C12—C11—H11B109.2C8—N1—C5110.76 (18)
H11A—C11—H11B107.9C8—N1—C9124.99 (19)
C11—C12—H12A109.5C5—N1—C9124.2 (2)
C11—C12—H12B109.5C13—N2—C14115.3 (2)
H12A—C12—H12B109.5C13—N2—C7116.1 (2)
C11—C12—H12C109.5C14—N2—C7109.86 (18)
H12A—C12—H12C109.5
C6—C1—C2—C30.6 (4)C20—C21—C22—C23179.5 (2)
C1—C2—C3—C40.1 (4)C18—C17—C22—C210.1 (3)
C2—C3—C4—C50.3 (4)C16—C17—C22—C21179.7 (2)
C3—C4—C5—C60.2 (3)C18—C17—C22—C23179.2 (2)
C3—C4—C5—N1178.6 (2)C16—C17—C22—C230.5 (3)
C2—C1—C6—C51.1 (3)C21—C22—C23—O29.4 (3)
C2—C1—C6—C7178.1 (2)C17—C22—C23—O2169.8 (2)
C4—C5—C6—C10.9 (3)C21—C22—C23—C24172.3 (2)
N1—C5—C6—C1179.54 (19)C17—C22—C23—C248.5 (3)
C4—C5—C6—C7178.4 (2)C16—C15—C24—C234.1 (4)
N1—C5—C6—C70.2 (2)C14—C15—C24—C23173.1 (2)
C1—C6—C7—N259.5 (3)C16—C15—C24—C7177.4 (2)
C5—C6—C7—N2121.3 (2)C14—C15—C24—C70.3 (3)
C1—C6—C7—C2458.2 (3)O2—C23—C24—C15167.8 (2)
C5—C6—C7—C24121.0 (2)C22—C23—C24—C1510.5 (3)
C1—C6—C7—C8177.7 (2)O2—C23—C24—C74.4 (3)
C5—C6—C7—C81.6 (2)C22—C23—C24—C7177.30 (19)
N2—C7—C8—O157.6 (3)N2—C7—C24—C1513.6 (2)
C6—C7—C8—O1179.4 (2)C6—C7—C24—C15138.4 (2)
C24—C7—C8—O155.0 (3)C8—C7—C24—C15107.1 (2)
N2—C7—C8—N1120.1 (2)N2—C7—C24—C23173.4 (2)
C6—C7—C8—N12.9 (2)C6—C7—C24—C2348.6 (3)
C24—C7—C8—N1127.36 (19)C8—C7—C24—C2365.9 (3)
N1—C9—C10—C1172.8 (3)O1—C8—N1—C5179.1 (2)
C9—C10—C11—C1276.8 (4)C7—C8—N1—C53.3 (2)
N2—C14—C15—C2414.2 (3)O1—C8—N1—C94.3 (4)
N2—C14—C15—C16168.8 (2)C7—C8—N1—C9173.35 (19)
C24—C15—C16—O3175.6 (2)C4—C5—N1—C8176.2 (2)
C14—C15—C16—O31.1 (4)C6—C5—N1—C82.2 (2)
C24—C15—C16—C174.2 (3)C4—C5—N1—C97.1 (3)
C14—C15—C16—C17179.0 (2)C6—C5—N1—C9174.4 (2)
O3—C16—C17—C22173.9 (2)C10—C9—N1—C8104.7 (3)
C15—C16—C17—C225.9 (3)C10—C9—N1—C571.5 (3)
O3—C16—C17—C185.8 (4)C15—C14—N2—C13156.7 (2)
C15—C16—C17—C18174.4 (2)C15—C14—N2—C723.2 (3)
C22—C17—C18—C190.3 (4)C6—C7—N2—C1377.4 (3)
C16—C17—C18—C19179.9 (2)C24—C7—N2—C13155.9 (2)
C17—C18—C19—C200.2 (4)C8—C7—N2—C1338.1 (3)
C18—C19—C20—C210.2 (4)C6—C7—N2—C14149.4 (2)
C19—C20—C21—C220.4 (4)C24—C7—N2—C1422.8 (2)
C20—C21—C22—C170.3 (3)C8—C7—N2—C1495.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.393.232 (4)151
C9—H9A···O2ii0.972.453.230 (3)137
C20—H20···O1iii0.932.523.205 (3)131
C11—H11B···Cg1iv0.972.823.759 (4)164
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+2; (iii) x, y, z+3/2; (iv) x+1, y, z+5/2.

Experimental details

Crystal data
Chemical formulaC24H22N2O3
Mr386.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.5855 (12), 15.7999 (7), 14.7469 (7)
β (°) 127.207 (3)
V3)4005.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.975, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
32353, 3336, 2446
Rint0.031
(sin θ/λ)max1)0.584
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.178, 1.00
No. of reflections3336
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.393.232 (4)151.2
C9—H9A···O2ii0.972.453.230 (3)137
C20—H20···O1iii0.932.523.205 (3)131
C11—H11B···Cg1iv0.972.823.759 (4)164
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+2; (iii) x, y, z+3/2; (iv) x+1, y, z+5/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. GJ and KS thank Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

References

First citationAmal Raj, A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMcSweeney, N., Pratt, A. C., Creaven, B. S., Long, C. & Howie, R. A. (2004). Acta Cryst. E60, o2025–o2028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2699.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds