metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

n-Butyldi­chlorido{4-cyclo­hexyl-1-[1-(pyridin-2-yl-κN)ethyl­­idene]thio­semi­carb­azi­dato-κ2N1,S}tin(IV)

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samaharan, Sawarak, Malaysia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 5 June 2012; accepted 7 June 2012; online 16 June 2012)

Two independent mol­ecules comprise the asymmetric unit in the title compound, [Sn(C4H9)(C14H19N4S)Cl2]. In each mol­ecule, the SnIV atom exists within a distorted octa­hedral geometry defined by the N,N′,S-tridentate mono-deprotonated Schiff base ligand, two mutually trans Cl atoms, and the α-C atom of the n-butyl group; the latter is trans to the azo-N atom. The greatest distortion from the ideal geometry is found in the nominally trans angle formed by the S and pyridyl-N atoms at Sn [151.72 (7) and 152.04 (7)°, respectively]. In the crystal, mol­ecules are consolidated into a three-dimensional architecture by a combination of N—H⋯Cl, C—H⋯π and ππ inter­actions [inter-centroid distances = 3.6718 (19) and 3.675 (2) Å].

Related literature

For the structures of the methyl­tin and phenyl­tin derivatives, see: Salam et al. (2010a[Salam, M. A., Affan, M. A., Ahmad, F. B., Tahir, M. I. M. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, m1503-m1504.],b[Salam, M. A., Affan, M. A., Shamsuddin, M. & Ng, S. W. (2010b). Acta Cryst. E66, m570.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)(C14H19N4S)Cl2]

  • Mr = 522.09

  • Monoclinic, P 21 /n

  • a = 12.1229 (3) Å

  • b = 15.4518 (4) Å

  • c = 23.6868 (6) Å

  • β = 103.894 (3)°

  • V = 4307.21 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.794, Tmax = 1.000

  • 18205 measured reflections

  • 9861 independent reflections

  • 8503 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.04

  • 9860 reflections

  • 471 parameters

  • H-atom parameters constrained

  • Δρmax = 1.64 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.187 (3)
Sn1—N1 2.269 (2)
Sn1—N2 2.209 (2)
Sn1—S1 2.4785 (8)
Sn1—Cl1 2.5123 (8)
Sn1—Cl2 2.4959 (8)
Sn2—C19 2.182 (3)
Sn2—N5 2.255 (3)
Sn2—N6 2.215 (3)
Sn2—S2 2.4806 (8)
Sn2—Cl3 2.4959 (8)
Sn2—Cl4 2.5124 (8)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C5–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl3 0.88 2.65 3.516 (3) 167
C15—H15ACg1i 0.99 2.85 3.692 (4) 143
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Previous structural studies have described the methyltin (Salam et al., 2010a) and phenyltin (Salam et al., 2010b) derivatives of the title compound. The molecular structure of the title compound, (I), resembles these.

There are two independent molecules in the asymmetric unit of (I), Fig. 1. These differ in terms of the relative dispositions of the n-butyl and cycohexyl rings, Fig. 2. The Sn atom in each molecule exists within a six atom CCl2N2S donor set defined by the tridentate mono-deprotonated Schiff base ligand, two mutually trans chlorido atoms, and the α-C atom of the Sn-bound n-butyl group which is trans to the azo-N atom, Table 1. Distortions from the ideal octahedral geometry are ascribed primarily to the restricted bite distances formed by the Schiff base which results in an angle of 151.72 (7) ° [152.04 (7)° for the second molecule] for the nominally trans S—Sn—N angle.

The molecules are consolidated into a three-dimensional architecture by a combination of N—H···Cl and C—H···π, Table 1, as well as ππ interactions, the latter occurring between centrosymmetrically related pairs of (N1,C5–C9) and (N5,C23–C27) rings [inter-centroid distances = 3.6718 (19) and 3.675 (2) Å for symmetry operations: 2 - x, 1 - y, 1 - z and -x, 1 - y, -z, respectively], Fig. 3 and Table 2.

Related literature top

For the structures of the methyltin and phenyltin derivatives, see: Salam et al. (2010a,b).

Experimental top

2-Acetylpyridine-N(4)-cyclohexylthiosemicarbazone (0.28 g, 1.0 mmol) was dissolved in absolute methanol (10 ml) in a Schlenk round bottom flask under a nitrogen atmosphere. Then, a 10 ml me thanolic solution of butyltin(IV) trichloride (0.282 g, 1.0 mmol) was added drop-wise while stirring which resulted in the formation of a yellow solution. The reaction mixture was refluxed for 4 h and then cooled to room temperature. The yellow microcrystals that formed were filtered off, washed with a small amount of cold methanol and dried in vacuo over silica gel. Yellow crystals suitable for X-ray diffraction were obtained from the slow evaporation of a chloroform/methanol (1:1 ratio) solution at room temperature. Yield: 0.438 g, 78%: M.pt: 521–523 K: FT—IR (KBr, cm-1) νmax: 3308 (s, NH), 2931, 2855 (s, cyclohexyl), 1602 (m, CN—NC), 1020 (w, N—N), 1345, 833 (m, C—S), 652 (w, pyridine in plane), 570 (w, Sn—C), 475 (w, Sn—N). Anal. Calc. for C18H28Cl2N4SSn: C, 41.40; H, 5.40; N, 10.73%. Found: C, 41.24; H, 5.17; N, 10.59%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were similarly treated [N–H 0.88 Å; Uiso(H) 1.2Ueq(N)]. The (0 1 2) reflection was omitted from the final refinement as it was affected by the beam-stop. The maximum and minimum residual electron density peaks of 1.64 and 1.11 e Å-3, respectively, were located 0.73 Å and 0.74 Å from the Sn1 and Sn2 atoms, respectively.

Structure description top

Previous structural studies have described the methyltin (Salam et al., 2010a) and phenyltin (Salam et al., 2010b) derivatives of the title compound. The molecular structure of the title compound, (I), resembles these.

There are two independent molecules in the asymmetric unit of (I), Fig. 1. These differ in terms of the relative dispositions of the n-butyl and cycohexyl rings, Fig. 2. The Sn atom in each molecule exists within a six atom CCl2N2S donor set defined by the tridentate mono-deprotonated Schiff base ligand, two mutually trans chlorido atoms, and the α-C atom of the Sn-bound n-butyl group which is trans to the azo-N atom, Table 1. Distortions from the ideal octahedral geometry are ascribed primarily to the restricted bite distances formed by the Schiff base which results in an angle of 151.72 (7) ° [152.04 (7)° for the second molecule] for the nominally trans S—Sn—N angle.

The molecules are consolidated into a three-dimensional architecture by a combination of N—H···Cl and C—H···π, Table 1, as well as ππ interactions, the latter occurring between centrosymmetrically related pairs of (N1,C5–C9) and (N5,C23–C27) rings [inter-centroid distances = 3.6718 (19) and 3.675 (2) Å for symmetry operations: 2 - x, 1 - y, 1 - z and -x, 1 - y, -z, respectively], Fig. 3 and Table 2.

For the structures of the methyltin and phenyltin derivatives, see: Salam et al. (2010a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Superimposition of the two independent molecules in (I). The S,N-chelate rings have been superimposed, and the Sn1 and and Sn2-containing molecules are shown as red and blue images, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The N—H···Cl, C—H···π and ππ interactions are shown as orange, purple and brown dashed lines, respectively.
n-Butyldichlorido{4-cyclohexyl-1-[1-(pyridin-2-yl- κN)ethylidene]thiosemicarbazidato-κ2N1,S}tin(IV) top
Crystal data top
[Sn(C4H9)(C14H19N4S)Cl2]F(000) = 2112
Mr = 522.09Dx = 1.610 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10393 reflections
a = 12.1229 (3) Åθ = 2.2–27.5°
b = 15.4518 (4) ŵ = 1.54 mm1
c = 23.6868 (6) ÅT = 100 K
β = 103.894 (3)°Block, dark-yellow
V = 4307.21 (19) Å30.25 × 0.25 × 0.25 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
9861 independent reflections
Radiation source: SuperNova (Mo) X-ray Source8503 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.2°
ω scanh = 1511
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1419
Tmin = 0.794, Tmax = 1.000l = 2130
18205 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0351P)2 + 4.9209P]
where P = (Fo2 + 2Fc2)/3
9860 reflections(Δ/σ)max = 0.001
471 parametersΔρmax = 1.64 e Å3
0 restraintsΔρmin = 1.11 e Å3
Crystal data top
[Sn(C4H9)(C14H19N4S)Cl2]V = 4307.21 (19) Å3
Mr = 522.09Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.1229 (3) ŵ = 1.54 mm1
b = 15.4518 (4) ÅT = 100 K
c = 23.6868 (6) Å0.25 × 0.25 × 0.25 mm
β = 103.894 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
9861 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
8503 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 1.000Rint = 0.024
18205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.04Δρmax = 1.64 e Å3
9860 reflectionsΔρmin = 1.11 e Å3
471 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.671827 (17)0.387870 (13)0.373102 (9)0.01486 (6)
Sn20.329033 (17)0.631862 (13)0.111105 (9)0.01785 (6)
Cl10.79254 (6)0.48374 (5)0.32677 (3)0.02156 (16)
Cl20.56865 (7)0.31624 (6)0.43974 (4)0.03090 (19)
Cl30.23119 (6)0.53083 (5)0.16539 (3)0.02212 (16)
Cl40.40300 (7)0.71030 (5)0.03486 (4)0.02837 (19)
S10.49840 (7)0.42958 (5)0.29902 (3)0.02126 (17)
S20.51623 (7)0.61085 (5)0.18026 (4)0.02298 (17)
N10.8063 (2)0.41305 (16)0.45630 (11)0.0172 (5)
N20.6262 (2)0.50862 (16)0.41198 (11)0.0168 (5)
N30.5324 (2)0.55449 (16)0.38600 (11)0.0193 (5)
N40.3817 (2)0.57067 (17)0.30944 (12)0.0203 (6)
H40.33930.55280.27590.024*
N50.1915 (2)0.59176 (17)0.03328 (11)0.0197 (6)
N60.3911 (2)0.51522 (16)0.07398 (11)0.0187 (5)
N70.4932 (2)0.47828 (17)0.09891 (11)0.0199 (6)
N80.6517 (2)0.48053 (17)0.17334 (12)0.0210 (6)
H80.69220.50510.20510.025*
C10.7438 (3)0.27114 (19)0.34395 (13)0.0203 (7)
H1A0.73460.27480.30130.024*
H1B0.82630.26960.36220.024*
C20.6913 (4)0.1875 (3)0.35779 (19)0.0419 (10)
H2A0.68990.18820.39940.050*
H2B0.74100.13910.35210.050*
C30.5712 (4)0.1691 (3)0.3220 (2)0.0464 (10)
H3A0.53850.12080.34010.056*
H3B0.52330.22090.32240.056*
C40.5687 (4)0.1462 (3)0.2607 (2)0.0563 (13)
H4A0.49020.13460.23950.084*
H4B0.61520.09450.26000.084*
H4C0.59910.19440.24220.084*
C50.8962 (3)0.3615 (2)0.47722 (15)0.0233 (7)
H50.90740.31210.45540.028*
C60.9726 (3)0.3781 (2)0.52955 (15)0.0281 (8)
H61.03520.34050.54360.034*
C70.9569 (3)0.4498 (3)0.56083 (15)0.0299 (8)
H71.00860.46240.59690.036*
C80.8641 (3)0.5040 (2)0.53929 (14)0.0259 (7)
H8A0.85210.55400.56040.031*
C90.7897 (2)0.4837 (2)0.48645 (13)0.0195 (6)
C100.6895 (3)0.5371 (2)0.46050 (14)0.0204 (6)
C110.6633 (3)0.6176 (2)0.48942 (17)0.0341 (9)
H11A0.60540.65100.46210.051*
H11B0.73250.65240.50170.051*
H11C0.63480.60240.52350.051*
C120.4730 (3)0.5236 (2)0.33567 (14)0.0194 (6)
C130.3504 (3)0.65124 (19)0.33522 (13)0.0184 (6)
H130.42170.68400.35250.022*
C140.2903 (3)0.6323 (2)0.38348 (15)0.0235 (7)
H14A0.34040.59710.41410.028*
H14B0.22010.59890.36760.028*
C150.2607 (3)0.7172 (2)0.40959 (16)0.0299 (8)
H15A0.21890.70450.43980.036*
H15B0.33150.74810.42840.036*
C160.1885 (3)0.7743 (2)0.36318 (18)0.0366 (9)
H16A0.17470.83020.38070.044*
H16B0.11400.74610.34770.044*
C170.2450 (4)0.7909 (2)0.31372 (17)0.0398 (10)
H17A0.31410.82620.32810.048*
H17B0.19250.82420.28290.048*
C180.2775 (3)0.7063 (2)0.28791 (15)0.0305 (8)
H18A0.20780.67400.26900.037*
H18B0.31970.71950.25800.037*
C190.2561 (3)0.75131 (18)0.13533 (13)0.0159 (6)
H19A0.20610.77810.10050.019*
H19B0.21000.73860.16360.019*
C200.3533 (3)0.8137 (2)0.16256 (16)0.0300 (8)
H20A0.40280.78660.19740.036*
H20B0.39990.82530.13430.036*
C210.3060 (3)0.8991 (2)0.17965 (16)0.0300 (8)
H21A0.26380.92910.14410.036*
H21B0.25190.88660.20400.036*
C220.3993 (3)0.9581 (2)0.21298 (17)0.0344 (8)
H22A0.36551.01180.22320.052*
H22B0.45200.97170.18870.052*
H22C0.44050.92900.24860.052*
C230.0914 (3)0.6321 (2)0.01451 (15)0.0251 (7)
H230.07380.67990.03600.030*
C240.0132 (3)0.6060 (2)0.03525 (16)0.0277 (8)
H240.05740.63520.04760.033*
C250.0392 (3)0.5370 (2)0.06677 (15)0.0271 (7)
H250.01300.51850.10130.032*
C260.1429 (3)0.4948 (2)0.04721 (14)0.0251 (7)
H260.16180.44690.06810.030*
C270.2181 (3)0.5233 (2)0.00294 (14)0.0206 (7)
C280.3287 (3)0.4809 (2)0.02717 (14)0.0199 (6)
C290.3627 (3)0.4028 (2)0.00154 (15)0.0276 (8)
H29A0.43580.38130.02150.041*
H29B0.37010.41820.04060.041*
H29C0.30480.35780.00440.041*
C300.5512 (3)0.51657 (19)0.14719 (14)0.0190 (6)
C310.6976 (3)0.4020 (2)0.15170 (14)0.0201 (6)
H310.68940.40840.10890.024*
C320.6353 (3)0.3209 (2)0.16215 (16)0.0270 (7)
H32A0.55490.32470.14020.032*
H32B0.63670.31650.20400.032*
C330.6892 (3)0.2400 (2)0.14331 (16)0.0293 (8)
H33A0.68220.24210.10080.035*
H33B0.64810.18810.15180.035*
C340.8146 (3)0.2328 (2)0.17482 (15)0.0270 (7)
H34A0.82200.22630.21720.032*
H34B0.84850.18110.16090.032*
C350.8768 (3)0.3138 (2)0.16309 (15)0.0267 (7)
H35A0.87460.31700.12110.032*
H35B0.95750.31010.18470.032*
C360.8240 (3)0.3964 (2)0.18138 (14)0.0210 (7)
H36A0.83400.39660.22410.025*
H36B0.86370.44770.17080.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01286 (11)0.01495 (11)0.01646 (11)0.00097 (8)0.00287 (8)0.00118 (7)
Sn20.01488 (11)0.01646 (11)0.02229 (12)0.00343 (8)0.00465 (9)0.00327 (8)
Cl10.0192 (4)0.0265 (4)0.0189 (4)0.0054 (3)0.0042 (3)0.0003 (3)
Cl20.0308 (4)0.0354 (5)0.0290 (4)0.0129 (4)0.0121 (4)0.0003 (4)
Cl30.0215 (4)0.0236 (4)0.0203 (4)0.0032 (3)0.0031 (3)0.0034 (3)
Cl40.0283 (4)0.0253 (4)0.0356 (5)0.0044 (3)0.0158 (4)0.0093 (3)
S10.0168 (4)0.0223 (4)0.0214 (4)0.0031 (3)0.0019 (3)0.0079 (3)
S20.0177 (4)0.0191 (4)0.0297 (4)0.0030 (3)0.0008 (3)0.0036 (3)
N10.0133 (12)0.0217 (13)0.0157 (13)0.0007 (11)0.0015 (10)0.0028 (10)
N20.0129 (12)0.0185 (12)0.0189 (13)0.0000 (10)0.0038 (10)0.0034 (10)
N30.0151 (12)0.0196 (13)0.0217 (14)0.0039 (11)0.0013 (11)0.0052 (11)
N40.0175 (13)0.0227 (13)0.0194 (13)0.0030 (11)0.0017 (11)0.0040 (11)
N50.0158 (13)0.0216 (13)0.0223 (14)0.0049 (11)0.0056 (11)0.0064 (11)
N60.0135 (12)0.0210 (13)0.0210 (14)0.0042 (11)0.0028 (10)0.0051 (11)
N70.0141 (12)0.0227 (13)0.0213 (14)0.0057 (11)0.0011 (11)0.0019 (11)
N80.0155 (13)0.0215 (13)0.0238 (14)0.0017 (11)0.0003 (11)0.0031 (11)
C10.0259 (16)0.0191 (15)0.0136 (14)0.0113 (13)0.0002 (12)0.0029 (12)
C20.049 (2)0.033 (2)0.042 (2)0.0048 (19)0.008 (2)0.0017 (18)
C30.049 (3)0.040 (2)0.050 (3)0.004 (2)0.012 (2)0.000 (2)
C40.066 (3)0.053 (3)0.050 (3)0.018 (3)0.014 (2)0.000 (2)
C50.0166 (15)0.0300 (17)0.0231 (17)0.0027 (14)0.0044 (13)0.0078 (14)
C60.0181 (16)0.042 (2)0.0219 (17)0.0015 (15)0.0001 (14)0.0104 (15)
C70.0177 (16)0.052 (2)0.0171 (16)0.0074 (16)0.0012 (13)0.0048 (16)
C80.0215 (16)0.0353 (19)0.0213 (17)0.0068 (15)0.0060 (14)0.0023 (14)
C90.0131 (14)0.0276 (16)0.0182 (15)0.0052 (13)0.0042 (12)0.0012 (13)
C100.0168 (15)0.0246 (16)0.0199 (16)0.0013 (13)0.0046 (13)0.0057 (13)
C110.0293 (19)0.0327 (19)0.036 (2)0.0007 (16)0.0001 (16)0.0191 (16)
C120.0167 (15)0.0209 (15)0.0214 (16)0.0000 (13)0.0059 (13)0.0010 (12)
C130.0176 (15)0.0175 (14)0.0206 (16)0.0033 (12)0.0058 (13)0.0018 (12)
C140.0244 (17)0.0220 (16)0.0251 (17)0.0034 (14)0.0081 (14)0.0025 (13)
C150.0311 (19)0.0296 (18)0.032 (2)0.0049 (16)0.0132 (16)0.0087 (15)
C160.0300 (19)0.032 (2)0.048 (2)0.0100 (16)0.0083 (18)0.0124 (17)
C170.055 (3)0.0286 (19)0.033 (2)0.0195 (19)0.0063 (19)0.0075 (16)
C180.037 (2)0.0295 (18)0.0239 (18)0.0106 (16)0.0052 (15)0.0042 (14)
C190.0216 (15)0.0121 (13)0.0146 (14)0.0057 (12)0.0055 (12)0.0038 (11)
C200.0323 (19)0.0256 (17)0.034 (2)0.0057 (15)0.0128 (16)0.0048 (15)
C210.0302 (19)0.0277 (18)0.034 (2)0.0049 (15)0.0106 (16)0.0036 (15)
C220.0277 (19)0.0325 (19)0.042 (2)0.0031 (16)0.0075 (17)0.0015 (17)
C230.0194 (16)0.0274 (17)0.0283 (18)0.0043 (14)0.0053 (14)0.0093 (14)
C240.0179 (16)0.0328 (19)0.0320 (19)0.0043 (15)0.0053 (14)0.0143 (15)
C250.0194 (16)0.038 (2)0.0210 (17)0.0028 (15)0.0005 (13)0.0090 (15)
C260.0199 (16)0.0331 (18)0.0217 (17)0.0007 (14)0.0035 (13)0.0039 (14)
C270.0168 (15)0.0258 (16)0.0189 (16)0.0028 (13)0.0036 (12)0.0073 (13)
C280.0165 (15)0.0238 (16)0.0194 (16)0.0019 (13)0.0046 (12)0.0034 (13)
C290.0232 (17)0.0313 (18)0.0267 (18)0.0069 (15)0.0027 (14)0.0046 (14)
C300.0157 (15)0.0176 (15)0.0236 (16)0.0006 (12)0.0045 (13)0.0027 (12)
C310.0146 (15)0.0217 (15)0.0230 (16)0.0027 (13)0.0026 (13)0.0002 (13)
C320.0184 (16)0.0232 (16)0.038 (2)0.0010 (14)0.0040 (15)0.0029 (15)
C330.0301 (18)0.0205 (16)0.033 (2)0.0003 (15)0.0002 (16)0.0050 (14)
C340.0296 (18)0.0220 (16)0.0281 (18)0.0083 (15)0.0044 (15)0.0025 (14)
C350.0199 (16)0.0303 (18)0.0283 (18)0.0063 (14)0.0027 (14)0.0053 (14)
C360.0171 (15)0.0213 (15)0.0233 (16)0.0006 (13)0.0022 (13)0.0035 (13)
Geometric parameters (Å, º) top
Sn1—C12.187 (3)C13—H131.0000
Sn1—N12.269 (2)C14—C151.529 (4)
Sn1—N22.209 (2)C14—H14A0.9900
Sn1—S12.4785 (8)C14—H14B0.9900
Sn1—Cl12.5123 (8)C15—C161.513 (5)
Sn1—Cl22.4959 (8)C15—H15A0.9900
Sn2—C192.182 (3)C15—H15B0.9900
Sn2—N52.255 (3)C16—C171.514 (5)
Sn2—N62.215 (3)C16—H16A0.9900
Sn2—S22.4806 (8)C16—H16B0.9900
Sn2—Cl32.4959 (8)C17—C181.535 (5)
Sn2—Cl42.5124 (8)C17—H17A0.9900
S1—C121.757 (3)C17—H17B0.9900
S2—C301.754 (3)C18—H18A0.9900
N1—C51.345 (4)C18—H18B0.9900
N1—C91.346 (4)C19—C201.539 (5)
N2—C101.296 (4)C19—H19A0.9900
N2—N31.356 (3)C19—H19B0.9900
N3—C121.324 (4)C20—C211.530 (5)
N4—C121.346 (4)C20—H20A0.9900
N4—C131.476 (4)C20—H20B0.9900
N4—H40.8800C21—C221.518 (5)
N5—C231.342 (4)C21—H21A0.9900
N5—C271.360 (4)C21—H21B0.9900
N6—C281.296 (4)C22—H22A0.9800
N6—N71.363 (3)C22—H22B0.9800
N7—C301.329 (4)C22—H22C0.9800
N8—C301.347 (4)C23—C241.383 (5)
N8—C311.477 (4)C23—H230.9500
N8—H80.8800C24—C251.381 (5)
C1—C21.511 (5)C24—H240.9500
C1—H1A0.9900C25—C261.393 (5)
C1—H1B0.9900C25—H250.9500
C2—C31.525 (6)C26—C271.385 (5)
C2—H2A0.9900C26—H260.9500
C2—H2B0.9900C27—C281.479 (4)
C3—C41.488 (6)C28—C291.491 (4)
C3—H3A0.9900C29—H29A0.9800
C3—H3B0.9900C29—H29B0.9800
C4—H4A0.9800C29—H29C0.9800
C4—H4B0.9800C31—C321.514 (4)
C4—H4C0.9800C31—C361.527 (4)
C5—C61.382 (5)C31—H311.0000
C5—H50.9500C32—C331.526 (5)
C6—C71.370 (5)C32—H32A0.9900
C6—H60.9500C32—H32B0.9900
C7—C81.397 (5)C33—C341.529 (5)
C7—H70.9500C33—H33A0.9900
C8—C91.392 (4)C33—H33B0.9900
C8—H8A0.9500C34—C351.521 (5)
C9—C101.475 (4)C34—H34A0.9900
C10—C111.491 (4)C34—H34B0.9900
C11—H11A0.9800C35—C361.537 (4)
C11—H11B0.9800C35—H35A0.9900
C11—H11C0.9800C35—H35B0.9900
C13—C181.511 (4)C36—H36A0.9900
C13—C141.524 (4)C36—H36B0.9900
C1—Sn1—N2170.84 (11)C15—C14—H14B109.7
C1—Sn1—N199.08 (10)H14A—C14—H14B108.2
N2—Sn1—N172.10 (9)C16—C15—C14110.9 (3)
C1—Sn1—S1109.02 (8)C16—C15—H15A109.5
N2—Sn1—S179.68 (7)C14—C15—H15A109.5
N1—Sn1—S1151.72 (7)C16—C15—H15B109.5
C1—Sn1—Cl297.62 (9)C14—C15—H15B109.5
N2—Sn1—Cl284.11 (7)H15A—C15—H15B108.0
N1—Sn1—Cl283.77 (7)C15—C16—C17111.8 (3)
S1—Sn1—Cl295.41 (3)C15—C16—H16A109.3
C1—Sn1—Cl191.72 (9)C17—C16—H16A109.3
N2—Sn1—Cl185.09 (7)C15—C16—H16B109.3
N1—Sn1—Cl184.60 (6)C17—C16—H16B109.3
S1—Sn1—Cl191.23 (3)H16A—C16—H16B107.9
Cl2—Sn1—Cl1166.10 (3)C16—C17—C18111.8 (3)
C19—Sn2—N6172.08 (10)C16—C17—H17A109.3
C19—Sn2—N5100.43 (10)C18—C17—H17A109.3
N6—Sn2—N572.94 (9)C16—C17—H17B109.3
C19—Sn2—S2107.53 (8)C18—C17—H17B109.3
N6—Sn2—S279.14 (7)H17A—C17—H17B107.9
N5—Sn2—S2152.04 (7)C13—C18—C17110.1 (3)
C19—Sn2—Cl396.95 (8)C13—C18—H18A109.6
N6—Sn2—Cl386.80 (7)C17—C18—H18A109.6
N5—Sn2—Cl384.25 (7)C13—C18—H18B109.6
S2—Sn2—Cl392.90 (3)C17—C18—H18B109.6
C19—Sn2—Cl491.03 (8)H18A—C18—H18B108.1
N6—Sn2—Cl483.88 (7)C20—C19—Sn2108.84 (19)
N5—Sn2—Cl482.31 (7)C20—C19—H19A109.9
S2—Sn2—Cl496.31 (3)Sn2—C19—H19A109.9
Cl3—Sn2—Cl4165.42 (3)C20—C19—H19B109.9
C12—S1—Sn194.85 (11)Sn2—C19—H19B109.9
C30—S2—Sn295.45 (11)H19A—C19—H19B108.3
C5—N1—C9119.8 (3)C21—C20—C19110.7 (3)
C5—N1—Sn1124.6 (2)C21—C20—H20A109.5
C9—N1—Sn1115.58 (19)C19—C20—H20A109.5
C10—N2—N3118.6 (3)C21—C20—H20B109.5
C10—N2—Sn1120.2 (2)C19—C20—H20B109.5
N3—N2—Sn1121.25 (18)H20A—C20—H20B108.1
C12—N3—N2115.8 (2)C22—C21—C20112.1 (3)
C12—N4—C13122.0 (3)C22—C21—H21A109.2
C12—N4—H4119.0C20—C21—H21A109.2
C13—N4—H4119.0C22—C21—H21B109.2
C23—N5—C27119.8 (3)C20—C21—H21B109.2
C23—N5—Sn2125.1 (2)H21A—C21—H21B107.9
C27—N5—Sn2115.03 (19)C21—C22—H22A109.5
C28—N6—N7118.8 (3)C21—C22—H22B109.5
C28—N6—Sn2119.3 (2)H22A—C22—H22B109.5
N7—N6—Sn2121.91 (19)C21—C22—H22C109.5
C30—N7—N6115.1 (3)H22A—C22—H22C109.5
C30—N8—C31123.7 (3)H22B—C22—H22C109.5
C30—N8—H8118.2N5—C23—C24121.8 (3)
C31—N8—H8118.2N5—C23—H23119.1
C2—C1—Sn1114.6 (2)C24—C23—H23119.1
C2—C1—H1A108.6C25—C24—C23119.2 (3)
Sn1—C1—H1A108.6C25—C24—H24120.4
C2—C1—H1B108.6C23—C24—H24120.4
Sn1—C1—H1B108.6C24—C25—C26119.1 (3)
H1A—C1—H1B107.6C24—C25—H25120.5
C1—C2—C3115.7 (3)C26—C25—H25120.5
C1—C2—H2A108.3C27—C26—C25119.6 (3)
C3—C2—H2A108.3C27—C26—H26120.2
C1—C2—H2B108.3C25—C26—H26120.2
C3—C2—H2B108.3N5—C27—C26120.6 (3)
H2A—C2—H2B107.4N5—C27—C28116.6 (3)
C4—C3—C2112.4 (4)C26—C27—C28122.8 (3)
C4—C3—H3A109.1N6—C28—C27116.0 (3)
C2—C3—H3A109.1N6—C28—C29123.6 (3)
C4—C3—H3B109.1C27—C28—C29120.4 (3)
C2—C3—H3B109.1C28—C29—H29A109.5
H3A—C3—H3B107.9C28—C29—H29B109.5
C3—C4—H4A109.5H29A—C29—H29B109.5
C3—C4—H4B109.5C28—C29—H29C109.5
H4A—C4—H4B109.5H29A—C29—H29C109.5
C3—C4—H4C109.5H29B—C29—H29C109.5
H4A—C4—H4C109.5N7—C30—N8116.4 (3)
H4B—C4—H4C109.5N7—C30—S2128.3 (2)
N1—C5—C6122.0 (3)N8—C30—S2115.3 (2)
N1—C5—H5119.0N8—C31—C32112.3 (3)
C6—C5—H5119.0N8—C31—C36107.8 (2)
C7—C6—C5119.0 (3)C32—C31—C36111.3 (3)
C7—C6—H6120.5N8—C31—H31108.4
C5—C6—H6120.5C32—C31—H31108.4
C6—C7—C8119.4 (3)C36—C31—H31108.4
C6—C7—H7120.3C31—C32—C33111.4 (3)
C8—C7—H7120.3C31—C32—H32A109.3
C9—C8—C7119.0 (3)C33—C32—H32A109.3
C9—C8—H8A120.5C31—C32—H32B109.3
C7—C8—H8A120.5C33—C32—H32B109.3
N1—C9—C8120.8 (3)H32A—C32—H32B108.0
N1—C9—C10116.5 (3)C32—C33—C34111.3 (3)
C8—C9—C10122.7 (3)C32—C33—H33A109.4
N2—C10—C9115.6 (3)C34—C33—H33A109.4
N2—C10—C11123.0 (3)C32—C33—H33B109.4
C9—C10—C11121.3 (3)C34—C33—H33B109.4
C10—C11—H11A109.5H33A—C33—H33B108.0
C10—C11—H11B109.5C35—C34—C33109.2 (3)
H11A—C11—H11B109.5C35—C34—H34A109.8
C10—C11—H11C109.5C33—C34—H34A109.8
H11A—C11—H11C109.5C35—C34—H34B109.8
H11B—C11—H11C109.5C33—C34—H34B109.8
N3—C12—N4115.5 (3)H34A—C34—H34B108.3
N3—C12—S1128.4 (2)C34—C35—C36112.0 (3)
N4—C12—S1116.2 (2)C34—C35—H35A109.2
N4—C13—C18109.3 (3)C36—C35—H35A109.2
N4—C13—C14111.4 (3)C34—C35—H35B109.2
C18—C13—C14111.4 (3)C36—C35—H35B109.2
N4—C13—H13108.2H35A—C35—H35B107.9
C18—C13—H13108.2C31—C36—C35110.9 (3)
C14—C13—H13108.2C31—C36—H36A109.5
C13—C14—C15109.9 (3)C35—C36—H36A109.5
C13—C14—H14A109.7C31—C36—H36B109.5
C15—C14—H14A109.7C35—C36—H36B109.5
C13—C14—H14B109.7H36A—C36—H36B108.0
C1—Sn1—S1—C12177.39 (14)C7—C8—C9—C10179.8 (3)
N2—Sn1—S1—C120.37 (12)N3—N2—C10—C9179.6 (2)
N1—Sn1—S1—C124.29 (18)Sn1—N2—C10—C90.4 (4)
Cl2—Sn1—S1—C1282.62 (11)N3—N2—C10—C110.5 (5)
Cl1—Sn1—S1—C1285.15 (11)Sn1—N2—C10—C11179.5 (3)
C19—Sn2—S2—C30177.45 (13)N1—C9—C10—N21.9 (4)
N6—Sn2—S2—C301.86 (12)C8—C9—C10—N2178.1 (3)
N5—Sn2—S2—C301.13 (18)N1—C9—C10—C11179.0 (3)
Cl3—Sn2—S2—C3084.32 (11)C8—C9—C10—C111.1 (5)
Cl4—Sn2—S2—C3084.36 (11)N2—N3—C12—N4178.4 (2)
C1—Sn1—N1—C53.2 (3)N2—N3—C12—S11.6 (4)
N2—Sn1—N1—C5179.3 (3)C13—N4—C12—N30.2 (4)
S1—Sn1—N1—C5176.62 (18)C13—N4—C12—S1179.8 (2)
Cl2—Sn1—N1—C593.5 (2)Sn1—S1—C12—N30.5 (3)
Cl1—Sn1—N1—C594.1 (2)Sn1—S1—C12—N4179.5 (2)
C1—Sn1—N1—C9179.1 (2)C12—N4—C13—C18157.8 (3)
N2—Sn1—N1—C91.6 (2)C12—N4—C13—C1478.7 (4)
S1—Sn1—N1—C95.7 (3)N4—C13—C14—C15179.3 (3)
Cl2—Sn1—N1—C984.2 (2)C18—C13—C14—C1558.4 (4)
Cl1—Sn1—N1—C988.2 (2)C13—C14—C15—C1656.8 (4)
N1—Sn1—N2—C100.6 (2)C14—C15—C16—C1755.3 (4)
S1—Sn1—N2—C10178.7 (2)C15—C16—C17—C1854.3 (4)
Cl2—Sn1—N2—C1084.7 (2)N4—C13—C18—C17179.4 (3)
Cl1—Sn1—N2—C1086.5 (2)C14—C13—C18—C1757.1 (4)
N1—Sn1—N2—N3179.4 (2)C16—C17—C18—C1354.7 (4)
S1—Sn1—N2—N31.3 (2)N5—Sn2—C19—C20148.9 (2)
Cl2—Sn1—N2—N395.3 (2)S2—Sn2—C19—C2030.4 (2)
Cl1—Sn1—N2—N393.5 (2)Cl3—Sn2—C19—C20125.7 (2)
C10—N2—N3—C12178.0 (3)Cl4—Sn2—C19—C2066.6 (2)
Sn1—N2—N3—C122.0 (4)Sn2—C19—C20—C21179.4 (2)
C19—Sn2—N5—C235.0 (3)C19—C20—C21—C22173.3 (3)
N6—Sn2—N5—C23179.5 (3)C27—N5—C23—C240.2 (5)
S2—Sn2—N5—C23176.41 (18)Sn2—N5—C23—C24177.0 (2)
Cl3—Sn2—N5—C2391.1 (2)N5—C23—C24—C250.6 (5)
Cl4—Sn2—N5—C2394.6 (2)C23—C24—C25—C260.8 (5)
C19—Sn2—N5—C27172.0 (2)C24—C25—C26—C270.6 (5)
N6—Sn2—N5—C273.5 (2)C23—N5—C27—C260.0 (5)
S2—Sn2—N5—C276.6 (3)Sn2—N5—C27—C26177.1 (2)
Cl3—Sn2—N5—C2791.9 (2)C23—N5—C27—C28178.5 (3)
Cl4—Sn2—N5—C2782.4 (2)Sn2—N5—C27—C284.3 (3)
N5—Sn2—N6—C282.4 (2)C25—C26—C27—N50.2 (5)
S2—Sn2—N6—C28179.0 (2)C25—C26—C27—C28178.7 (3)
Cl3—Sn2—N6—C2887.4 (2)N7—N6—C28—C27179.0 (3)
Cl4—Sn2—N6—C2881.4 (2)Sn2—N6—C28—C271.0 (4)
N5—Sn2—N6—N7177.6 (2)N7—N6—C28—C290.4 (5)
S2—Sn2—N6—N70.9 (2)Sn2—N6—C28—C29179.6 (2)
Cl3—Sn2—N6—N792.6 (2)N5—C27—C28—N62.3 (4)
Cl4—Sn2—N6—N798.6 (2)C26—C27—C28—N6179.2 (3)
C28—N6—N7—C30179.1 (3)N5—C27—C28—C29177.1 (3)
Sn2—N6—N7—C301.0 (4)C26—C27—C28—C291.4 (5)
N1—Sn1—C1—C299.3 (3)N6—N7—C30—N8178.9 (3)
S1—Sn1—C1—C284.0 (2)N6—N7—C30—S23.6 (4)
Cl2—Sn1—C1—C214.4 (3)C31—N8—C30—N70.9 (4)
Cl1—Sn1—C1—C2175.9 (2)C31—N8—C30—S2178.8 (2)
Sn1—C1—C2—C372.2 (4)Sn2—S2—C30—N73.7 (3)
C1—C2—C3—C471.6 (5)Sn2—S2—C30—N8178.7 (2)
C9—N1—C5—C60.6 (5)C30—N8—C31—C3273.1 (4)
Sn1—N1—C5—C6177.0 (2)C30—N8—C31—C36164.0 (3)
N1—C5—C6—C70.5 (5)N8—C31—C32—C33176.1 (3)
C5—C6—C7—C80.1 (5)C36—C31—C32—C3355.1 (4)
C6—C7—C8—C90.2 (5)C31—C32—C33—C3457.3 (4)
C5—N1—C9—C80.3 (4)C32—C33—C34—C3557.4 (4)
Sn1—N1—C9—C8177.6 (2)C33—C34—C35—C3656.8 (4)
C5—N1—C9—C10179.8 (3)N8—C31—C36—C35177.4 (3)
Sn1—N1—C9—C102.4 (3)C32—C31—C36—C3553.9 (4)
C7—C8—C9—N10.1 (5)C34—C35—C36—C3155.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl30.882.653.516 (3)167
C15—H15A···Cg1i0.992.853.692 (4)143
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)(C14H19N4S)Cl2]
Mr522.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.1229 (3), 15.4518 (4), 23.6868 (6)
β (°) 103.894 (3)
V3)4307.21 (19)
Z8
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.794, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18205, 9861, 8503
Rint0.024
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.04
No. of reflections9860
No. of parameters471
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 1.11

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C12.187 (3)Sn2—C192.182 (3)
Sn1—N12.269 (2)Sn2—N52.255 (3)
Sn1—N22.209 (2)Sn2—N62.215 (3)
Sn1—S12.4785 (8)Sn2—S22.4806 (8)
Sn1—Cl12.5123 (8)Sn2—Cl32.4959 (8)
Sn1—Cl22.4959 (8)Sn2—Cl42.5124 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl30.882.653.516 (3)167
C15—H15A···Cg1i0.992.853.692 (4)143
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the Ministry of Science Technology and Innovation (MOSTI) under research grant No. 06–01-09-SF0046. The authors would like to thank Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work. They also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalam, M. A., Affan, M. A., Ahmad, F. B., Tahir, M. I. M. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, m1503–m1504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalam, M. A., Affan, M. A., Shamsuddin, M. & Ng, S. W. (2010b). Acta Cryst. E66, m570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds