organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(11R,12S)-16-Amino­tetra­cyclo­[6.6.2.02,7.09,14]hexa­deca-2(7),3,5,9(14),10,12-hexaen-15-ol

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, cDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 June 2012; accepted 12 June 2012; online 20 June 2012)

In the title compound, C16H15NO, the dihedral angle between the outer benzene rings is 51.88 (6)°, and each of the central six-membered rings has a boat conformation. The hy­droxy and amino groups are syn, and the hy­droxy H atom forms an intra­molecular O—H⋯N hydrogen bond. In the crystal, mol­ecules assemble via C—H⋯O and C—H⋯π inter­actions, consolidating a three-dimensional architecture.

Related literature

For chiral ligands in asymmetric catalytic reactions, see: Yamakuchi et al. (2005[Yamakuchi, M., Matsunaga, H., Tokuda, R., Ishizuka, T., Nakajima, M. & Kuniedab, T. (2005). Tetrahedron Lett. 46, 4019-4022.]). For the synthesis of the title compound, see: Hashimoto et al. (1998[Hashimoto, N., Ishizuka, T. & Kunieda, T. (1998). Tetrahedron Lett. 39, 6317-6320.]); Matsunaga et al. (2005[Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron Lett. 46, 3645-3648.]). For a related structure, see: Abdel-Aziz et al. (2012[Abdel-Aziz, A. A.-M., El-Azab, A. S., El-Sherbeny, M. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2032.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO

  • Mr = 237.29

  • Monoclinic, P 21

  • a = 8.6224 (2) Å

  • b = 7.1140 (1) Å

  • c = 10.0210 (2) Å

  • β = 106.707 (2)°

  • V = 588.74 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.590, Tmax = 1.000

  • 4044 measured reflections

  • 2375 independent reflections

  • 2357 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.06

  • 2375 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1060 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.96 (3) 1.82 (2) 2.577 (2) 133 (2)
C5—H5⋯O1i 0.95 2.56 3.3506 (16) 141
C4—H4⋯Cg1ii 0.95 2.61 3.5064 (14) 158
C10—H10⋯Cg2iii 1.00 2.95 3.9212 (14) 164
C12—H12⋯Cg1iii 0.95 2.67 3.5159 (14) 149
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) [-x+2, y-{\script{1\over 2}}, -z+2].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was synthesized in relation to the development of chiral ligands for asymmetric catalytic reactions (Yamakuchi et al., 2005) and in continuation of related structural studies (Abdel-Aziz et al., 2012).

In the title molecule (Fig. 1), the dihedral angle between the (C1–C6) and (C11–C16) benzene rings is 51.88 (6)°. The dihedral angles between these planes and the central C7—C10 residue are 66.96 (5) and 61.17 (5)°, respectively. Each of the central six-membered rings (C1,C6–C10) and (C7–C10,C15,C15) has a boat conformation. The hydroxy and amino groups are syn, and the hydroxy-H atom is aligned to form an intramolecular O—H···N hydrogen bond (Table 1).

In the crystal packing, molecules assemble into a three-dimensional architecture via C—H···O and C—H···π interactions (Fig. 2 and Table 1).

Related literature top

For chiral ligands in asymmetric catalytic reactions, see: Yamakuchi et al. (2005). For the synthesis of the title compound, see: Hashimoto et al. (1998); Matsunaga et al. (2005). For a related structure, see: Abdel-Aziz et al. (2012).

Experimental top

The title compound was prepared following literature precedents (Hashimoto et al., 1998; Matsunaga et al., 2005). To 10,11,14,15-tetrahydro-9,10-[4,5]epoxazoloanthracen-13(9H)-one (2.0 ml), water (2 ml), ethanol (6 ml) and Ba(OH)2.8H2O (20 ml) were added. The mixture was heated at 413 K in a glass sealed tube for 72 h. The resulting solution was evaporated and extracted three times with chloroform (10 ml). The organic extract was dried and recrystallized from ethanol to afford the title compound.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 1.00 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy- and amino-H atoms were located in a difference Fourier map and were refined freely.

Structure description top

The title compound was synthesized in relation to the development of chiral ligands for asymmetric catalytic reactions (Yamakuchi et al., 2005) and in continuation of related structural studies (Abdel-Aziz et al., 2012).

In the title molecule (Fig. 1), the dihedral angle between the (C1–C6) and (C11–C16) benzene rings is 51.88 (6)°. The dihedral angles between these planes and the central C7—C10 residue are 66.96 (5) and 61.17 (5)°, respectively. Each of the central six-membered rings (C1,C6–C10) and (C7–C10,C15,C15) has a boat conformation. The hydroxy and amino groups are syn, and the hydroxy-H atom is aligned to form an intramolecular O—H···N hydrogen bond (Table 1).

In the crystal packing, molecules assemble into a three-dimensional architecture via C—H···O and C—H···π interactions (Fig. 2 and Table 1).

For chiral ligands in asymmetric catalytic reactions, see: Yamakuchi et al. (2005). For the synthesis of the title compound, see: Hashimoto et al. (1998); Matsunaga et al. (2005). For a related structure, see: Abdel-Aziz et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for the title compound. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
(11R,12S)-16-Aminotetracyclo[6.6.2.02,7.09,14]hexadeca- 2(7),3,5,9(14),10,12-hexaen-15-ol top
Crystal data top
C16H15NOF(000) = 252
Mr = 237.29Dx = 1.339 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 3312 reflections
a = 8.6224 (2) Åθ = 4.6–76.4°
b = 7.1140 (1) ŵ = 0.65 mm1
c = 10.0210 (2) ÅT = 100 K
β = 106.707 (2)°Prism, colourless
V = 588.74 (2) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2375 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2357 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.011
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.6°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 88
Tmin = 0.590, Tmax = 1.000l = 127
4044 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1178P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2375 reflectionsΔρmax = 0.20 e Å3
175 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1060 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (2)
Crystal data top
C16H15NOV = 588.74 (2) Å3
Mr = 237.29Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.6224 (2) ŵ = 0.65 mm1
b = 7.1140 (1) ÅT = 100 K
c = 10.0210 (2) Å0.40 × 0.30 × 0.20 mm
β = 106.707 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2375 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2357 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 1.000Rint = 0.011
4044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.17 e Å3
2375 reflectionsAbsolute structure: Flack (1983), 1060 Friedel pairs
175 parametersAbsolute structure parameter: 0.0 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49638 (11)0.50034 (15)0.64491 (10)0.0241 (2)
N10.71887 (14)0.29044 (18)0.80145 (14)0.0240 (3)
C10.96576 (14)0.71372 (17)0.75647 (12)0.0142 (2)
C21.12329 (14)0.73301 (18)0.74782 (12)0.0158 (2)
H21.20810.65750.80380.019*
C31.15501 (14)0.86460 (19)0.65592 (12)0.0160 (2)
H31.26200.87770.64880.019*
C41.03187 (15)0.97688 (19)0.57454 (12)0.0168 (2)
H41.05571.06840.51420.020*
C50.87298 (15)0.95569 (18)0.58111 (12)0.0160 (2)
H50.78821.03060.52440.019*
C60.84091 (15)0.82368 (17)0.67170 (12)0.0144 (3)
C70.67531 (14)0.77274 (18)0.68480 (12)0.0151 (2)
H70.58830.85550.62630.018*
C80.65031 (15)0.56368 (19)0.63948 (13)0.0180 (3)
H80.65550.55280.54140.022*
C90.78995 (15)0.43912 (18)0.73668 (13)0.0181 (3)
H90.85140.37870.67730.022*
C100.90784 (14)0.57079 (17)0.84339 (13)0.0150 (3)
H100.99980.49970.90700.018*
C110.80732 (14)0.67230 (17)0.92286 (12)0.0141 (2)
C120.82683 (14)0.66176 (18)1.06492 (13)0.0161 (2)
H120.90930.58481.12250.019*
C130.72441 (15)0.76507 (18)1.12256 (12)0.0181 (3)
H130.73770.75911.21990.022*
C140.60311 (15)0.87664 (18)1.03815 (13)0.0178 (3)
H140.53460.94791.07820.021*
C150.58155 (14)0.88446 (17)0.89508 (13)0.0159 (2)
H150.49780.95970.83740.019*
C160.68295 (14)0.78190 (18)0.83726 (12)0.0145 (2)
H1o0.526 (3)0.384 (4)0.696 (2)0.048 (6)*
H1n0.720 (3)0.316 (4)0.891 (3)0.060 (7)*
H2n0.772 (3)0.179 (4)0.803 (2)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0167 (4)0.0288 (6)0.0270 (5)0.0084 (4)0.0067 (4)0.0030 (4)
N10.0266 (6)0.0152 (5)0.0352 (6)0.0026 (5)0.0170 (5)0.0005 (5)
C10.0170 (5)0.0130 (6)0.0131 (5)0.0007 (5)0.0051 (4)0.0011 (4)
C20.0156 (5)0.0163 (6)0.0153 (5)0.0009 (4)0.0043 (4)0.0019 (4)
C30.0143 (5)0.0184 (6)0.0161 (5)0.0018 (5)0.0059 (4)0.0029 (5)
C40.0200 (6)0.0178 (6)0.0141 (5)0.0025 (5)0.0072 (4)0.0004 (5)
C50.0178 (6)0.0161 (6)0.0135 (5)0.0023 (5)0.0036 (4)0.0000 (4)
C60.0143 (5)0.0156 (6)0.0141 (5)0.0006 (4)0.0051 (4)0.0023 (4)
C70.0127 (5)0.0183 (6)0.0146 (5)0.0013 (5)0.0042 (4)0.0007 (5)
C80.0167 (6)0.0211 (7)0.0179 (6)0.0030 (5)0.0075 (5)0.0039 (5)
C90.0201 (6)0.0146 (6)0.0229 (6)0.0029 (5)0.0114 (5)0.0029 (5)
C100.0148 (5)0.0141 (6)0.0171 (6)0.0006 (4)0.0064 (4)0.0017 (4)
C110.0149 (5)0.0120 (6)0.0162 (6)0.0023 (4)0.0059 (4)0.0001 (4)
C120.0168 (5)0.0137 (6)0.0177 (6)0.0019 (5)0.0051 (4)0.0020 (4)
C130.0222 (6)0.0191 (6)0.0152 (5)0.0057 (5)0.0088 (5)0.0011 (5)
C140.0181 (6)0.0158 (6)0.0230 (6)0.0034 (5)0.0113 (5)0.0040 (5)
C150.0132 (5)0.0146 (6)0.0206 (6)0.0005 (5)0.0058 (4)0.0002 (5)
C160.0142 (5)0.0144 (6)0.0164 (5)0.0027 (5)0.0065 (4)0.0003 (5)
Geometric parameters (Å, º) top
O1—C81.4174 (15)C7—C81.5518 (17)
O1—H1o0.96 (3)C7—H71.0000
N1—C91.4644 (17)C8—C91.5841 (18)
N1—H1n0.91 (3)C8—H81.0000
N1—H2n0.91 (3)C9—C101.5586 (17)
C1—C21.3924 (16)C9—H91.0000
C1—C61.4024 (16)C10—C111.5177 (16)
C1—C101.5140 (16)C10—H101.0000
C2—C31.3944 (18)C11—C121.3867 (17)
C2—H20.9500C11—C161.4017 (16)
C3—C41.3902 (17)C12—C131.3954 (18)
C3—H30.9500C12—H120.9500
C4—C51.3985 (17)C13—C141.3895 (18)
C4—H40.9500C13—H130.9500
C5—C61.3881 (17)C14—C151.3928 (18)
C5—H50.9500C14—H140.9500
C6—C71.5150 (16)C15—C161.3869 (17)
C7—C161.5116 (15)C15—H150.9500
C8—O1—H1o100.4 (13)C7—C8—H8108.7
C9—N1—H1n113.9 (17)C9—C8—H8108.7
C9—N1—H2n110.8 (14)N1—C9—C10113.79 (11)
H1n—N1—H2n107 (2)N1—C9—C8109.61 (10)
C2—C1—C6120.00 (11)C10—C9—C8108.43 (10)
C2—C1—C10126.23 (11)N1—C9—H9108.3
C6—C1—C10113.60 (10)C10—C9—H9108.3
C3—C2—C1119.17 (11)C8—C9—H9108.3
C3—C2—H2120.4C1—C10—C11108.35 (10)
C1—C2—H2120.4C1—C10—C9105.47 (10)
C2—C3—C4120.76 (11)C11—C10—C9106.73 (10)
C2—C3—H3119.6C1—C10—H10112.0
C4—C3—H3119.6C11—C10—H10112.0
C3—C4—C5120.25 (11)C9—C10—H10112.0
C3—C4—H4119.9C12—C11—C16120.26 (11)
C5—C4—H4119.9C12—C11—C10126.43 (11)
C6—C5—C4119.06 (11)C16—C11—C10113.29 (10)
C6—C5—H5120.5C11—C12—C13119.47 (11)
C4—C5—H5120.5C11—C12—H12120.3
C5—C6—C1120.73 (11)C13—C12—H12120.3
C5—C6—C7126.05 (11)C14—C13—C12120.27 (11)
C1—C6—C7113.11 (10)C14—C13—H13119.9
C16—C7—C6108.00 (9)C12—C13—H13119.9
C16—C7—C8107.41 (10)C13—C14—C15120.25 (11)
C6—C7—C8105.01 (10)C13—C14—H14119.9
C16—C7—H7112.0C15—C14—H14119.9
C6—C7—H7112.0C16—C15—C14119.70 (11)
C8—C7—H7112.0C16—C15—H15120.2
O1—C8—C7110.26 (10)C14—C15—H15120.2
O1—C8—C9110.68 (11)C15—C16—C11120.02 (11)
C7—C8—C9109.82 (10)C15—C16—C7126.54 (11)
O1—C8—H8108.7C11—C16—C7113.44 (10)
C6—C1—C2—C31.06 (17)C2—C1—C10—C9113.84 (13)
C10—C1—C2—C3176.01 (12)C6—C1—C10—C961.39 (12)
C1—C2—C3—C40.59 (18)N1—C9—C10—C1179.42 (10)
C2—C3—C4—C51.72 (19)C8—C9—C10—C157.17 (11)
C3—C4—C5—C61.17 (18)N1—C9—C10—C1164.31 (13)
C4—C5—C6—C10.48 (17)C8—C9—C10—C1157.94 (12)
C4—C5—C6—C7175.42 (11)C1—C10—C11—C12128.68 (13)
C2—C1—C6—C51.61 (17)C9—C10—C11—C12118.16 (13)
C10—C1—C6—C5177.17 (11)C1—C10—C11—C1652.62 (13)
C2—C1—C6—C7174.79 (11)C9—C10—C11—C1660.54 (13)
C10—C1—C6—C70.77 (14)C16—C11—C12—C131.70 (18)
C5—C6—C7—C16129.68 (13)C10—C11—C12—C13179.68 (12)
C1—C6—C7—C1654.15 (13)C11—C12—C13—C140.43 (18)
C5—C6—C7—C8115.94 (13)C12—C13—C14—C150.78 (18)
C1—C6—C7—C860.23 (12)C13—C14—C15—C160.72 (18)
C16—C7—C8—O166.32 (12)C14—C15—C16—C110.55 (17)
C6—C7—C8—O1178.88 (10)C14—C15—C16—C7179.28 (12)
C16—C7—C8—C955.90 (12)C12—C11—C16—C151.77 (17)
C6—C7—C8—C958.89 (12)C10—C11—C16—C15179.44 (11)
O1—C8—C9—N11.54 (14)C12—C11—C16—C7178.08 (11)
C7—C8—C9—N1123.51 (11)C10—C11—C16—C70.71 (14)
O1—C8—C9—C10123.22 (11)C6—C7—C16—C15126.02 (13)
C7—C8—C9—C101.25 (13)C8—C7—C16—C15121.19 (13)
C2—C1—C10—C11132.18 (12)C6—C7—C16—C1154.14 (14)
C6—C1—C10—C1152.59 (13)C8—C7—C16—C1158.65 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.96 (3)1.82 (2)2.577 (2)133 (2)
C5—H5···O1i0.952.563.3506 (16)141
C4—H4···Cg1ii0.952.613.5064 (14)158
C10—H10···Cg2iii1.002.953.9212 (14)164
C12—H12···Cg1iii0.952.673.5159 (14)149
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x+2, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC16H15NO
Mr237.29
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.6224 (2), 7.1140 (1), 10.0210 (2)
β (°) 106.707 (2)
V3)588.74 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.590, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4044, 2375, 2357
Rint0.011
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.06
No. of reflections2375
No. of parameters175
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17
Absolute structureFlack (1983), 1060 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.96 (3)1.82 (2)2.577 (2)133 (2)
C5—H5···O1i0.952.563.3506 (16)141
C4—H4···Cg1ii0.952.613.5064 (14)158
C10—H10···Cg2iii1.002.953.9212 (14)164
C12—H12···Cg1iii0.952.673.5159 (14)149
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x+2, y1/2, z+2.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Research Center of Pharmacy, King Saud University, for funding this work, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., El-Sherbeny, M. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2032.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHashimoto, N., Ishizuka, T. & Kunieda, T. (1998). Tetrahedron Lett. 39, 6317–6320.  Web of Science CrossRef CAS Google Scholar
First citationMatsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron Lett. 46, 3645–3648.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamakuchi, M., Matsunaga, H., Tokuda, R., Ishizuka, T., Nakajima, M. & Kuniedab, T. (2005). Tetrahedron Lett. 46, 4019–4022.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds