organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 11-hy­dr­oxy-9-[1-(4-meth­­oxy­phen­yl)-4-oxo-3-phen­­oxy­azetidin-2-yl]-18-oxo-10-oxa-2-aza­penta­cyclo­[9.7.0.01,8.02,6.012,17]octa­deca-12(17),13,15-triene-8-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 9 June 2012; accepted 16 June 2012; online 23 June 2012)

In the title compound, C34H32N2O8, one of the pyrrolidine rings in the pyrrolizidine ring system adopts a twist conformation, whereas the other ring adopts an envelope conformation (C atom as flap). The five-membered ring in the indene ring system and the fused furan ring also adopt envelope conformations (C and O atoms as flaps, respectively). The β-lactam ring makes dihedral angles of 23.41 (2) and 25.98 (2)°, respectively, with the attached meth­oxy­phenyl and phen­oxy rings. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, generating an S(5) motif. In the crystal, mol­ecules are linked into C(12) chains running along the a axis by C—H⋯O hydrogen bonds. The structure is further consolidated by weak inter­molecular C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.7987 (14) Å].

Related literature

For general background to β-lactams, see: Banik & Becker (2000[Banik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551-6554.]); Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]). For a related structure, see: Arun et al. (2003[Arun, M., Joshi, S. N., Puranik, V. G., Bhawal, B. M. & Deshmukh, A. R. A. S. (2003). Tetrahedron, 59, 2309-2316.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C34H32N2O8

  • Mr = 596.62

  • Monoclinic, P 21 /c

  • a = 11.4251 (13) Å

  • b = 7.8362 (8) Å

  • c = 32.041 (4) Å

  • β = 91.313 (8)°

  • V = 2867.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.980

  • 27667 measured reflections

  • 7104 independent reflections

  • 3251 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.141

  • S = 0.99

  • 7104 reflections

  • 400 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯N2 0.82 2.10 2.638 (2) 122
C15—H15⋯O6i 0.93 2.56 3.231 (3) 129
C12—H12⋯Cg7ii 0.93 2.95 3.775 (3) 149
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The role of β-lactam antibiotics is well known (Banik & Becker, 2000). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). In view of potential applications, the crystal structure determination of the title β-lactam derivative was carried out which is reported in this article.

In the title compound (Fig. 1), the β-lactam ring makes dihedral angle of 31.36 (1)° with the indene ring system. The maximum deviation of indene ring system is 0.212 (2) Å for atom C19. The β-lactam ring makes dihedral angles 23.41 (15) and 25.98 (15)°, respectively, with the attached methoxyphenyl and phenoxy rings. The carboxylate group adopts an extended conformation with thetorsion angle C18—C33—O8—C34 = 171.9 (2)°. The five-membered ring (C19/C20/C21/C26/C27) in the inden ring system and the fused furan ring (O4/C17—C20) adopt envelope conformations, with C19 and O4 atoms deviating by 0.135 (2) and -0.221 (2) Å, respectively, from the planes formed by the remaining atoms of the rings. In the pyrrolizidine ring system, the pyrrolidine ring (C18/C19/N2/C31/C32) adopts a C31-envelope conformation, with C31 deviating by 0.216 (2) Å from the remaining ring atoms. The bond lengths and bond angles in the title compound agree with the corresponding bond lengths and angles reported for a closely related compound (Arun et al., (2003).

The molecular structure of the title compound is stabilized by a strong O5—H5A···N2 hydrogen bond, generating an S(5) motif (Bernstein et al., 1995). The H-atom bonded to C15 is involved in hydrogen bonding with atom O6 forming a C(12) chain running along the a axis (Tab. 1 & Fig. 2). A weak intermolecular C—H···π interaction involving the C12—H12 group and the C1—C16 phenoxy ring is also observed.

Related literature top

For general background to β-lactams, see: Banik & Becker (2000); Brakhage (1998). For a related structure, see: Arun et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a reaction mixture of 2-(hydroxy(1-(4-methoxyphenyl)-4-oxo-3-phenoxyazetidin -2-yl)methyl)acrylate (1 mmol), ninhydrine (1.1 mmol) and proline (1.1 mmol) were refluxed in methanol until completion of the reaction was evidenced by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was dissolved in dichloromethane and washed with water followed by brine solution. The organic layer was separated and dried over sodium sulfate. Filtering and evaporation of the organic solvent under reduced pressure were carried out. The product was separated by column chromatography using hexane and ethyl acetate (3: 7) as an eluent to give colorless solid. The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals of the title compound suitable for XRD studies.

Refinement top

The H atoms were positioned geometrically with O—H = 0.82 Å and C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methyne H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(methyl C/O) or 1.2Ueq(non-methyl C).

Structure description top

The role of β-lactam antibiotics is well known (Banik & Becker, 2000). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin (Brakhage, 1998). In view of potential applications, the crystal structure determination of the title β-lactam derivative was carried out which is reported in this article.

In the title compound (Fig. 1), the β-lactam ring makes dihedral angle of 31.36 (1)° with the indene ring system. The maximum deviation of indene ring system is 0.212 (2) Å for atom C19. The β-lactam ring makes dihedral angles 23.41 (15) and 25.98 (15)°, respectively, with the attached methoxyphenyl and phenoxy rings. The carboxylate group adopts an extended conformation with thetorsion angle C18—C33—O8—C34 = 171.9 (2)°. The five-membered ring (C19/C20/C21/C26/C27) in the inden ring system and the fused furan ring (O4/C17—C20) adopt envelope conformations, with C19 and O4 atoms deviating by 0.135 (2) and -0.221 (2) Å, respectively, from the planes formed by the remaining atoms of the rings. In the pyrrolizidine ring system, the pyrrolidine ring (C18/C19/N2/C31/C32) adopts a C31-envelope conformation, with C31 deviating by 0.216 (2) Å from the remaining ring atoms. The bond lengths and bond angles in the title compound agree with the corresponding bond lengths and angles reported for a closely related compound (Arun et al., (2003).

The molecular structure of the title compound is stabilized by a strong O5—H5A···N2 hydrogen bond, generating an S(5) motif (Bernstein et al., 1995). The H-atom bonded to C15 is involved in hydrogen bonding with atom O6 forming a C(12) chain running along the a axis (Tab. 1 & Fig. 2). A weak intermolecular C—H···π interaction involving the C12—H12 group and the C1—C16 phenoxy ring is also observed.

For general background to β-lactams, see: Banik & Becker (2000); Brakhage (1998). For a related structure, see: Arun et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecule showing the thermal ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. C—H···O and O—H···N interactions (dotted lines) in the crystal structure of the title compound viewed down the b axis.
Methyl 11-hydroxy-9-[1-(4-methoxyphenyl)-4-oxo-3-phenoxyazetidin-2-yl]-18-oxo- 10-oxa-2-azapentacyclo[9.7.0.01,8.02,6.012,17]octadeca-12(17),13,15- triene-8-carboxylate top
Crystal data top
C34H32N2O8F(000) = 1256
Mr = 596.62Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1035 reflections
a = 11.4251 (13) Åθ = 1.3–28.3°
b = 7.8362 (8) ŵ = 0.10 mm1
c = 32.041 (4) ÅT = 293 K
β = 91.313 (8)°Block, colourless
V = 2867.9 (6) Å30.25 × 0.22 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7104 independent reflections
Radiation source: fine-focus sealed tube3251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ω and φ scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.976, Tmax = 0.980k = 1010
27667 measured reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0537P)2]
where P = (Fo2 + 2Fc2)/3
7104 reflections(Δ/σ)max < 0.001
400 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C34H32N2O8V = 2867.9 (6) Å3
Mr = 596.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4251 (13) ŵ = 0.10 mm1
b = 7.8362 (8) ÅT = 293 K
c = 32.041 (4) Å0.25 × 0.22 × 0.2 mm
β = 91.313 (8)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3251 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.083
27667 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 0.99Δρmax = 0.26 e Å3
7104 reflectionsΔρmin = 0.20 e Å3
400 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5692 (2)0.7918 (3)0.02316 (7)0.0411 (6)
C20.4969 (2)0.7168 (3)0.00647 (7)0.0494 (6)
H20.43370.65130.00180.059*
C30.5175 (2)0.7380 (3)0.04839 (8)0.0523 (7)
H30.46820.68780.06830.063*
C40.6120 (2)0.8343 (3)0.06043 (7)0.0484 (6)
C50.6846 (2)0.9091 (3)0.03100 (7)0.0513 (7)
H50.74820.97380.03940.062*
C60.6638 (2)0.8886 (3)0.01066 (7)0.0469 (6)
H60.71300.93960.03050.056*
C70.5862 (3)0.7665 (4)0.13225 (9)0.0926 (11)
H7A0.59810.64740.12660.139*
H7B0.61840.79430.15880.139*
H7C0.50380.79110.13280.139*
C80.6332 (2)0.7868 (3)0.10200 (7)0.0416 (6)
H80.65570.90580.10710.050*
C90.53063 (19)0.7311 (3)0.12942 (7)0.0420 (6)
H90.54170.61440.13970.050*
C100.4546 (2)0.7338 (3)0.08915 (8)0.0478 (6)
C110.4395 (2)0.7776 (3)0.19371 (7)0.0412 (6)
C120.4698 (2)0.8218 (3)0.23396 (8)0.0511 (6)
H120.53360.89280.23940.061*
C130.4048 (2)0.7598 (3)0.26613 (8)0.0564 (7)
H130.42470.78920.29350.068*
C140.3106 (2)0.6547 (3)0.25828 (8)0.0563 (7)
H140.26710.61270.28020.068*
C150.2813 (2)0.6123 (3)0.21807 (8)0.0542 (7)
H150.21740.54120.21270.065*
C160.3446 (2)0.6730 (3)0.18552 (7)0.0478 (6)
H160.32390.64410.15820.057*
C170.73901 (19)0.6701 (3)0.10020 (7)0.0381 (5)
H170.77180.67880.07230.046*
C180.83833 (19)0.7027 (3)0.13279 (6)0.0355 (5)
C190.88557 (19)0.5159 (3)0.14320 (6)0.0376 (5)
C200.8029 (2)0.3992 (3)0.11556 (7)0.0403 (6)
C210.8728 (2)0.3585 (3)0.07798 (7)0.0412 (6)
C220.8357 (2)0.2882 (3)0.04033 (8)0.0530 (7)
H220.75710.26290.03520.064*
C230.9177 (3)0.2571 (3)0.01084 (8)0.0632 (8)
H230.89400.21030.01470.076*
C241.0348 (3)0.2935 (4)0.01796 (8)0.0647 (8)
H241.08850.26910.00260.078*
C251.0732 (2)0.3655 (3)0.05511 (8)0.0552 (7)
H251.15180.39130.06000.066*
C260.9898 (2)0.3977 (3)0.08485 (7)0.0428 (6)
C271.0082 (2)0.4737 (3)0.12642 (7)0.0446 (6)
C280.9643 (2)0.5013 (4)0.21783 (7)0.0655 (8)
H28A1.01370.40060.21840.079*
H28B1.01180.60010.21140.079*
C290.9052 (3)0.5235 (4)0.25785 (8)0.0727 (9)
H29A0.95460.58660.27740.087*
H29B0.88690.41350.27000.087*
C300.7948 (2)0.6211 (4)0.24787 (7)0.0576 (7)
H30A0.80360.74000.25580.069*
H30B0.72930.57300.26260.069*
C310.7756 (2)0.6046 (3)0.20060 (6)0.0432 (6)
H310.69700.56080.19410.052*
C320.7991 (2)0.7655 (3)0.17556 (6)0.0424 (6)
H32A0.86000.83350.18910.051*
H32B0.72870.83410.17270.051*
C330.9311 (2)0.8179 (3)0.11405 (7)0.0413 (6)
C341.1133 (2)0.9561 (4)0.12607 (8)0.0693 (8)
H34A1.15590.88240.10790.104*
H34B1.16320.99080.14900.104*
H34C1.08731.05510.11080.104*
N10.55049 (16)0.7704 (3)0.06619 (6)0.0451 (5)
N20.86574 (17)0.4818 (2)0.18691 (5)0.0433 (5)
O10.64164 (18)0.8632 (2)0.10114 (5)0.0725 (6)
O20.35322 (16)0.7067 (2)0.07968 (5)0.0623 (5)
O30.50681 (14)0.8443 (2)0.16232 (5)0.0511 (4)
O40.70046 (13)0.49763 (19)0.10630 (4)0.0429 (4)
O50.76948 (16)0.2530 (2)0.13645 (5)0.0549 (5)
H5A0.77890.26710.16170.082*
O61.10093 (16)0.4957 (3)0.14436 (5)0.0694 (6)
O70.93303 (17)0.8573 (3)0.07831 (5)0.0721 (6)
O81.01251 (15)0.8656 (2)0.14184 (5)0.0608 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0358 (14)0.0458 (14)0.0416 (14)0.0071 (11)0.0018 (11)0.0055 (11)
C20.0393 (15)0.0575 (16)0.0512 (15)0.0035 (12)0.0038 (12)0.0050 (12)
C30.0522 (18)0.0579 (17)0.0462 (15)0.0057 (13)0.0102 (13)0.0054 (12)
C40.0559 (18)0.0500 (15)0.0392 (14)0.0028 (13)0.0005 (12)0.0003 (11)
C50.0516 (17)0.0559 (16)0.0464 (15)0.0085 (13)0.0000 (13)0.0057 (12)
C60.0455 (16)0.0530 (16)0.0419 (14)0.0050 (12)0.0043 (12)0.0017 (12)
C70.129 (3)0.099 (3)0.0503 (18)0.027 (2)0.0015 (19)0.0174 (17)
C80.0378 (14)0.0492 (15)0.0378 (12)0.0021 (11)0.0012 (11)0.0019 (11)
C90.0383 (15)0.0469 (14)0.0410 (13)0.0012 (11)0.0075 (11)0.0005 (11)
C100.0393 (17)0.0534 (16)0.0508 (15)0.0046 (12)0.0038 (13)0.0019 (12)
C110.0358 (15)0.0427 (14)0.0455 (14)0.0051 (11)0.0087 (11)0.0009 (11)
C120.0457 (16)0.0552 (16)0.0524 (16)0.0035 (12)0.0003 (13)0.0113 (13)
C130.065 (2)0.0616 (18)0.0421 (15)0.0095 (15)0.0004 (14)0.0056 (13)
C140.0593 (19)0.0568 (17)0.0535 (17)0.0075 (14)0.0157 (14)0.0056 (13)
C150.0406 (16)0.0626 (18)0.0599 (17)0.0058 (13)0.0073 (13)0.0004 (14)
C160.0370 (15)0.0630 (16)0.0434 (14)0.0010 (12)0.0007 (12)0.0036 (12)
C170.0344 (14)0.0468 (14)0.0331 (12)0.0000 (11)0.0019 (10)0.0011 (10)
C180.0333 (13)0.0406 (13)0.0327 (11)0.0010 (10)0.0012 (10)0.0024 (10)
C190.0360 (14)0.0441 (14)0.0327 (12)0.0005 (10)0.0012 (10)0.0017 (10)
C200.0357 (14)0.0424 (14)0.0428 (13)0.0022 (11)0.0003 (11)0.0013 (11)
C210.0464 (16)0.0374 (13)0.0399 (13)0.0038 (11)0.0027 (11)0.0030 (10)
C220.0586 (18)0.0508 (16)0.0494 (15)0.0017 (13)0.0016 (14)0.0113 (12)
C230.072 (2)0.070 (2)0.0471 (16)0.0051 (16)0.0005 (15)0.0192 (13)
C240.069 (2)0.078 (2)0.0472 (16)0.0126 (16)0.0133 (15)0.0088 (14)
C250.0470 (17)0.0676 (18)0.0515 (16)0.0088 (13)0.0082 (13)0.0012 (13)
C260.0430 (16)0.0470 (15)0.0385 (13)0.0078 (11)0.0036 (11)0.0010 (11)
C270.0363 (15)0.0523 (15)0.0451 (14)0.0018 (11)0.0019 (12)0.0011 (11)
C280.0622 (19)0.092 (2)0.0416 (15)0.0089 (16)0.0119 (13)0.0089 (15)
C290.096 (3)0.078 (2)0.0435 (16)0.0044 (18)0.0176 (15)0.0007 (14)
C300.063 (2)0.0757 (19)0.0339 (13)0.0116 (15)0.0076 (12)0.0020 (13)
C310.0398 (15)0.0565 (15)0.0334 (12)0.0062 (12)0.0045 (11)0.0040 (11)
C320.0431 (15)0.0503 (15)0.0340 (12)0.0014 (11)0.0034 (10)0.0055 (10)
C330.0427 (15)0.0446 (14)0.0364 (13)0.0013 (11)0.0007 (11)0.0020 (11)
C340.0558 (19)0.088 (2)0.0643 (18)0.0359 (16)0.0021 (14)0.0101 (16)
N10.0325 (12)0.0625 (14)0.0403 (11)0.0034 (9)0.0006 (9)0.0083 (9)
N20.0451 (13)0.0527 (12)0.0320 (10)0.0002 (10)0.0013 (9)0.0025 (9)
O10.0945 (16)0.0825 (14)0.0404 (10)0.0238 (11)0.0005 (10)0.0019 (9)
O20.0365 (12)0.0868 (14)0.0636 (12)0.0041 (10)0.0012 (9)0.0034 (10)
O30.0526 (11)0.0489 (10)0.0525 (10)0.0027 (8)0.0174 (9)0.0059 (8)
O40.0334 (9)0.0449 (10)0.0502 (9)0.0012 (7)0.0027 (7)0.0069 (8)
O50.0636 (12)0.0470 (11)0.0543 (10)0.0104 (9)0.0041 (10)0.0032 (8)
O60.0409 (12)0.1050 (16)0.0618 (12)0.0020 (11)0.0062 (9)0.0172 (11)
O70.0787 (15)0.0973 (15)0.0402 (11)0.0351 (11)0.0028 (9)0.0131 (10)
O80.0526 (12)0.0825 (13)0.0471 (10)0.0282 (10)0.0061 (9)0.0101 (9)
Geometric parameters (Å, º) top
C1—C21.376 (3)C18—C191.593 (3)
C1—C61.387 (3)C19—N21.449 (3)
C1—N11.410 (3)C19—C271.547 (3)
C2—C31.379 (3)C19—C201.572 (3)
C2—H20.9300C20—O51.385 (3)
C3—C41.379 (3)C20—O41.427 (3)
C3—H30.9300C20—C211.495 (3)
C4—C51.373 (3)C21—C261.384 (3)
C4—O11.374 (3)C21—C221.384 (3)
C5—C61.371 (3)C22—C231.368 (3)
C5—H50.9300C22—H220.9300
C6—H60.9300C23—C241.381 (4)
C7—O11.393 (3)C23—H230.9300
C7—H7A0.9600C24—C251.380 (3)
C7—H7B0.9600C24—H240.9300
C7—H7C0.9600C25—C261.386 (3)
C8—N11.475 (3)C25—H250.9300
C8—C171.518 (3)C26—C271.469 (3)
C8—C91.543 (3)C27—O61.206 (3)
C8—H80.9800C28—C291.474 (4)
C9—O31.409 (3)C28—N21.491 (3)
C9—C101.539 (3)C28—H28A0.9700
C9—H90.9800C28—H28B0.9700
C10—O21.209 (3)C29—C301.503 (4)
C10—N11.364 (3)C29—H29A0.9700
C11—C121.372 (3)C29—H29B0.9700
C11—C161.379 (3)C30—C311.531 (3)
C11—O31.383 (3)C30—H30A0.9700
C12—C131.373 (3)C30—H30B0.9700
C12—H120.9300C31—N21.483 (3)
C13—C141.374 (3)C31—C321.521 (3)
C13—H130.9300C31—H310.9800
C14—C151.365 (3)C32—H32A0.9700
C14—H140.9300C32—H32B0.9700
C15—C161.368 (3)C33—O71.186 (2)
C15—H150.9300C33—O81.327 (3)
C16—H160.9300C34—O81.453 (3)
C17—O41.436 (3)C34—H34A0.9600
C17—C181.546 (3)C34—H34B0.9600
C17—H170.9800C34—H34C0.9600
C18—C331.526 (3)O5—H5A0.8200
C18—C321.533 (3)
C2—C1—C6119.6 (2)O5—C20—C21111.76 (19)
C2—C1—N1121.4 (2)O4—C20—C21113.51 (18)
C6—C1—N1119.0 (2)O5—C20—C19112.18 (17)
C1—C2—C3120.5 (2)O4—C20—C19106.39 (17)
C1—C2—H2119.8C21—C20—C19104.65 (18)
C3—C2—H2119.8C26—C21—C22120.2 (2)
C2—C3—C4119.4 (2)C26—C21—C20110.86 (19)
C2—C3—H3120.3C22—C21—C20128.9 (2)
C4—C3—H3120.3C23—C22—C21118.2 (3)
C5—C4—O1115.1 (2)C23—C22—H22120.9
C5—C4—C3120.4 (2)C21—C22—H22120.9
O1—C4—C3124.6 (2)C22—C23—C24121.7 (2)
C6—C5—C4120.2 (2)C22—C23—H23119.2
C6—C5—H5119.9C24—C23—H23119.2
C4—C5—H5119.9C25—C24—C23121.0 (3)
C5—C6—C1120.0 (2)C25—C24—H24119.5
C5—C6—H6120.0C23—C24—H24119.5
C1—C6—H6120.0C24—C25—C26117.2 (3)
O1—C7—H7A109.5C24—C25—H25121.4
O1—C7—H7B109.5C26—C25—H25121.4
H7A—C7—H7B109.5C21—C26—C25121.8 (2)
O1—C7—H7C109.5C21—C26—C27110.6 (2)
H7A—C7—H7C109.5C25—C26—C27127.6 (2)
H7B—C7—H7C109.5O6—C27—C26126.5 (2)
N1—C8—C17114.50 (18)O6—C27—C19126.6 (2)
N1—C8—C986.40 (17)C26—C27—C19106.85 (19)
C17—C8—C9117.85 (19)C29—C28—N2103.6 (2)
N1—C8—H8111.9C29—C28—H28A111.0
C17—C8—H8111.9N2—C28—H28A111.0
C9—C8—H8111.9C29—C28—H28B111.0
O3—C9—C10120.2 (2)N2—C28—H28B111.0
O3—C9—C8114.22 (19)H28A—C28—H28B109.0
C10—C9—C886.58 (17)C28—C29—C30105.9 (2)
O3—C9—H9111.2C28—C29—H29A110.6
C10—C9—H9111.2C30—C29—H29A110.6
C8—C9—H9111.2C28—C29—H29B110.6
O2—C10—N1132.7 (2)C30—C29—H29B110.6
O2—C10—C9136.7 (2)H29A—C29—H29B108.7
N1—C10—C990.6 (2)C29—C30—C31105.5 (2)
C12—C11—C16120.6 (2)C29—C30—H30A110.6
C12—C11—O3117.1 (2)C31—C30—H30A110.6
C16—C11—O3122.3 (2)C29—C30—H30B110.6
C11—C12—C13119.1 (2)C31—C30—H30B110.6
C11—C12—H12120.4H30A—C30—H30B108.8
C13—C12—H12120.4N2—C31—C32104.47 (18)
C12—C13—C14120.6 (2)N2—C31—C30105.24 (19)
C12—C13—H13119.7C32—C31—C30115.39 (19)
C14—C13—H13119.7N2—C31—H31110.5
C15—C14—C13119.6 (2)C32—C31—H31110.5
C15—C14—H14120.2C30—C31—H31110.5
C13—C14—H14120.2C31—C32—C18105.32 (17)
C14—C15—C16120.8 (3)C31—C32—H32A110.7
C14—C15—H15119.6C18—C32—H32A110.7
C16—C15—H15119.6C31—C32—H32B110.7
C15—C16—C11119.3 (2)C18—C32—H32B110.7
C15—C16—H16120.4H32A—C32—H32B108.8
C11—C16—H16120.4O7—C33—O8123.1 (2)
O4—C17—C8108.33 (18)O7—C33—C18124.2 (2)
O4—C17—C18106.63 (16)O8—C33—C18112.65 (19)
C8—C17—C18116.62 (18)O8—C34—H34A109.5
O4—C17—H17108.3O8—C34—H34B109.5
C8—C17—H17108.3H34A—C34—H34B109.5
C18—C17—H17108.3O8—C34—H34C109.5
C33—C18—C32112.46 (18)H34A—C34—H34C109.5
C33—C18—C17109.74 (17)H34B—C34—H34C109.5
C32—C18—C17115.58 (18)C10—N1—C1134.0 (2)
C33—C18—C19113.03 (18)C10—N1—C896.14 (18)
C32—C18—C19102.27 (16)C1—N1—C8129.89 (19)
C17—C18—C19103.27 (16)C19—N2—C31106.95 (16)
N2—C19—C27117.35 (18)C19—N2—C28119.41 (18)
N2—C19—C20109.40 (17)C31—N2—C28104.83 (18)
C27—C19—C20102.52 (17)C4—O1—C7118.1 (2)
N2—C19—C18108.18 (17)C11—O3—C9115.24 (17)
C27—C19—C18115.38 (18)C20—O4—C17106.50 (16)
C20—C19—C18102.71 (16)C20—O5—H5A109.5
O5—C20—O4108.25 (18)C33—O8—C34116.94 (19)
C6—C1—C2—C30.3 (4)C22—C21—C26—C27178.8 (2)
N1—C1—C2—C3179.3 (2)C20—C21—C26—C272.2 (3)
C1—C2—C3—C40.5 (4)C24—C25—C26—C210.5 (4)
C2—C3—C4—C50.3 (4)C24—C25—C26—C27179.7 (2)
C2—C3—C4—O1179.5 (2)C21—C26—C27—O6167.0 (2)
O1—C4—C5—C6179.8 (2)C25—C26—C27—O612.8 (4)
C3—C4—C5—C60.0 (4)C21—C26—C27—C1911.7 (3)
C4—C5—C6—C10.2 (4)C25—C26—C27—C19168.5 (2)
C2—C1—C6—C50.0 (4)N2—C19—C27—O639.2 (3)
N1—C1—C6—C5179.1 (2)C20—C19—C27—O6159.0 (2)
N1—C8—C9—O3125.71 (19)C18—C19—C27—O690.2 (3)
C17—C8—C9—O3118.4 (2)N2—C19—C27—C26139.48 (19)
N1—C8—C9—C103.95 (16)C20—C19—C27—C2619.6 (2)
C17—C8—C9—C10119.8 (2)C18—C19—C27—C2691.2 (2)
O3—C9—C10—O263.1 (4)N2—C28—C29—C3034.4 (3)
C8—C9—C10—O2179.2 (3)C28—C29—C30—C3116.9 (3)
O3—C9—C10—N1120.4 (2)C29—C30—C31—N27.0 (3)
C8—C9—C10—N14.26 (18)C29—C30—C31—C32107.5 (2)
C16—C11—C12—C130.4 (4)N2—C31—C32—C1835.7 (2)
O3—C11—C12—C13179.4 (2)C30—C31—C32—C18150.7 (2)
C11—C12—C13—C140.1 (4)C33—C18—C32—C31144.90 (19)
C12—C13—C14—C150.3 (4)C17—C18—C32—C3188.0 (2)
C13—C14—C15—C160.1 (4)C19—C18—C32—C3123.4 (2)
C14—C15—C16—C110.3 (4)C32—C18—C33—O7139.0 (2)
C12—C11—C16—C150.6 (4)C17—C18—C33—O78.9 (3)
O3—C11—C16—C15179.6 (2)C19—C18—C33—O7105.8 (3)
N1—C8—C17—O469.7 (2)C32—C18—C33—O843.1 (3)
C9—C8—C17—O429.6 (3)C17—C18—C33—O8173.25 (19)
N1—C8—C17—C18170.06 (18)C19—C18—C33—O872.1 (2)
C9—C8—C17—C1890.6 (2)O2—C10—N1—C10.4 (5)
O4—C17—C18—C33144.22 (17)C9—C10—N1—C1177.1 (2)
C8—C17—C18—C3394.7 (2)O2—C10—N1—C8178.8 (3)
O4—C17—C18—C3287.3 (2)C9—C10—N1—C84.47 (19)
C8—C17—C18—C3233.8 (3)C2—C1—N1—C1025.0 (4)
O4—C17—C18—C1923.5 (2)C6—C1—N1—C10156.0 (3)
C8—C17—C18—C19144.57 (18)C2—C1—N1—C8157.1 (2)
C33—C18—C19—N2124.31 (19)C6—C1—N1—C821.9 (3)
C32—C18—C19—N23.2 (2)C17—C8—N1—C10123.5 (2)
C17—C18—C19—N2117.18 (18)C9—C8—N1—C104.47 (19)
C33—C18—C19—C279.4 (2)C17—C8—N1—C158.0 (3)
C32—C18—C19—C27130.54 (19)C9—C8—N1—C1177.0 (2)
C17—C18—C19—C27109.1 (2)C27—C19—N2—C31151.62 (19)
C33—C18—C19—C20120.06 (19)C20—C19—N2—C3192.2 (2)
C32—C18—C19—C20118.79 (17)C18—C19—N2—C3118.9 (2)
C17—C18—C19—C201.6 (2)C27—C19—N2—C2833.0 (3)
N2—C19—C20—O524.3 (3)C20—C19—N2—C28149.1 (2)
C27—C19—C20—O5100.9 (2)C18—C19—N2—C2899.7 (2)
C18—C19—C20—O5139.07 (18)C32—C31—N2—C1933.9 (2)
N2—C19—C20—O493.87 (19)C30—C31—N2—C19155.86 (18)
C27—C19—C20—O4140.89 (17)C32—C31—N2—C2893.8 (2)
C18—C19—C20—O420.9 (2)C30—C31—N2—C2828.1 (2)
N2—C19—C20—C21145.69 (18)C29—C28—N2—C19158.7 (2)
C27—C19—C20—C2120.4 (2)C29—C28—N2—C3139.0 (3)
C18—C19—C20—C2199.57 (19)C5—C4—O1—C7168.1 (3)
O5—C20—C21—C26106.8 (2)C3—C4—O1—C711.7 (4)
O4—C20—C21—C26130.4 (2)C12—C11—O3—C9140.2 (2)
C19—C20—C21—C2614.8 (2)C16—C11—O3—C940.7 (3)
O5—C20—C21—C2272.0 (3)C10—C9—O3—C1196.4 (2)
O4—C20—C21—C2250.8 (3)C8—C9—O3—C11162.82 (18)
C19—C20—C21—C22166.4 (2)O5—C20—O4—C17157.98 (16)
C26—C21—C22—C231.0 (4)C21—C20—O4—C1777.3 (2)
C20—C21—C22—C23177.8 (2)C19—C20—O4—C1737.2 (2)
C21—C22—C23—C240.2 (4)C8—C17—O4—C20164.82 (16)
C22—C23—C24—C251.0 (4)C18—C17—O4—C2038.6 (2)
C23—C24—C25—C260.6 (4)O7—C33—O8—C346.0 (4)
C22—C21—C26—C251.3 (4)C18—C33—O8—C34171.9 (2)
C20—C21—C26—C25177.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5A···N20.822.102.638 (2)122
C15—H15···O6i0.932.563.231 (3)129
C16—H16···O20.932.593.405 (3)146
C32—H32B···O30.972.553.413 (3)148
C12—H12···Cg7ii0.932.953.775 (3)149
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC34H32N2O8
Mr596.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.4251 (13), 7.8362 (8), 32.041 (4)
β (°) 91.313 (8)
V3)2867.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.22 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.976, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
27667, 7104, 3251
Rint0.083
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.141, 0.99
No. of reflections7104
No. of parameters400
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5A···N20.822.102.638 (2)122
C15—H15···O6i0.932.563.231 (3)129
C12—H12···Cg7ii0.932.953.775 (3)149
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC & SAP) for financial support.

References

First citationArun, M., Joshi, S. N., Puranik, V. G., Bhawal, B. M. & Deshmukh, A. R. A. S. (2003). Tetrahedron, 59, 2309–2316.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanik, B. K. & Becker, F. F. (2000). Tetrahedron Lett. 41, 6551–6554.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547–585.  Web of Science CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds