organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-o-Tolyl-3-(p-tol­yl­oxy)acrylo­nitrile

aDepartment of Applied Chemistry and Environmental Engineering, Bengbu College, Bengbu 233030, Anhui, People's Republic of China
*Correspondence e-mail: queenzl@163.com

(Received 14 May 2012; accepted 7 June 2012; online 13 June 2012)

The title compound, C17H15NO, exists in a Z conformation. The dihedral angle between the O-bonded benzene ring and the vinyl plane is 80.97 (18)° while the dihedral angle between the rings is 80.06 (10)°. In the crystal structure, no classical hydrogen bonds occur.

Related literature

For general background to acrylonitrile compounds and their biological, medical and pharmacological properties, see: Boedec et al. (2008[Boedec, A., Sicard, H., Dessolin, J., Herbette, G., Ingoure, S., Raymond, C., Belmant, C. & Kraus, J. L. (2008). J. Med. Chem. 51, 1747-1754.]); Napolitano et al. (2001[Napolitano, A., Bruno, I., Rovero, P., Lucas, R., Peris, M. P. & Riccio, R. (2001). Tetrahedron, 57, 6249-6255.]); Reggio et al. (1998[Reggio, P. H., Basu, S., Barnett, J., Castro, M. T., Hurst, D. P., Seltzman, H. H., Roche, M. J., Gilliam, A. F., Thomas, B. F. & Stevenson, L. A. (1998). J. Med. Chem. 41, 5177-5187.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO

  • Mr = 249.30

  • Tetragonal, P 41

  • a = 9.8731 (6) Å

  • c = 14.2455 (17) Å

  • V = 1388.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.40 × 0.37 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.975

  • 2539 measured reflections

  • 1277 independent reflections

  • 1028 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.03

  • 1277 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acrylonitrile compounds have been widely found in dyes, agrochemicals, pharmaceutically active compounds, materials and natural products. Recent studies indicate that acrylonitrile compounds have broad range of biological, medical and pharmacological properties (Boedec et al., 2008; Napolitano et al., 2001; Reggio et al., 1998).

As part of our interest in these materials, we report here the crystal structure of the title compound C17H15NO. The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between phenol ring and vinyl plane is 80.97 (18)°. The any hydrogen bonds in crystal structure are not found.

Related literature top

For general background to acrylonitrile compounds and their biological, medical and pharmacological properties, see: Boedec et al. (2008); Napolitano et al. (2001); Reggio et al. (1998).

Experimental top

For the preparation of the title compound, under nitrogen atmosphere, a sealable reaction tube equipped with a magnetic stirrer bar was charged with (Z)-1-(2-bromo-1-(p-tolyloxy)vinyl)-2-methylbenzene (1.0 mmol), K4Fe(CN)6 (0.20 mmol), Pd(OAc)2 (0.01 mmol), PPh3 (0.02 mmol) and DMF (2.0 ml). Then the reaction vessel placed in an oil bath at 393 K for 12 h and it was cooled to room temperature and diluted with ethyl acetate, washed with brine, dried with MgSO4. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel to afford the product. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in dichloromethane at room temperature for three days.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93Å (for aryl H) and Uiso(H) = 1.2Ueq(C); C—H = 0.96Å (for methyl H) and Uiso(H) = 1.5Ueq(C) .

Structure description top

Acrylonitrile compounds have been widely found in dyes, agrochemicals, pharmaceutically active compounds, materials and natural products. Recent studies indicate that acrylonitrile compounds have broad range of biological, medical and pharmacological properties (Boedec et al., 2008; Napolitano et al., 2001; Reggio et al., 1998).

As part of our interest in these materials, we report here the crystal structure of the title compound C17H15NO. The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between phenol ring and vinyl plane is 80.97 (18)°. The any hydrogen bonds in crystal structure are not found.

For general background to acrylonitrile compounds and their biological, medical and pharmacological properties, see: Boedec et al. (2008); Napolitano et al. (2001); Reggio et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
(Z)-3-o-Tolyl-3-(p-tolyloxy)acrylonitrile top
Crystal data top
C17H15NODx = 1.192 Mg m3
Mr = 249.30Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 2539 reflections
Hall symbol: P 4wθ = 2.9–25.0°
a = 9.8731 (6) ŵ = 0.07 mm1
c = 14.2455 (17) ÅT = 296 K
V = 1388.6 (2) Å3Block, colourless
Z = 40.40 × 0.37 × 0.35 mm
F(000) = 528
Data collection top
Bruker APEXII CCD
diffractometer
1277 independent reflections
Radiation source: fine-focus sealed tube1028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω–scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 810
Tmin = 0.971, Tmax = 0.975k = 111
2539 measured reflectionsl = 169
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.0136P]
where P = (Fo2 + 2Fc2)/3
1277 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C17H15NOZ = 4
Mr = 249.30Mo Kα radiation
Tetragonal, P41µ = 0.07 mm1
a = 9.8731 (6) ÅT = 296 K
c = 14.2455 (17) Å0.40 × 0.37 × 0.35 mm
V = 1388.6 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1028 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.975Rint = 0.028
2539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.11 e Å3
1277 reflectionsΔρmin = 0.16 e Å3
172 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6863 (4)0.6337 (4)0.0783 (3)0.1013 (11)
O10.8869 (2)0.4406 (2)0.07086 (17)0.0694 (6)
C10.6991 (4)0.6132 (4)0.0003 (3)0.0744 (10)
C20.7108 (3)0.5867 (3)0.0981 (2)0.0684 (9)
H20.65540.63390.13950.082*
C30.7979 (3)0.4971 (3)0.1321 (2)0.0566 (8)
C40.8057 (3)0.4605 (3)0.2332 (2)0.0548 (7)
C50.9274 (3)0.4663 (3)0.2842 (2)0.0631 (9)
C60.9215 (4)0.4387 (4)0.3795 (3)0.0772 (10)
H61.00080.44330.41460.093*
C70.8028 (5)0.4049 (4)0.4239 (3)0.0850 (11)
H70.80280.38630.48790.102*
C80.6850 (4)0.3986 (4)0.3743 (3)0.0751 (10)
H80.60460.37490.40410.090*
C90.6856 (3)0.4278 (3)0.2792 (2)0.0624 (8)
H90.60480.42560.24570.075*
C101.0598 (4)0.5058 (4)0.2403 (3)0.0883 (12)
H10A1.10210.42710.21360.132*
H10B1.11800.54410.28720.132*
H10C1.04390.57140.19180.132*
C110.9107 (3)0.3006 (3)0.0749 (2)0.0553 (7)
C120.8072 (3)0.2094 (3)0.0842 (2)0.0616 (8)
H120.71850.23890.09220.074*
C130.8366 (3)0.0734 (3)0.0815 (2)0.0684 (9)
H130.76620.01150.08780.082*
C140.9668 (3)0.0254 (3)0.0699 (2)0.0619 (8)
C151.0682 (3)0.1212 (4)0.0605 (2)0.0664 (9)
H151.15710.09230.05270.080*
C161.0413 (3)0.2578 (3)0.0624 (2)0.0665 (8)
H161.11100.32030.05540.080*
C170.9986 (5)0.1231 (4)0.0674 (3)0.0916 (12)
H17A0.96270.16190.01080.137*
H17B0.95830.16670.12070.137*
H17C1.09500.13570.06890.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.103 (3)0.108 (3)0.094 (3)0.0227 (19)0.015 (2)0.010 (2)
O10.0669 (13)0.0668 (13)0.0746 (14)0.0157 (10)0.0185 (11)0.0127 (12)
C10.067 (2)0.072 (2)0.084 (3)0.0144 (17)0.008 (2)0.001 (2)
C20.063 (2)0.064 (2)0.078 (2)0.0093 (15)0.0049 (17)0.0066 (17)
C30.0467 (16)0.0494 (17)0.074 (2)0.0008 (12)0.0016 (15)0.0041 (15)
C40.0553 (18)0.0434 (15)0.0658 (18)0.0004 (12)0.0002 (15)0.0072 (14)
C50.061 (2)0.0514 (17)0.077 (2)0.0031 (13)0.0074 (16)0.0109 (16)
C60.088 (3)0.067 (2)0.077 (2)0.0161 (17)0.017 (2)0.0199 (19)
C70.121 (4)0.067 (2)0.068 (2)0.018 (2)0.005 (2)0.0021 (19)
C80.089 (3)0.059 (2)0.078 (2)0.0003 (17)0.023 (2)0.0041 (18)
C90.0614 (19)0.0491 (17)0.077 (2)0.0019 (13)0.0068 (17)0.0099 (15)
C100.057 (2)0.091 (3)0.117 (3)0.0069 (18)0.005 (2)0.017 (2)
C110.0558 (17)0.0632 (18)0.0469 (15)0.0122 (13)0.0033 (14)0.0001 (15)
C120.0468 (17)0.076 (2)0.0620 (19)0.0082 (14)0.0024 (15)0.0101 (17)
C130.065 (2)0.073 (2)0.067 (2)0.0043 (15)0.0040 (17)0.0162 (17)
C140.074 (2)0.0666 (19)0.0447 (14)0.0082 (15)0.0018 (16)0.0084 (15)
C150.0545 (18)0.077 (2)0.068 (2)0.0224 (15)0.0023 (16)0.0042 (18)
C160.0511 (17)0.073 (2)0.076 (2)0.0045 (15)0.0126 (16)0.0005 (18)
C170.120 (3)0.076 (2)0.078 (2)0.021 (2)0.006 (2)0.013 (2)
Geometric parameters (Å, º) top
N1—C11.145 (5)C10—H10A0.9600
O1—C31.358 (4)C10—H10B0.9600
O1—C111.403 (4)C10—H10C0.9600
C1—C21.421 (5)C11—C121.369 (5)
C2—C31.326 (4)C11—C161.368 (4)
C2—H20.9300C12—C131.374 (5)
C3—C41.487 (4)C12—H120.9300
C4—C91.393 (4)C13—C141.380 (5)
C4—C51.406 (4)C13—H130.9300
C5—C61.386 (5)C14—C151.383 (5)
C5—C101.501 (5)C14—C171.500 (5)
C6—C71.373 (6)C15—C161.375 (5)
C6—H60.9300C15—H150.9300
C7—C81.362 (6)C16—H160.9300
C7—H70.9300C17—H17A0.9600
C8—C91.384 (5)C17—H17B0.9600
C8—H80.9300C17—H17C0.9600
C9—H90.9300
C3—O1—C11119.2 (2)H10A—C10—H10B109.5
N1—C1—C2178.3 (4)C5—C10—H10C109.5
C3—C2—C1122.2 (3)H10A—C10—H10C109.5
C3—C2—H2118.9H10B—C10—H10C109.5
C1—C2—H2118.9C12—C11—C16120.8 (3)
C2—C3—O1117.3 (3)C12—C11—O1121.8 (2)
C2—C3—C4123.4 (3)C16—C11—O1117.2 (3)
O1—C3—C4119.3 (3)C11—C12—C13118.9 (3)
C9—C4—C5119.6 (3)C11—C12—H12120.6
C9—C4—C3117.9 (3)C13—C12—H12120.6
C5—C4—C3122.3 (3)C12—C13—C14122.4 (3)
C6—C5—C4117.5 (3)C12—C13—H13118.8
C6—C5—C10119.8 (3)C14—C13—H13118.8
C4—C5—C10122.6 (3)C13—C14—C15116.8 (3)
C7—C6—C5122.4 (4)C13—C14—C17122.2 (3)
C7—C6—H6118.8C15—C14—C17121.0 (3)
C5—C6—H6118.8C16—C15—C14122.0 (3)
C8—C7—C6120.0 (4)C16—C15—H15119.0
C8—C7—H7120.0C14—C15—H15119.0
C6—C7—H7120.0C11—C16—C15119.2 (3)
C7—C8—C9119.6 (4)C11—C16—H16120.4
C7—C8—H8120.2C15—C16—H16120.4
C9—C8—H8120.2C14—C17—H17A109.5
C8—C9—C4120.8 (3)C14—C17—H17B109.5
C8—C9—H9119.6H17A—C17—H17B109.5
C4—C9—H9119.6C14—C17—H17C109.5
C5—C10—H10A109.5H17A—C17—H17C109.5
C5—C10—H10B109.5H17B—C17—H17C109.5
C1—C2—C3—O16.7 (5)C7—C8—C9—C41.5 (5)
C1—C2—C3—C4175.6 (3)C5—C4—C9—C81.2 (4)
C11—O1—C3—C2135.9 (3)C3—C4—C9—C8177.1 (3)
C11—O1—C3—C446.3 (4)C3—O1—C11—C1244.3 (4)
C2—C3—C4—C949.1 (4)C3—O1—C11—C16140.2 (3)
O1—C3—C4—C9133.3 (3)C16—C11—C12—C130.5 (5)
C2—C3—C4—C5126.8 (3)O1—C11—C12—C13175.8 (3)
O1—C3—C4—C550.8 (4)C11—C12—C13—C140.1 (5)
C9—C4—C5—C60.0 (4)C12—C13—C14—C150.2 (5)
C3—C4—C5—C6175.7 (3)C12—C13—C14—C17179.8 (3)
C9—C4—C5—C10177.6 (3)C13—C14—C15—C160.2 (5)
C3—C4—C5—C101.9 (4)C17—C14—C15—C16179.9 (3)
C4—C5—C6—C70.9 (5)C12—C11—C16—C150.8 (5)
C10—C5—C6—C7178.6 (3)O1—C11—C16—C15176.4 (3)
C5—C6—C7—C80.6 (5)C14—C15—C16—C110.7 (5)
C6—C7—C8—C90.7 (5)

Experimental details

Crystal data
Chemical formulaC17H15NO
Mr249.30
Crystal system, space groupTetragonal, P41
Temperature (K)296
a, c (Å)9.8731 (6), 14.2455 (17)
V3)1388.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.37 × 0.35
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.971, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
2539, 1277, 1028
Rint0.028
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.03
No. of reflections1277
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the National Natural Science Foundation (No. 21101053).

References

First citationBoedec, A., Sicard, H., Dessolin, J., Herbette, G., Ingoure, S., Raymond, C., Belmant, C. & Kraus, J. L. (2008). J. Med. Chem. 51, 1747–1754.  Web of Science PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNapolitano, A., Bruno, I., Rovero, P., Lucas, R., Peris, M. P. & Riccio, R. (2001). Tetrahedron, 57, 6249–6255.  Web of Science CrossRef CAS Google Scholar
First citationReggio, P. H., Basu, S., Barnett, J., Castro, M. T., Hurst, D. P., Seltzman, H. H., Roche, M. J., Gilliam, A. F., Thomas, B. F. & Stevenson, L. A. (1998). J. Med. Chem. 41, 5177–5187.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds