metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[μ-N-(2,4,6-tri­methyl­phen­yl)acetamidato]-κ4N:O;κ4O:N-bis­­[(benzo­nitrile-κN)rhodium(II)](RhRh)

aChemistry Department, East Tennessee State University, PO Box 70695, Johnson City, Tennessee, TN 37614, USA
*Correspondence e-mail: eaglec@etsu.edu

(Received 2 March 2012; accepted 29 May 2012; online 13 June 2012)

The title structure, [Rh2(C11H14NO)4(C7H5N)2], contains a dinuclear Rh complex of point symmetry -4 with an Rh—Rh unit and two benzonitrile ligands located in special positions along the twofold axis passing through -4. Four symmetry-equivalent mesitylacetamidate ligands bridge the Rh—Rh unit. Thus, each RhII atom has an approximately octa­hedral coordination by one Rh [Rh—Rh = 2.4290 (6) Å], two acetamidate O atoms trans to each other [Rh—O = 2.044 (3) Å], two acetamidate N atoms trans to each other [Rh—N = 2.091 (4) Å], and a benzonitrile N atom trans to Rh [Rh—N = 2.222 (3) Å]. The structure is held together by weak van der Waals forces.

Related literature

For the synthesis and crystal structure of a related compound, see: Eagle et al. (2000[Eagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90-94.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh2(C11H14NO)4(C7H5N)2]

  • Mr = 1117.01

  • Tetragonal, [P \overline 42_1 c ]

  • a = 10.9928 (19) Å

  • c = 21.4549 (19) Å

  • V = 2592.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 298 K

  • 0.18 × 0.13 × 0.07 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.618, Tmax = 0.953

  • 48863 measured reflections

  • 2969 independent reflections

  • 1950 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.074

  • S = 1.03

  • 2969 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1275 Friedel pairs

  • Flack parameter: −0.03 (5)

Data collection: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title compound, a dinuclear Rh complex with a Rh—Rh bond and four equivalent bridging ligands (Fig. 1), is the mesitylacetamidato analogue of the previously published phenylacetamidato compound Rh2[N(C6H5)C(O)CH3]4.2NCC6H5 (Eagle et al., 2000), both having the 2,2-trans stereochemistry in the complex-core, which is one out of four possible isomers. The highest molecular symmetry that these two complexes can adopt is 42m with two mirror planes trough the acetamidate chelate ring pairs and twofold axes in bisecting directions. While in the crystal structure of Rh2[N(C6H5)C(O)CH3]4.2NCC6H5 the Rh complex has point symmetry 1 and adopts a considerably twisted conformation in the core and one benzonitrile ligand (significantly bent off from the Rh—Rh axis), the complex of the title structure is more regular and has 4 symmetry, not far from 42m if the axial benzonitrile ligands are disregarded. Thus, in Rh2[N(C6H5)C(O)CH3]4.2NCC6H5 the four N—Rh—Rh—O dihedral angles range from 9.03 to 11.89°, while in the title compound the same torsion angle is only 1.12 (9)°. The inclination angle of the mesityl phenyl rings to the Rh—Rh-bond is in the title compound about 26°, while about 34° in the phenylacetamidato complex. This makes the space between adjacent mesityl rings narrow and forces the benzonitrile phenyl rings into a more inclined orientation than in Rh2[N(C6H5)C(O)CH3]4.2NCC6H5, where they are not far from perpendicular to the acetamidinato phenyl rings. A packing diagram of the structure is shown in Fig. 2. It reveals that the molecules are held together by weak Van der Waals forces, which is not surprising in view of the 16 CH3 groups on the outer surface of the Rh complex.

Related literature top

For the synthesis and crystal structure of a related compound, see: Eagle et al. (2000).

Experimental top

Approximately 10 mg of 2,2-trans-tetrakis[µ-(N-{2,4,6-trimethylphenyl}acetamidato-κN:κO)]dirhodium(II), synthesized by adapting the procedure described by Eagle et al. (2000), was dissolved in 5 mL of dichloromethane forming a green solution. Approximately 2.29 µL of benzonitrile was added to the solution causing the color to become blue. Crystals of the title compound were obtained using a vapor diffusion technique with acetonitrile for a week. The crystal was measured at 298 K on a Rigaku XtaLAB mini diffractometer.

Refinement top

All H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.93 – 0.96 Å. Uĩso(H) = 1.2Ueq(C) for CH groups; Uĩso(H) = 1.5Ueq(C) for CH3 groups. A torsional parameter was refined for the methyl groups.

Structure description top

The title compound, a dinuclear Rh complex with a Rh—Rh bond and four equivalent bridging ligands (Fig. 1), is the mesitylacetamidato analogue of the previously published phenylacetamidato compound Rh2[N(C6H5)C(O)CH3]4.2NCC6H5 (Eagle et al., 2000), both having the 2,2-trans stereochemistry in the complex-core, which is one out of four possible isomers. The highest molecular symmetry that these two complexes can adopt is 42m with two mirror planes trough the acetamidate chelate ring pairs and twofold axes in bisecting directions. While in the crystal structure of Rh2[N(C6H5)C(O)CH3]4.2NCC6H5 the Rh complex has point symmetry 1 and adopts a considerably twisted conformation in the core and one benzonitrile ligand (significantly bent off from the Rh—Rh axis), the complex of the title structure is more regular and has 4 symmetry, not far from 42m if the axial benzonitrile ligands are disregarded. Thus, in Rh2[N(C6H5)C(O)CH3]4.2NCC6H5 the four N—Rh—Rh—O dihedral angles range from 9.03 to 11.89°, while in the title compound the same torsion angle is only 1.12 (9)°. The inclination angle of the mesityl phenyl rings to the Rh—Rh-bond is in the title compound about 26°, while about 34° in the phenylacetamidato complex. This makes the space between adjacent mesityl rings narrow and forces the benzonitrile phenyl rings into a more inclined orientation than in Rh2[N(C6H5)C(O)CH3]4.2NCC6H5, where they are not far from perpendicular to the acetamidinato phenyl rings. A packing diagram of the structure is shown in Fig. 2. It reveals that the molecules are held together by weak Van der Waals forces, which is not surprising in view of the 16 CH3 groups on the outer surface of the Rh complex.

For the synthesis and crystal structure of a related compound, see: Eagle et al. (2000).

Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 30% probability level. Hydrogen atoms are shown as small spheres.
[Figure 2] Fig. 2. Packing diagram of the title structure viewed along the a-axis. H-atoms omitted for clarity.
Tetrakis[µ-N-(2,4,6-trimethylphenyl)acetamidato]- κ4N:O;κ4O:N-bis[(benzonitrile- κN)rhodium(II)](RhRh) top
Crystal data top
[Rh2(C11H14NO)4(C7H5N)2]Dx = 1.431 Mg m3
Mr = 1117.01Mo Kα radiation, λ = 0.71075 Å
Tetragonal, P421cCell parameters from 32577 reflections
Hall symbol: P -4 2nθ = 3.2–27.7°
a = 10.9928 (19) ŵ = 0.69 mm1
c = 21.4549 (19) ÅT = 298 K
V = 2592.6 (7) Å3Prism, blue
Z = 20.18 × 0.13 × 0.07 mm
F(000) = 1156.00
Data collection top
Rigaku XtaLAB mini
diffractometer
2969 independent reflections
Radiation source: fine-focus sealed tube1950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 6.827 pixels mm-1θmax = 27.5°
ω scansh = 1414
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1414
Tmin = 0.618, Tmax = 0.953l = 2727
48863 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0213P)2 + 2.1713P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
2969 reflectionsΔρmax = 0.64 e Å3
165 parametersΔρmin = 0.71 e Å3
0 restraintsAbsolute structure: Flack (1983), 1275 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Crystal data top
[Rh2(C11H14NO)4(C7H5N)2]Z = 2
Mr = 1117.01Mo Kα radiation
Tetragonal, P421cµ = 0.69 mm1
a = 10.9928 (19) ÅT = 298 K
c = 21.4549 (19) Å0.18 × 0.13 × 0.07 mm
V = 2592.6 (7) Å3
Data collection top
Rigaku XtaLAB mini
diffractometer
2969 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1950 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.953Rint = 0.105
48863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.64 e Å3
S = 1.03Δρmin = 0.71 e Å3
2969 reflectionsAbsolute structure: Flack (1983), 1275 Friedel pairs
165 parametersAbsolute structure parameter: 0.03 (5)
0 restraints
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.50000.50000.556606 (14)0.03097 (10)
O10.6695 (3)0.4236 (3)0.44533 (15)0.0342 (8)
N10.50000.50000.66016 (16)0.0443 (9)
N20.6716 (3)0.4187 (3)0.55161 (19)0.0349 (10)
C10.50000.50000.7117 (2)0.0490 (12)
C20.50000.50000.7799 (2)0.0477 (11)
C30.5590 (5)0.4097 (5)0.8123 (2)0.0669 (16)
H30.60020.34840.79130.080*
C40.5561 (7)0.4115 (6)0.8766 (2)0.100 (2)
H40.59430.34930.89860.119*
C50.50000.50000.9084 (3)0.118 (3)
H50.50000.50000.95170.141*
C60.7216 (3)0.3988 (3)0.4977 (3)0.0376 (8)
C70.8472 (3)0.3448 (4)0.4909 (2)0.0481 (11)
H7A0.86350.32930.44760.072*
H7B0.85160.26990.51380.072*
H7C0.90640.40090.50690.072*
C80.7316 (4)0.3860 (4)0.60846 (17)0.0350 (9)
C90.7176 (4)0.2700 (4)0.63427 (19)0.0447 (10)
C100.7689 (4)0.2470 (5)0.6922 (2)0.0538 (12)
H100.76130.16930.70890.065*
C110.8302 (5)0.3333 (6)0.7260 (2)0.0585 (15)
C120.8474 (4)0.4461 (5)0.6986 (2)0.0473 (12)
H120.89090.50500.72030.057*
C130.8015 (4)0.4747 (4)0.63927 (18)0.0416 (11)
C140.6525 (5)0.1711 (4)0.5992 (2)0.0578 (14)
H14A0.68950.16080.55900.087*
H14B0.56850.19310.59400.087*
H14C0.65780.09630.62210.087*
C150.8820 (5)0.3097 (6)0.7897 (2)0.080 (2)
H15A0.83940.24310.80880.120*
H15B0.87290.38120.81500.120*
H15C0.96670.28970.78610.120*
C160.8312 (5)0.5947 (4)0.6108 (2)0.0585 (15)
H16A0.76040.64590.61170.088*
H16B0.85670.58300.56850.088*
H16C0.89550.63260.63400.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.0331 (3)0.0354 (3)0.02438 (14)0.0012 (5)0.0000.000
O10.036 (2)0.041 (2)0.0255 (18)0.0021 (19)0.0032 (18)0.0047 (18)
N10.037 (4)0.066 (5)0.0301 (19)0.006 (7)0.0000.000
N20.031 (2)0.041 (3)0.033 (2)0.006 (2)0.002 (2)0.003 (2)
C10.037 (4)0.057 (5)0.053 (3)0.014 (7)0.0000.000
C20.039 (4)0.068 (6)0.035 (2)0.002 (10)0.0000.000
C30.093 (4)0.062 (4)0.045 (3)0.025 (3)0.003 (3)0.000 (2)
C40.155 (7)0.086 (5)0.057 (3)0.049 (4)0.030 (4)0.005 (3)
C50.206 (13)0.116 (9)0.030 (3)0.033 (15)0.0000.000
C60.0387 (19)0.0369 (18)0.0373 (19)0.0014 (16)0.010 (3)0.007 (3)
C70.038 (2)0.062 (3)0.045 (3)0.0112 (19)0.003 (2)0.006 (3)
C80.036 (2)0.040 (2)0.029 (2)0.005 (2)0.0011 (17)0.0024 (18)
C90.037 (3)0.052 (3)0.045 (2)0.0105 (19)0.002 (2)0.005 (2)
C100.056 (3)0.056 (3)0.050 (2)0.013 (2)0.003 (3)0.008 (3)
C110.049 (3)0.084 (4)0.042 (3)0.025 (3)0.003 (2)0.007 (3)
C120.039 (3)0.060 (3)0.043 (2)0.007 (2)0.012 (2)0.011 (2)
C130.037 (2)0.049 (3)0.039 (2)0.0027 (19)0.0053 (18)0.003 (2)
C140.065 (4)0.037 (3)0.072 (3)0.003 (3)0.001 (3)0.004 (3)
C150.072 (4)0.121 (6)0.048 (3)0.010 (4)0.017 (3)0.016 (4)
C160.057 (4)0.051 (3)0.068 (3)0.008 (3)0.018 (3)0.004 (3)
Geometric parameters (Å, º) top
Rh1—O1i2.044 (3)C7—H7B0.9600
Rh1—O1ii2.044 (3)C7—H7C0.9600
Rh1—N22.091 (4)C8—C91.399 (6)
Rh1—N2iii2.091 (4)C8—C131.406 (5)
Rh1—N12.222 (3)C9—C101.389 (6)
Rh1—Rh1i2.4290 (6)C9—C141.504 (7)
O1—C61.290 (6)C10—C111.370 (7)
O1—Rh1i2.044 (3)C10—H100.9300
N1—C11.106 (6)C11—C121.385 (7)
N2—C61.300 (6)C11—C151.504 (6)
N2—C81.432 (5)C12—C131.406 (5)
C1—C21.463 (6)C12—H120.9300
C2—C3iii1.375 (5)C13—C161.489 (6)
C2—C31.375 (5)C14—H14A0.9600
C3—C41.380 (7)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.338 (6)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C4iii1.338 (6)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C6—C71.510 (5)C16—H16B0.9600
C7—H7A0.9600C16—H16C0.9600
O1i—Rh1—O1ii177.67 (18)C6—C7—H7C109.5
O1i—Rh1—N288.85 (16)H7A—C7—H7C109.5
O1ii—Rh1—N291.03 (16)H7B—C7—H7C109.5
O1i—Rh1—N2iii91.03 (16)C9—C8—C13120.4 (4)
O1ii—Rh1—N2iii88.85 (16)C9—C8—N2121.0 (4)
N2—Rh1—N2iii174.1 (2)C13—C8—N2118.5 (4)
O1i—Rh1—N191.16 (9)C10—C9—C8118.4 (5)
O1ii—Rh1—N191.16 (9)C10—C9—C14120.7 (4)
N2—Rh1—N192.94 (11)C8—C9—C14120.9 (4)
N2iii—Rh1—N192.94 (11)C11—C10—C9123.2 (5)
O1i—Rh1—Rh1i88.84 (9)C11—C10—H10118.4
O1ii—Rh1—Rh1i88.84 (9)C9—C10—H10118.4
N2—Rh1—Rh1i87.06 (11)C10—C11—C12117.6 (4)
N2iii—Rh1—Rh1i87.06 (11)C10—C11—C15123.2 (6)
N1—Rh1—Rh1i180.0C12—C11—C15119.2 (6)
C6—O1—Rh1i120.6 (3)C11—C12—C13122.4 (5)
C1—N1—Rh1180.000 (1)C11—C12—H12118.8
C6—N2—C8121.4 (4)C13—C12—H12118.8
C6—N2—Rh1119.9 (3)C12—C13—C8117.8 (4)
C8—N2—Rh1118.6 (3)C12—C13—C16119.4 (4)
N1—C1—C2180.000 (2)C8—C13—C16122.8 (4)
C3iii—C2—C3119.2 (5)C9—C14—H14A109.5
C3iii—C2—C1120.4 (3)C9—C14—H14B109.5
C3—C2—C1120.4 (3)H14A—C14—H14B109.5
C2—C3—C4119.0 (5)C9—C14—H14C109.5
C2—C3—H3120.5H14A—C14—H14C109.5
C4—C3—H3120.5H14B—C14—H14C109.5
C5—C4—C3122.0 (5)C11—C15—H15A109.5
C5—C4—H4119.0C11—C15—H15B109.5
C3—C4—H4119.0H15A—C15—H15B109.5
C4—C5—C4iii118.8 (6)C11—C15—H15C109.5
C4—C5—H5120.6H15A—C15—H15C109.5
C4iii—C5—H5120.6H15B—C15—H15C109.5
O1—C6—N2123.5 (3)C13—C16—H16A109.5
O1—C6—C7113.9 (4)C13—C16—H16B109.5
N2—C6—C7122.6 (5)H16A—C16—H16B109.5
C6—C7—H7A109.5C13—C16—H16C109.5
C6—C7—H7B109.5H16A—C16—H16C109.5
H7A—C7—H7B109.5H16B—C16—H16C109.5
O1—Rh1i—Rh1—N21.10 (16)Rh1—N2—C8—C991.8 (4)
O1i—Rh1—N2—C690.8 (3)C6—N2—C8—C1394.2 (5)
O1ii—Rh1—N2—C686.9 (3)Rh1—N2—C8—C1385.8 (4)
N1—Rh1—N2—C6178.1 (3)C13—C8—C9—C103.2 (6)
Rh1i—Rh1—N2—C61.9 (3)N2—C8—C9—C10174.3 (4)
O1i—Rh1—N2—C889.2 (3)C13—C8—C9—C14174.6 (4)
O1ii—Rh1—N2—C893.1 (3)N2—C8—C9—C147.9 (6)
N1—Rh1—N2—C81.9 (3)C8—C9—C10—C111.6 (7)
Rh1i—Rh1—N2—C8178.1 (3)C14—C9—C10—C11179.4 (5)
C3iii—C2—C3—C40.8 (5)C9—C10—C11—C124.1 (7)
C1—C2—C3—C4179.2 (5)C9—C10—C11—C15177.8 (5)
C2—C3—C4—C51.6 (10)C10—C11—C12—C131.9 (7)
C3—C4—C5—C4iii0.8 (5)C15—C11—C12—C13179.9 (4)
Rh1i—O1—C6—N20.6 (4)C11—C12—C13—C82.6 (7)
Rh1i—O1—C6—C7179.0 (2)C11—C12—C13—C16175.6 (5)
C8—N2—C6—O1178.0 (4)C9—C8—C13—C125.2 (6)
Rh1—N2—C6—O12.0 (5)N2—C8—C13—C12172.4 (4)
C8—N2—C6—C72.4 (6)C9—C8—C13—C16172.9 (4)
Rh1—N2—C6—C7177.6 (3)N2—C8—C13—C169.5 (6)
C6—N2—C8—C988.2 (5)
Symmetry codes: (i) y, x+1, z+1; (ii) y+1, x, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Rh2(C11H14NO)4(C7H5N)2]
Mr1117.01
Crystal system, space groupTetragonal, P421c
Temperature (K)298
a, c (Å)10.9928 (19), 21.4549 (19)
V3)2592.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.18 × 0.13 × 0.07
Data collection
DiffractometerRigaku XtaLAB mini
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.618, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
48863, 2969, 1950
Rint0.105
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.074, 1.03
No. of reflections2969
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.71
Absolute structureFlack (1983), 1275 Friedel pairs
Absolute structure parameter0.03 (5)

Computer programs: CrystalClear (Rigaku, 2011), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

The authors thank Dr Lee Daniels of Rigaku Americas for his training on the use of the Rigaku XtaLAB Mini and his helpful suggestions regarding this crystal structure. Support was provided by a Start Up Grant from ETSU. We thank Johnson Matthey for their generous loan of rhodium trichloride.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90–94.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds