organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-(Pyridin-3-yl­imino)­meth­yl]phenol

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Malakand, Pakistan, cDepartment of Chemistry, University of Sargodha, Pakistan, and dDepartment of Chemistry, Government Post Graduate College, Gojra, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 June 2012; accepted 6 June 2012; online 13 June 2012)

Two independent mol­ecules are present in the asymmetric unit of the title compound, C12H10N2O, in which the 3-hy­droxy­benzaldehyde and the pyridin-3-amine units are almost planar [r.m.s. deviations of 0.0236 and 0.0116Å, respectively, in one mol­ecule and 0.0245 and 0.0162Å, respectively, in the other] and are oriented at dihedral angles of 7.21 (7) and 14.77 (7)°. In the crystal, mol­ecules of the same type form inversion dimers via pairs of O—H⋯N hydrogen bonds, forming R22(20) ring motifs. There exist ππ inter­actions between the benzene and pyridine rings of molecules of the same type with centroid–centroid distances of 3.7127 (10) and 3.8439 (10) Å.

Related literature

For a related structure, see: Wiebcke & Mootz (1982[Wiebcke, M. & Mootz, D. (1982). Acta Cryst. B38, 2008-2013.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O

  • Mr = 198.22

  • Triclinic, [P \overline 1]

  • a = 5.7768 (5) Å

  • b = 12.1450 (11) Å

  • c = 14.8194 (13) Å

  • α = 78.207 (4)°

  • β = 89.641 (3)°

  • γ = 77.601 (4)°

  • V = 993.26 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.966

  • 14798 measured reflections

  • 3876 independent reflections

  • 2704 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.04

  • 3876 reflections

  • 261 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.82 2.00 2.810 (2) 172
O2—H2A⋯N4ii 0.82 1.99 2.8058 (12) 174
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In the crystal structure, (Fig. 1), of title compound, two molecules in the asymmetric unit are present, which differ slightly from each other geometrically. In one molecule, the 3-hydroxybenzaldehyde group A (C1–C7/O1) and the pyridin-3-amine moiety B (C8–C12/N1/N2) are planar with r.m.s. deviation of 0.0236Å and 0.0116Å, respectively. The dihedral angle between A/B is 14.78 (7)°. In second molecule, the similar groups C (C13–C19/O2) and D (C20–C24/N3/N4) are also planar with r.m.s. deviation of 0.0245Å and 0.0162Å, respectively and the dihedral angle between C/D is 7.21 (7)°. Both molecules are dimerized with themselves due to intermolecular H-bonding of O—H···N type (Table 1, Fig. 2) and form R22(20) ring motif (Bernstein et al., 1995). There exist π···π interaction between Cg1···Cg2iii and Cg2···Cg1iii at a distance of 3.8439 (11)Å. Similarly, there exist π···π interaction between Cg3···Cg4iv and Cg4···Cg3iv at a distance of 3.7126 (10)Å. Cg1, Cg2, Cg3 and Cg4 are the centroids of (C8–C12/N2), (C1–C6), (C20–C24/N4) and (C13–C18) rings, respectively. Symmetry codes: (iii) = -x, -y, -z; (iv) = -x, -y, -z+1.

The structure of related compounds - trans-N-benzylidene-3-pyridinamine has been published by Wiebcke & Mootz, 1982.

Related literature top

For a related structure, see: Wiebcke & Mootz (1982). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound has been synthesized as a derivative. Equimolar quantities of 3-hydroxybenzaldehyde and pyridin-3-amine were refluxed in methanol along with few drops of acetic acid as catalyst for 30 min resulting in colourless solution. The solution was kept at room temperature which affoarded colourless prisms after three days.

Refinement top

The H-atoms were positioned geometrically (C—H = 0.93Å, O—H = 0.82Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy and x = 1.2 for other H-atoms.

Structure description top

In the crystal structure, (Fig. 1), of title compound, two molecules in the asymmetric unit are present, which differ slightly from each other geometrically. In one molecule, the 3-hydroxybenzaldehyde group A (C1–C7/O1) and the pyridin-3-amine moiety B (C8–C12/N1/N2) are planar with r.m.s. deviation of 0.0236Å and 0.0116Å, respectively. The dihedral angle between A/B is 14.78 (7)°. In second molecule, the similar groups C (C13–C19/O2) and D (C20–C24/N3/N4) are also planar with r.m.s. deviation of 0.0245Å and 0.0162Å, respectively and the dihedral angle between C/D is 7.21 (7)°. Both molecules are dimerized with themselves due to intermolecular H-bonding of O—H···N type (Table 1, Fig. 2) and form R22(20) ring motif (Bernstein et al., 1995). There exist π···π interaction between Cg1···Cg2iii and Cg2···Cg1iii at a distance of 3.8439 (11)Å. Similarly, there exist π···π interaction between Cg3···Cg4iv and Cg4···Cg3iv at a distance of 3.7126 (10)Å. Cg1, Cg2, Cg3 and Cg4 are the centroids of (C8–C12/N2), (C1–C6), (C20–C24/N4) and (C13–C18) rings, respectively. Symmetry codes: (iii) = -x, -y, -z; (iv) = -x, -y, -z+1.

The structure of related compounds - trans-N-benzylidene-3-pyridinamine has been published by Wiebcke & Mootz, 1982.

For a related structure, see: Wiebcke & Mootz (1982). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing which shows that molecules form dimers. Symmetry codes: (i) = -x+1, -y, -z; (ii) = -x+1, -y, -z+1.
3-[(E)-(Pyridin-3-ylimino)methyl]phenol top
Crystal data top
C12H10N2OZ = 4
Mr = 198.22F(000) = 416
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7768 (5) ÅCell parameters from 2704 reflections
b = 12.1450 (11) Åθ = 1.8–26.0°
c = 14.8194 (13) ŵ = 0.09 mm1
α = 78.207 (4)°T = 296 K
β = 89.641 (3)°Prism, colourless
γ = 77.601 (4)°0.30 × 0.25 × 0.20 mm
V = 993.26 (15) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3876 independent reflections
Radiation source: fine-focus sealed tube2704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω–scansh = 67
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.957, Tmax = 0.966l = 1818
14798 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1521P]
where P = (Fo2 + 2Fc2)/3
3876 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C12H10N2Oγ = 77.601 (4)°
Mr = 198.22V = 993.26 (15) Å3
Triclinic, P1Z = 4
a = 5.7768 (5) ÅMo Kα radiation
b = 12.1450 (11) ŵ = 0.09 mm1
c = 14.8194 (13) ÅT = 296 K
α = 78.207 (4)°0.30 × 0.25 × 0.20 mm
β = 89.641 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3876 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2704 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.966Rint = 0.029
14798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 0.12 e Å3
3876 reflectionsΔρmin = 0.16 e Å3
261 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3002 (3)0.38329 (11)0.13058 (10)0.0720 (6)
N10.1603 (3)0.05071 (12)0.10067 (9)0.0500 (5)
N20.4028 (3)0.29991 (13)0.00539 (10)0.0566 (6)
C10.1241 (3)0.29847 (16)0.15019 (12)0.0525 (6)
C20.1340 (3)0.18383 (14)0.12760 (11)0.0470 (6)
C30.0509 (3)0.09881 (15)0.14672 (11)0.0453 (6)
C40.2498 (3)0.13042 (17)0.18808 (12)0.0562 (7)
C50.2555 (3)0.24564 (19)0.21309 (13)0.0622 (8)
C60.0716 (3)0.32902 (17)0.19536 (12)0.0603 (7)
C70.0320 (3)0.02167 (15)0.12514 (11)0.0478 (6)
C80.1768 (3)0.16709 (14)0.08358 (11)0.0450 (5)
C90.0388 (3)0.25436 (16)0.12042 (12)0.0574 (7)
C100.0867 (4)0.36199 (16)0.09900 (13)0.0642 (7)
C110.2672 (3)0.38158 (16)0.04216 (13)0.0609 (7)
C120.3563 (3)0.19524 (15)0.02750 (12)0.0506 (6)
O20.01543 (13)0.39654 (6)0.38845 (7)0.0683 (5)
N30.19245 (12)0.03508 (6)0.39821 (6)0.0500 (5)
N40.64794 (12)0.29360 (6)0.47831 (6)0.0537 (5)
C130.12229 (13)0.31831 (6)0.36181 (7)0.0512 (6)
C140.02002 (12)0.20228 (6)0.37886 (6)0.0467 (6)
C150.1372 (3)0.12369 (15)0.35433 (11)0.0451 (6)
C160.3621 (3)0.16340 (18)0.31206 (12)0.0573 (7)
C170.4595 (3)0.28010 (19)0.29175 (13)0.0638 (7)
C180.3421 (3)0.35724 (17)0.31563 (12)0.0598 (7)
C190.0232 (3)0.00155 (15)0.37155 (11)0.0480 (6)
C200.3013 (3)0.15308 (14)0.41181 (11)0.0436 (5)
C210.2182 (3)0.23740 (15)0.37925 (12)0.0516 (6)
C220.3527 (3)0.34747 (15)0.39586 (12)0.0553 (7)
C230.5661 (3)0.37225 (15)0.44406 (12)0.0547 (6)
C240.5160 (3)0.18691 (15)0.46091 (12)0.0491 (6)
H10.388590.354660.093920.1080*
H20.266680.163020.099100.0564*
H40.378220.074380.198840.0674*
H50.386650.266890.242520.0747*
H60.077280.406330.213530.0723*
H70.165220.078720.129500.0574*
H90.083770.239950.158910.0689*
H100.003310.421690.123060.0771*
H110.296880.455370.028490.0732*
H120.451510.136870.003480.0606*
H2A0.095550.362770.424940.1024*
H140.130350.176170.407340.0560*
H160.446340.111670.297590.0688*
H170.607420.306860.261310.0765*
H180.409700.435730.300890.0717*
H190.111860.051130.362650.0576*
H210.073310.219350.346650.0620*
H220.299910.405110.374630.0663*
H230.657660.446900.453300.0656*
H240.572250.131100.483420.0589*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0813 (10)0.0476 (8)0.0915 (11)0.0207 (7)0.0199 (8)0.0179 (7)
N10.0536 (9)0.0454 (9)0.0502 (9)0.0099 (7)0.0086 (7)0.0094 (7)
N20.0648 (9)0.0486 (10)0.0605 (10)0.0178 (8)0.0029 (7)0.0147 (8)
C10.0600 (11)0.0510 (11)0.0503 (11)0.0189 (9)0.0007 (8)0.0123 (9)
C20.0508 (10)0.0507 (11)0.0430 (10)0.0191 (8)0.0057 (7)0.0093 (8)
C30.0466 (9)0.0554 (11)0.0358 (9)0.0146 (8)0.0006 (7)0.0099 (8)
C40.0474 (10)0.0757 (14)0.0498 (11)0.0184 (9)0.0040 (8)0.0180 (10)
C50.0592 (12)0.0834 (16)0.0531 (12)0.0352 (11)0.0082 (9)0.0145 (10)
C60.0728 (13)0.0638 (13)0.0529 (12)0.0372 (11)0.0017 (9)0.0083 (9)
C70.0481 (10)0.0534 (11)0.0406 (10)0.0049 (8)0.0003 (8)0.0132 (8)
C80.0507 (9)0.0424 (10)0.0400 (9)0.0059 (8)0.0024 (7)0.0087 (8)
C90.0662 (12)0.0530 (12)0.0500 (11)0.0053 (9)0.0103 (9)0.0120 (9)
C100.0836 (14)0.0471 (12)0.0605 (12)0.0029 (10)0.0044 (10)0.0198 (10)
C110.0778 (13)0.0447 (11)0.0613 (12)0.0143 (10)0.0061 (10)0.0120 (9)
C120.0550 (10)0.0472 (11)0.0514 (11)0.0103 (8)0.0046 (8)0.0156 (8)
O20.0658 (8)0.0451 (8)0.0890 (10)0.0024 (6)0.0092 (7)0.0127 (7)
N30.0533 (9)0.0449 (9)0.0511 (9)0.0079 (7)0.0042 (7)0.0112 (7)
N40.0559 (9)0.0460 (9)0.0565 (9)0.0070 (7)0.0029 (7)0.0089 (7)
C130.0488 (10)0.0517 (11)0.0492 (10)0.0036 (8)0.0047 (8)0.0096 (8)
C140.0430 (9)0.0482 (11)0.0441 (10)0.0014 (8)0.0026 (7)0.0075 (8)
C150.0454 (9)0.0539 (11)0.0352 (9)0.0067 (8)0.0054 (7)0.0121 (8)
C160.0438 (10)0.0779 (14)0.0521 (11)0.0082 (9)0.0017 (8)0.0230 (10)
C170.0444 (10)0.0849 (16)0.0539 (12)0.0083 (10)0.0056 (8)0.0191 (11)
C180.0546 (11)0.0592 (12)0.0540 (11)0.0103 (9)0.0030 (9)0.0092 (10)
C190.0526 (10)0.0538 (11)0.0422 (10)0.0158 (8)0.0053 (8)0.0159 (8)
C200.0506 (9)0.0428 (10)0.0385 (9)0.0111 (8)0.0044 (7)0.0100 (8)
C210.0586 (10)0.0509 (11)0.0470 (10)0.0135 (9)0.0027 (8)0.0122 (8)
C220.0721 (12)0.0460 (11)0.0512 (11)0.0168 (9)0.0018 (9)0.0140 (9)
C230.0675 (12)0.0404 (10)0.0540 (11)0.0093 (9)0.0101 (9)0.0075 (8)
C240.0526 (10)0.0442 (10)0.0521 (11)0.0122 (8)0.0020 (8)0.0122 (8)
Geometric parameters (Å, º) top
O1—C11.360 (2)C6—H60.9300
O1—H10.8200C7—H70.9300
O2—C131.3594 (11)C9—H90.9300
O2—H2A0.8200C10—H100.9300
N1—C71.265 (2)C11—H110.9300
N1—C81.408 (2)C12—H120.9300
N2—C111.333 (2)C13—C141.3775 (11)
N2—C121.331 (2)C13—C181.388 (2)
N3—C201.4094 (19)C14—C151.3870 (19)
N3—C191.2658 (19)C15—C161.389 (3)
N4—C231.3374 (19)C15—C191.459 (3)
N4—C241.330 (2)C16—C171.379 (3)
C1—C61.390 (3)C17—C181.369 (3)
C1—C21.377 (3)C20—C211.389 (2)
C2—C31.389 (2)C20—C241.381 (2)
C3—C41.388 (3)C21—C221.369 (3)
C3—C71.460 (3)C22—C231.373 (3)
C4—C51.380 (3)C14—H140.9300
C5—C61.366 (3)C16—H160.9300
C8—C121.381 (2)C17—H170.9300
C8—C91.388 (3)C18—H180.9300
C9—C101.368 (3)C19—H190.9300
C10—C111.366 (3)C21—H210.9300
C2—H20.9300C22—H220.9300
C4—H40.9300C23—H230.9300
C5—H50.9300C24—H240.9300
C1—O1—H1109.00C10—C11—H11118.00
C13—O2—H2A109.00C8—C12—H12118.00
C7—N1—C8120.93 (16)N2—C12—H12118.00
C11—N2—C12116.56 (16)O2—C13—C18118.56 (11)
C19—N3—C20121.28 (12)C14—C13—C18119.06 (11)
C23—N4—C24116.83 (12)O2—C13—C14122.38 (8)
C2—C1—C6119.03 (17)C13—C14—C15121.21 (10)
O1—C1—C6118.63 (17)C14—C15—C19120.14 (14)
O1—C1—C2122.33 (16)C16—C15—C19120.83 (17)
C1—C2—C3121.07 (16)C14—C15—C16119.02 (16)
C2—C3—C7119.93 (16)C15—C16—C17119.49 (18)
C2—C3—C4119.13 (17)C16—C17—C18121.11 (17)
C4—C3—C7120.93 (17)C13—C18—C17119.99 (17)
C3—C4—C5119.48 (18)N3—C19—C15122.14 (15)
C4—C5—C6121.09 (17)N3—C20—C24115.98 (14)
C1—C6—C5120.09 (19)C21—C20—C24117.11 (16)
N1—C7—C3121.91 (16)N3—C20—C21126.89 (15)
C9—C8—C12117.15 (16)C20—C21—C22119.00 (16)
N1—C8—C12116.06 (15)C21—C22—C23119.57 (17)
N1—C8—C9126.72 (16)N4—C23—C22122.80 (16)
C8—C9—C10118.67 (17)N4—C24—C20124.66 (16)
C9—C10—C11119.83 (18)C13—C14—H14119.00
N2—C11—C10123.09 (18)C15—C14—H14119.00
N2—C12—C8124.68 (17)C15—C16—H16120.00
C3—C2—H2119.00C17—C16—H16120.00
C1—C2—H2119.00C16—C17—H17119.00
C3—C4—H4120.00C18—C17—H17119.00
C5—C4—H4120.00C13—C18—H18120.00
C4—C5—H5119.00C17—C18—H18120.00
C6—C5—H5119.00N3—C19—H19119.00
C1—C6—H6120.00C15—C19—H19119.00
C5—C6—H6120.00C20—C21—H21120.00
N1—C7—H7119.00C22—C21—H21121.00
C3—C7—H7119.00C21—C22—H22120.00
C8—C9—H9121.00C23—C22—H22120.00
C10—C9—H9121.00N4—C23—H23119.00
C11—C10—H10120.00C22—C23—H23119.00
C9—C10—H10120.00N4—C24—H24118.00
N2—C11—H11118.00C20—C24—H24118.00
C8—N1—C7—C3177.57 (15)C12—C8—C9—C100.4 (3)
C7—N1—C8—C925.4 (3)C9—C8—C12—N21.2 (3)
C7—N1—C8—C12157.68 (16)N1—C8—C12—N2178.40 (16)
C12—N2—C11—C100.7 (3)C8—C9—C10—C110.2 (3)
C11—N2—C12—C81.3 (3)C9—C10—C11—N20.0 (3)
C20—N3—C19—C15178.07 (14)O2—C13—C14—C15177.30 (11)
C19—N3—C20—C2116.4 (2)C18—C13—C14—C152.84 (17)
C19—N3—C20—C24165.28 (15)O2—C13—C18—C17176.90 (14)
C23—N4—C24—C201.1 (2)C14—C13—C18—C173.2 (2)
C24—N4—C23—C222.3 (2)C13—C14—C15—C160.2 (2)
C6—C1—C2—C32.0 (3)C13—C14—C15—C19178.83 (12)
O1—C1—C6—C5177.63 (17)C14—C15—C16—C172.8 (2)
O1—C1—C2—C3178.60 (16)C19—C15—C16—C17176.18 (16)
C2—C1—C6—C52.9 (3)C14—C15—C19—N38.8 (2)
C1—C2—C3—C40.9 (3)C16—C15—C19—N3170.20 (15)
C1—C2—C3—C7177.73 (16)C15—C16—C17—C182.5 (3)
C2—C3—C7—N19.6 (2)C16—C17—C18—C130.6 (3)
C4—C3—C7—N1169.05 (16)N3—C20—C21—C22177.27 (15)
C2—C3—C4—C52.9 (3)C24—C20—C21—C221.0 (2)
C7—C3—C4—C5175.76 (16)N3—C20—C24—N4177.97 (14)
C3—C4—C5—C62.0 (3)C21—C20—C24—N40.5 (3)
C4—C5—C6—C11.0 (3)C20—C21—C22—C230.1 (3)
N1—C8—C9—C10177.26 (17)C21—C22—C23—N41.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.822.002.810 (2)172
O2—H2A···N4ii0.821.992.8058 (12)174
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H10N2O
Mr198.22
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.7768 (5), 12.1450 (11), 14.8194 (13)
α, β, γ (°)78.207 (4), 89.641 (3), 77.601 (4)
V3)993.26 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
14798, 3876, 2704
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.04
No. of reflections3876
No. of parameters261
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.822.002.810 (2)172
O2—H2A···N4ii0.821.992.8058 (12)174
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiebcke, M. & Mootz, D. (1982). Acta Cryst. B38, 2008–2013.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds