organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4-[(3,5-di­methyl-1H-pyrazol-4-yl)selan­yl]-3,5-di­methyl-1H-pyrazol-2-ium} chloride monohydrate

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and bFaculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie Str., 50383, Wroclaw, Poland
*Correspondence e-mail: pavlenko_vadim@univ.kiev.ua

(Received 11 April 2012; accepted 5 June 2012; online 13 June 2012)

In the title compound, 2C10H15N4Se+·Cl·OH, a singly protonated mol­ecule of the organic selenide participates in hydrogen bonding with neighboring mol­ecules, forming zigzag chains along [001]. The molecule adapts a cis bridging mode with a C—Se—C angle of 102.13 (15)°. ππ stacking inter­actions are observed between the closest pyrazole rings of neighboring chains [centroid–centroid distance = 3.888 (1) Å] and hydrogen bonding occurs through bridging chloride anions and hydroxide groups. Additionally, O—H⋯Cl hydrogen bonds are formed.

Related literature

For details and applications of related pyrazoles, see: Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Fritsky et al. (2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 346, 111-118.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]); Penkova et al. (2009[Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]8). For structural studies of related bis­(1H-pyrazol-4-yl)selenides, see: Seredyuk et al. (2010a[Seredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010a). Tetrahedron, 66, 8772-8777.]). For structural studies of d-metal complexes of bis­(3,5-dimethyl-1H-pyrazol-4-yl)selenide, see: Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2009[Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.], 2010b[Seredyuk, M., Moroz, Y. S., Znovjyak, K. O., Pavlenko, V. A. & Fritsky, I. O. (2010b). Acta Cryst. E66, m363.]).

[Scheme 1]

Experimental

Crystal data
  • 2C10H15N4Se+·Cl·HO

  • Mr = 592.90

  • Monoclinic, C 2/c

  • a = 22.805 (2) Å

  • b = 8.8154 (8) Å

  • c = 16.7462 (15) Å

  • β = 131.448 (7)°

  • V = 2523.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.07 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker-Nonius BV, Delft, The Netherlands.]) Tmin = 0.488, Tmax = 0.698

  • 7656 measured reflections

  • 2926 independent reflections

  • 2211 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.01

  • 2926 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1W 0.77 2.01 2.747 (3) 161
N4—H1N4⋯Cl1 0.77 (4) 2.42 (5) 3.146 (3) 160 (5)
O1—H1O⋯Cl1i 0.74 2.43 3.166 (4) 180
N2—H1N2⋯N3ii 1.03 (5) 1.78 (5) 2.804 (4) 177 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker-Nonius BV, Delft, The Netherlands.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole-derived ligands are widely used in molecular magnetism, bioinorganic modelling and supramolecular chemistry due to their bridging nature and possibility for easy functionalization (Krämer et al., 2000; Fritsky et al., 2004; Kovbasyuk et al., 2004; Sachse et al., 2008; Penkova et al., 2009). As a part of our synthetic and structural study of bis(1H-pyrazol-4-yl)selenides (Seredyuk et al., 2010a) and their complexes with d-metals (Seredyuk et al., 2007, 2009; Seredyuk et al., 2010b), we report here the molecular and crystal structures of the title compound (Fig. 1).

In the cation of the title compound, a singly protonated molecule of the organic selenide (C10H15N4Se)+ participates in hydrogen bonding (d(N···N) = 2.804 (4)Å) with neighbor molecules forming zigzag chains along [0 0 1] (Fig. 2). The molecule adapts a cis mode of bridging with the C–Se–C angle of 102.13 (15)°. Between the closest pyrazole rings of the neighbor chains, π···π-stacking interaction is observed (centroid-centroid distance is 3.888 (1)Å) and hydrogen bonding through a bridging chloride anion (d(N···Cl) = 3.146 (3)Å) and a hydroxyde group (d(Ow···N) = 2.747 (3)Å). Additionally, a hydrogen bond Ow–H···Cl 3.166 (4)Å is found.

In the title compounds, the pyrazole rings exhibits C–C, C–N, N–N bond lengths which are normal for the substituted pyrazole molecules and close to those reported for related compounds.

Related literature top

For details and applications of related pyrazoles, see: Krämer & Fritsky (2000); Fritsky et al. (2004); Kovbasyuk et al. (2004); Sachse et al. (2008); Penkova et al. (20098). For structural studies of related bis(1H-pyrazol-4-yl)selenides, see: Seredyuk et al. (2010a). For structural studies of d-metal complexes of bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide, see: Seredyuk et al. (2007, 2009, 2010b).

Experimental top

A solution of a batch of bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide (Seredyuk et al., 2007)) in aqueous HClconc was disposed in a fridge at 277 K for one week. The obtained well formed colourless crystals were filtered off and air dried. C10H17ClN4OSe requires: C, 37.11; H, 5.29; N, 17.31. Found: C, 37.65; H, 5.37; N, 17.03.

Refinement top

The chlorine ion and the oxygen and hydrogen atoms of the hydroxide anion were found to occupy special positions (2-fold axis) with occupancy factors of 0.5. The H atoms from NH and OH were located from the difference Fourier map. The H atoms lined to N2 and N4 nitrogen atoms were refined freely, while hydrogen atoms of OH group and that linked to N1 nitrogen atom were constrained to ride on their parent atom, with Uiso = 1.5Ueq(parent atom). The methyl H atoms were positioned geometrically and refined as riding atoms, with C–H = 0.96Å and Uiso = 1.5Ueq(C).

Structure description top

Pyrazole-derived ligands are widely used in molecular magnetism, bioinorganic modelling and supramolecular chemistry due to their bridging nature and possibility for easy functionalization (Krämer et al., 2000; Fritsky et al., 2004; Kovbasyuk et al., 2004; Sachse et al., 2008; Penkova et al., 2009). As a part of our synthetic and structural study of bis(1H-pyrazol-4-yl)selenides (Seredyuk et al., 2010a) and their complexes with d-metals (Seredyuk et al., 2007, 2009; Seredyuk et al., 2010b), we report here the molecular and crystal structures of the title compound (Fig. 1).

In the cation of the title compound, a singly protonated molecule of the organic selenide (C10H15N4Se)+ participates in hydrogen bonding (d(N···N) = 2.804 (4)Å) with neighbor molecules forming zigzag chains along [0 0 1] (Fig. 2). The molecule adapts a cis mode of bridging with the C–Se–C angle of 102.13 (15)°. Between the closest pyrazole rings of the neighbor chains, π···π-stacking interaction is observed (centroid-centroid distance is 3.888 (1)Å) and hydrogen bonding through a bridging chloride anion (d(N···Cl) = 3.146 (3)Å) and a hydroxyde group (d(Ow···N) = 2.747 (3)Å). Additionally, a hydrogen bond Ow–H···Cl 3.166 (4)Å is found.

In the title compounds, the pyrazole rings exhibits C–C, C–N, N–N bond lengths which are normal for the substituted pyrazole molecules and close to those reported for related compounds.

For details and applications of related pyrazoles, see: Krämer & Fritsky (2000); Fritsky et al. (2004); Kovbasyuk et al. (2004); Sachse et al. (2008); Penkova et al. (20098). For structural studies of related bis(1H-pyrazol-4-yl)selenides, see: Seredyuk et al. (2010a). For structural studies of d-metal complexes of bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide, see: Seredyuk et al. (2007, 2009, 2010b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines show hydrogen bonds. Symmetry codes: (i) x, 1-y, -1/2+z; (ii) 1/2+x, 1/2+y, z.
[Figure 2] Fig. 2. Zigzag chains of the organic selenide formed due to hydrogen bonding (dashed lines).
Bis{4-[(3,5-dimethyl-1H-pyrazol-4-yl)selanyl]-3,5-dimethyl- 1H-pyrazol-2-ium} chloride monohydrate top
Crystal data top
2C10H15N4Se+·Cl·HOF(000) = 1200
Mr = 592.90Dx = 1.561 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3236 reflections
a = 22.805 (2) Åθ = 3.3–28.3°
b = 8.8154 (8) ŵ = 3.07 mm1
c = 16.7462 (15) ÅT = 100 K
β = 131.448 (7)°Block, colourless
V = 2523.4 (5) Å30.25 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2926 independent reflections
Radiation source: fine-focus sealed tube2211 reflections with I > 2σ(I)
Flat graphite crystal monochromatorRint = 0.087
Detector resolution: 16 pixels mm-1θmax = 28.5°, θmin = 3.3°
φ– and ω–scansh = 3030
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 119
Tmin = 0.488, Tmax = 0.698l = 2121
7656 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0538P)2]
where P = (Fo2 + 2Fc2)/3
2926 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
2C10H15N4Se+·Cl·HOV = 2523.4 (5) Å3
Mr = 592.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.805 (2) ŵ = 3.07 mm1
b = 8.8154 (8) ÅT = 100 K
c = 16.7462 (15) Å0.25 × 0.20 × 0.12 mm
β = 131.448 (7)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2926 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2211 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 0.698Rint = 0.087
7656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 1.15 e Å3
2926 reflectionsΔρmin = 0.72 e Å3
160 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.77024 (2)0.12139 (4)0.23905 (3)0.01783 (13)
Cl10.50000.43772 (14)0.25000.0219 (3)
O11.00000.5786 (4)0.25000.0268 (9)
H1O1.00000.66250.25000.040*
N10.86540 (17)0.4303 (3)0.1726 (2)0.0181 (7)
H1N10.89710.47660.17980.027*
N20.78857 (17)0.4481 (3)0.0854 (2)0.0161 (6)
N30.73588 (18)0.3657 (3)0.4133 (2)0.0198 (7)
N40.66123 (19)0.3412 (4)0.3203 (3)0.0205 (7)
C10.9500 (2)0.2805 (4)0.3390 (3)0.0252 (9)
H1A0.97600.21740.32400.038*
H1B0.94300.22500.38150.038*
H1C0.98110.36910.37720.038*
C20.8718 (2)0.3275 (4)0.2366 (3)0.0169 (7)
C30.7966 (2)0.2779 (4)0.1888 (3)0.0151 (7)
C40.7459 (2)0.3561 (4)0.0927 (3)0.0155 (7)
C50.6585 (2)0.3489 (4)0.0064 (3)0.0240 (9)
H5A0.63490.40600.02770.036*
H5B0.64170.24510.00550.036*
H5C0.64290.39090.05810.036*
C60.8690 (2)0.3080 (5)0.4851 (3)0.0251 (9)
H6A0.88300.35570.54720.038*
H6B0.88960.36600.46000.038*
H6C0.89020.20720.50270.038*
C70.7813 (2)0.3004 (4)0.3993 (3)0.0173 (7)
C80.7356 (2)0.2344 (4)0.2981 (3)0.0160 (7)
C90.6587 (2)0.2626 (4)0.2498 (3)0.0182 (8)
C100.5831 (2)0.2243 (4)0.1410 (3)0.0263 (9)
H10A0.54550.19250.14630.039*
H10B0.59160.14390.11110.039*
H10C0.56380.31220.09610.039*
H1N40.629 (3)0.372 (5)0.319 (4)0.032 (14)*
H1N20.769 (2)0.513 (5)0.021 (4)0.037 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0250 (2)0.01211 (19)0.0227 (2)0.00254 (15)0.01847 (18)0.00275 (15)
Cl10.0164 (6)0.0200 (6)0.0282 (7)0.0000.0143 (6)0.000
O10.029 (2)0.0157 (18)0.024 (2)0.0000.0128 (19)0.000
N10.0165 (15)0.0195 (15)0.0183 (16)0.0001 (12)0.0115 (14)0.0006 (13)
N20.0172 (15)0.0167 (15)0.0171 (16)0.0006 (12)0.0125 (14)0.0005 (13)
N30.0199 (15)0.0247 (17)0.0175 (16)0.0062 (13)0.0135 (14)0.0053 (13)
N40.0179 (16)0.0260 (18)0.0220 (18)0.0056 (13)0.0151 (16)0.0079 (14)
C10.0207 (19)0.031 (2)0.022 (2)0.0051 (16)0.0131 (18)0.0058 (17)
C20.0171 (18)0.0192 (17)0.0178 (19)0.0003 (14)0.0129 (16)0.0024 (15)
C30.0181 (18)0.0131 (16)0.0177 (19)0.0009 (14)0.0134 (16)0.0007 (14)
C40.0212 (18)0.0115 (17)0.0172 (18)0.0001 (14)0.0142 (17)0.0010 (13)
C50.023 (2)0.023 (2)0.022 (2)0.0016 (16)0.0137 (18)0.0037 (16)
C60.023 (2)0.033 (2)0.018 (2)0.0052 (17)0.0126 (18)0.0010 (17)
C70.0185 (18)0.0176 (18)0.0202 (19)0.0046 (14)0.0147 (16)0.0070 (15)
C80.0215 (18)0.0144 (17)0.0195 (18)0.0054 (14)0.0167 (17)0.0076 (14)
C90.0216 (18)0.0177 (18)0.023 (2)0.0004 (14)0.0178 (18)0.0035 (15)
C100.021 (2)0.031 (2)0.028 (2)0.0020 (17)0.0162 (19)0.0033 (18)
Geometric parameters (Å, º) top
Se1—C81.904 (4)C2—C31.398 (5)
Se1—C31.908 (3)C3—C41.393 (5)
O1—H1O0.7393C4—C51.500 (5)
N1—C21.336 (5)C5—H5A0.9600
N1—N21.356 (4)C5—H5B0.9600
N1—H1N10.7666C5—H5C0.9600
N2—C41.333 (4)C6—C71.504 (5)
N2—H1N21.03 (5)C6—H6A0.9600
N3—C71.333 (4)C6—H6B0.9600
N3—N41.363 (4)C6—H6C0.9600
N4—C91.338 (5)C7—C81.400 (5)
N4—H1N40.77 (4)C8—C91.384 (5)
C1—C21.498 (5)C9—C101.499 (5)
C1—H1A0.9600C10—H10A0.9600
C1—H1B0.9600C10—H10B0.9600
C1—H1C0.9600C10—H10C0.9600
C8—Se1—C3102.13 (15)C4—C5—H5B109.5
C2—N1—N2108.6 (3)H5A—C5—H5B109.5
C2—N1—H1N1130.1C4—C5—H5C109.5
N2—N1—H1N1121.3H5A—C5—H5C109.5
C4—N2—N1109.4 (3)H5B—C5—H5C109.5
C4—N2—H1N2127 (2)C7—C6—H6A109.5
N1—N2—H1N2124 (2)C7—C6—H6B109.5
C7—N3—N4105.0 (3)H6A—C6—H6B109.5
C9—N4—N3112.4 (3)C7—C6—H6C109.5
C9—N4—H1N4132 (4)H6A—C6—H6C109.5
N3—N4—H1N4115 (4)H6B—C6—H6C109.5
C2—C1—H1A109.5N3—C7—C8110.5 (3)
C2—C1—H1B109.5N3—C7—C6120.6 (3)
H1A—C1—H1B109.5C8—C7—C6128.9 (3)
C2—C1—H1C109.5C9—C8—C7105.7 (3)
H1A—C1—H1C109.5C9—C8—Se1126.3 (3)
H1B—C1—H1C109.5C7—C8—Se1127.9 (3)
N1—C2—C3108.2 (3)N4—C9—C8106.3 (3)
N1—C2—C1121.4 (3)N4—C9—C10122.1 (3)
C3—C2—C1130.4 (3)C8—C9—C10131.5 (3)
C4—C3—C2105.8 (3)C9—C10—H10A109.5
C4—C3—Se1127.2 (3)C9—C10—H10B109.5
C2—C3—Se1126.8 (3)H10A—C10—H10B109.5
N2—C4—C3108.0 (3)C9—C10—H10C109.5
N2—C4—C5121.5 (3)H10A—C10—H10C109.5
C3—C4—C5130.5 (3)H10B—C10—H10C109.5
C4—C5—H5A109.5
C2—N1—N2—C40.7 (4)Se1—C3—C4—C54.3 (6)
C7—N3—N4—C90.4 (4)N4—N3—C7—C80.2 (4)
N2—N1—C2—C30.0 (4)N4—N3—C7—C6178.2 (3)
N2—N1—C2—C1178.8 (3)N3—C7—C8—C90.1 (4)
N1—C2—C3—C40.7 (4)C6—C7—C8—C9178.3 (4)
C1—C2—C3—C4178.0 (4)N3—C7—C8—Se1177.7 (2)
N1—C2—C3—Se1175.3 (3)C6—C7—C8—Se14.1 (6)
C1—C2—C3—Se13.3 (6)C3—Se1—C8—C999.9 (3)
C8—Se1—C3—C482.7 (3)C3—Se1—C8—C783.0 (3)
C8—Se1—C3—C2103.8 (3)N3—N4—C9—C80.5 (4)
N1—N2—C4—C31.1 (4)N3—N4—C9—C10178.8 (3)
N1—N2—C4—C5178.9 (3)C7—C8—C9—N40.3 (4)
C2—C3—C4—N21.1 (4)Se1—C8—C9—N4178.0 (3)
Se1—C3—C4—N2175.7 (2)C7—C8—C9—C10178.5 (4)
C2—C3—C4—C5178.9 (4)Se1—C8—C9—C103.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.772.012.747 (3)161
N4—H1N4···Cl10.77 (4)2.42 (5)3.146 (3)160 (5)
O1—H1O···Cl1i0.742.433.166 (4)180
N2—H1N2···N3ii1.03 (5)1.78 (5)2.804 (4)177 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula2C10H15N4Se+·Cl·HO
Mr592.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.805 (2), 8.8154 (8), 16.7462 (15)
β (°) 131.448 (7)
V3)2523.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.07
Crystal size (mm)0.25 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.488, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
7656, 2926, 2211
Rint0.087
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.01
No. of reflections2926
No. of parameters160
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.15, 0.72

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.772.012.747 (3)160.7
N4—H1N4···Cl10.77 (4)2.42 (5)3.146 (3)160 (5)
O1—H1O···Cl1i0.742.433.166 (4)180.0
N2—H1N2···N3ii1.03 (5)1.78 (5)2.804 (4)177 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z1/2.
 

Acknowledgements

Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 346, 111–118.  Web of Science CSD CrossRef Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationPenkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSeredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010a). Tetrahedron, 66, 8772–8777.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeredyuk, M., Moroz, Y. S., Znovjyak, K. O., Pavlenko, V. A. & Fritsky, I. O. (2010b). Acta Cryst. E66, m363.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds