inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

K2V2O2(AsO4)2

aLaboratoire Sciences des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumedienne, BP 32 El-Alia 16111 Bab-Ezzouar Alger, Algeria, and bCDIFX, UMR 6226, Université de Rennes1, CNRS, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: belkhirisab@yahoo.fr

(Received 18 May 2012; accepted 15 June 2012; online 23 June 2012)

The vanadium oxide arsenate with formula K2V2O2(AsO4)2, dipotassium divanadium(IV) dioxide diarsenate, has been synthesized by solid-state reaction in an evacuated silica ampoule. Its structure is isotypic with K2V2O2(PO4)2. The framework is built up from corner-sharing VO6 octa­hedra and AsO4 tetra­hedra, creating an infinite [VAsO8] chain running along the a- and c-axis directions. The K+ cations are located in hexa­gonal tunnels, which are delimited by the connection of the [VAsO8] chains.

Related literature

For the properties of the potassium titanyl phosphate KTiOPO4 (KTP) family, see: El Haidouri et al. (1990[El Haidouri, A., Durand, J. & Cot, L. (1990). Mater. Res. Bull. 25, 1193-1202.]); Harrison & Phillips (1999[Harrison, W. T. A. & Phillips, M. L. F. (1999). Chem. Mater. 11, 3555-3560.]); Phillips et al. (1990[Phillips, M. L. F., Harrison, W. T. A., Gier, T. E., Stucky, G. D., Kulkarni, G. V. & Burdett, J. K. (1990). Inorg. Chem. 29, 2158-2163.]). For the structures of AMOXO4 compounds (A = K, Na, Li, M = transition metal and X = P, As) of the KTP family, see: Phillips et al. (1990[Phillips, M. L. F., Harrison, W. T. A., Gier, T. E., Stucky, G. D., Kulkarni, G. V. & Burdett, J. K. (1990). Inorg. Chem. 29, 2158-2163.]); Harrison & Phillips (1999[Harrison, W. T. A. & Phillips, M. L. F. (1999). Chem. Mater. 11, 3555-3560.]); El Haidouri et al. (1990[El Haidouri, A., Durand, J. & Cot, L. (1990). Mater. Res. Bull. 25, 1193-1202.]). For the synthesis of K1.65V1.78W0.22O2(AsO4)2, see: Belkhiri et al. (2009[Belkhiri, S., Kars, M. & Mezaoui, D. (2009). Acta Cryst. E65, i69.]). For the synthesis and structure of isotypic K2V2O2(PO4)2, see: Benhamada et al. (1991[Benhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1991). Acta Cryst. C47, 1138-1141.]). For the effect on the electron transport properties caused by the distortion of the VIVO6 octa­hedra, see: El Haidouri et al. (1990[El Haidouri, A., Durand, J. & Cot, L. (1990). Mater. Res. Bull. 25, 1193-1202.]); El Brahimi & Durand (1986[El Brahimi, M. & Durand, J. (1986). Rev. Chim. Miner. 23, 146-153.]); Nakagawa et al. (1999[Nakagawa, T., Matsumoto, T., Chani, V. I. & Fukuda, T. (1999). Acta Cryst. C55, 1391-1393.]). For the hexa­gonal tungsten bronze structure, see: Magnéli (1953[Magnéli, A. (1953). Acta Chem. Scand. 7, 315-319.]).

Experimental

Crystal data
  • K2V2O2(AsO4)2

  • Mr = 489.9

  • Orthorhombic, P c 21 n

  • a = 6.5368 (2) Å

  • b = 10.7228 (5) Å

  • c = 13.0666 (4) Å

  • V = 915.87 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.16 mm−1

  • T = 150 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.073, Tmax = 0.107

  • 11866 measured reflections

  • 4169 independent reflections

  • 3805 reflections with I > 3σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.034

  • S = 1.60

  • 4169 reflections

  • 139 parameters

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.77 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1256 Friedel pairs

  • Flack parameter: 0.387 (8)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SuperFlip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: ATOMS (Dowty, 1994[Dowty, E. (1994). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and GRETEP (Laugier & Bochu, 2002[Laugier, J. & Bochu, B. (2002). GRETEP. http://www.CCP14.ac.uk/tutorial/lmgp/gretep.html.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The compounds belonging to the potassium titanyl phosphate KTiOPO4 (KTP) family have been widely studied for their outstanding non linear optical property (NLO)(Phillips et al., 1990; Harrison et al., 1999; El Haidouri et al., 1990).

These materials are characterized by their high laser damage threshold, high electrooptic coefficient and an excellent thermal stability (Phillips et al., 1990; Harrison et al., 1999; El Haidouri et al., 1990)).

The KTP compound is generaly used in a laser system such as second harmonic generation (SGH) for doubling laser light for example in the Nd Yag laser equipement.

The framework of AMOXO4 (A: K, Na, Li..), (M: tansition metal) and (X: P, As) is built up from MO6 octahedra and AsO4 tetrahedra sharing their corners.

The structure of AMOXO4 of KTP family shows an irregular octahedra MO6 with one short bond (1.653 (5) Å to 1.851 (5) Å)) (Phillips et al., 1990; Harrison et al., 1999; El Haidouri et al., 1990). In two years later we synthetized a new compound K1.65V1.78W0.22O2(AsO4)2 (Belkhiri et al., 2009) of KTP family, It presents an irregular MO6 octahedra with (M=V+W). The MO6 polyhedra consist of two abnormal short bonds M—O (1.774 (7) Å) and(1.824 (8) Å) which suggest that the NLO property could be more important in this compound, because the most physical related to structural studies showed that the non linear optical property is due to the short bond in the octahedral polyhedra.

We are interested on K1.65V1.78W0.22O2(AsO4)2 for these two short bonds, we substituted the tungsten by the vanadium element in order to show the influence of the tungsten and vanadium on the distortion of the MO6 octahedra.

We synthetized and studied the structure of new single-crystal K2V2O2(AsO4)2 isotype to KVOPO4 (Benhamada et al., 1991), we describe here the structure of K2V2O2(AsO4)2.

The framework [VAsO5] is built up from single VO6 octahedra sharing corners with AsO4 tetrahedra. The projection of K2V2O2(AsO4)2 structure along a and c directions (Fig. 1) and (Fig. 2) respectively shows the existence of infinite [VAsO8] chains running along a and c directions.

Two infinite [VAsO8] chains oriented along a are linked via infinite [VAsO8] chains running along c and vice versa. The AsO4 tetrahedra share their corners with four VO6 octahedra, and the VO6 octahedra share their corners with four AsO4 tetrahedra and two VO6 octahedra.

This arrangement creates an octahedral infinite [VO3] chains running along [011] direction (Fig. 3) and (Fig. 4). The existence of one dimensional octahedral infinite [VO3] chains pretends the possibility of electronic transport properties. These properties can be accentuated by the distortion of the octahedral polyhedra occupied by V(IV) with the d1 configuration (El Haidouri et al., 1990; Nakagawa et al., 1999; El Brahimi & Durand, 1986).

The framework [VAsO5] delimits two sorts of hexagonal tunnels running along a and c directions, where the potassium ions are located. The first tunnel (Fig. 1) results from junction of three VO6 octahedra and three AsO4 tetrahedra linked by their corners. Whereas the second type of tunnel (Fig. 2) is formed of rings of four VO6 octahedra and two AsO4 tetrahedra linked by their corners.

The great similarity of the framework [VAsO5] with hexagonal tungsten bronze structure (HTB) described by Magnéli (1953) concerns necessary the hexagonal tunnel which can be deduced from HTB tunnels by replacing two octahedra out of six in an ordered way by two AsO4 tetrahedra (Fig. 5).

As a result, the remplacement of tungsten by the vanadium element in the structure of K1.65V1.78W0.22O2(AsO4)2 led to irregular octahedra VO6 with one short (1.6551 (18) Å) and one long bond V—O (2.2301 (18) Å). Whereas in the case of K1.65V1.78W0.22O2(AsO4)2, the presence of the tungsten element in MO6 with (M=V+W) creates an irregular octahedra MO6 with two short bonds M—O (1.774 (7) Å) and(1.824 (8) Å).

The comparaison between the MO6 octahedra of K1.65V1.78W0.22O2(AsO4)2 and VO6 octahedra of K2V2O2(AsO4)2 (Fig. 6) shows clearly that the distortion is more important in MO6 than in VO6 due to the mixed occupation of the MO6 by the tungsten and vanadium simultaneously. Furthermore the mixed occupation creates two short bonds which can have an impact on the non linear optical property.

Among our perspectives is to realise the non linear optical property for K1.65V1.78W0.22O2(AsO4)2 and K2V2O2(AsO4)2 and to show the influence of the vanadium and the tungsten on the second harmonic generation.

Related literature top

For the properties of the potassium titanyl phosphate KTiOPO4 (KTP) family, see: El Haidouri et al. (1990); Harrison & Phillips (1999); Phillips et al. (1990). For the structures of AMOXO4 compounds (A: K, Na, Li..), (M: tansition metal) and (X: P, As) of the KTP family, see: Phillips et al. (1990); Harrison & Phillips (1999); El Haidouri et al. (1990). For the synthesis of K1.65V1.78W0.22O2(AsO4)2, see: Belkhiri et al. (2009). For the synthesis and structure of the isotypic compound K2V2O2(AsO4)2, see: Benhamada et al. (1991). For the effect on the electron transport properties of distortion of the octahedral V(IV) polyhedra , see: El Haidouri et al. (1990); El Brahimi & Durand (1986); Nakagawa et al. (1999). For the hexagonal tungsten bronze structure, see: Magnéli (1953)

Experimental top

The growth of the single-crystal K2V2O2(AsO4)2 was performed in two steps: firstly, the stoechiometric mixture of K2CO3, V2O5, and As2O5 was heated in platinium crucible for 24 h at 573 K in order to decompose the potassium carbonate. Secondly the appropriate amount of vanadium was added into the mixture and then heated at 973 K for 7 days in evacuated silica ampoule. From the resulting mixture some dark single crystals were extracted.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors are based on F, with F set to zero for negative F2. The threshold expression of F2 > n*σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement.

Structure description top

The compounds belonging to the potassium titanyl phosphate KTiOPO4 (KTP) family have been widely studied for their outstanding non linear optical property (NLO)(Phillips et al., 1990; Harrison et al., 1999; El Haidouri et al., 1990).

These materials are characterized by their high laser damage threshold, high electrooptic coefficient and an excellent thermal stability (Phillips et al., 1990; Harrison et al., 1999; El Haidouri et al., 1990)).

The KTP compound is generaly used in a laser system such as second harmonic generation (SGH) for doubling laser light for example in the Nd Yag laser equipement.

The framework of AMOXO4 (A: K, Na, Li..), (M: tansition metal) and (X: P, As) is built up from MO6 octahedra and AsO4 tetrahedra sharing their corners.

The structure of AMOXO4 of KTP family shows an irregular octahedra MO6 with one short bond (1.653 (5) Å to 1.851 (5) Å)) (Phillips et al., 1990; Harrison et al., 1999; El Haidouri et al., 1990). In two years later we synthetized a new compound K1.65V1.78W0.22O2(AsO4)2 (Belkhiri et al., 2009) of KTP family, It presents an irregular MO6 octahedra with (M=V+W). The MO6 polyhedra consist of two abnormal short bonds M—O (1.774 (7) Å) and(1.824 (8) Å) which suggest that the NLO property could be more important in this compound, because the most physical related to structural studies showed that the non linear optical property is due to the short bond in the octahedral polyhedra.

We are interested on K1.65V1.78W0.22O2(AsO4)2 for these two short bonds, we substituted the tungsten by the vanadium element in order to show the influence of the tungsten and vanadium on the distortion of the MO6 octahedra.

We synthetized and studied the structure of new single-crystal K2V2O2(AsO4)2 isotype to KVOPO4 (Benhamada et al., 1991), we describe here the structure of K2V2O2(AsO4)2.

The framework [VAsO5] is built up from single VO6 octahedra sharing corners with AsO4 tetrahedra. The projection of K2V2O2(AsO4)2 structure along a and c directions (Fig. 1) and (Fig. 2) respectively shows the existence of infinite [VAsO8] chains running along a and c directions.

Two infinite [VAsO8] chains oriented along a are linked via infinite [VAsO8] chains running along c and vice versa. The AsO4 tetrahedra share their corners with four VO6 octahedra, and the VO6 octahedra share their corners with four AsO4 tetrahedra and two VO6 octahedra.

This arrangement creates an octahedral infinite [VO3] chains running along [011] direction (Fig. 3) and (Fig. 4). The existence of one dimensional octahedral infinite [VO3] chains pretends the possibility of electronic transport properties. These properties can be accentuated by the distortion of the octahedral polyhedra occupied by V(IV) with the d1 configuration (El Haidouri et al., 1990; Nakagawa et al., 1999; El Brahimi & Durand, 1986).

The framework [VAsO5] delimits two sorts of hexagonal tunnels running along a and c directions, where the potassium ions are located. The first tunnel (Fig. 1) results from junction of three VO6 octahedra and three AsO4 tetrahedra linked by their corners. Whereas the second type of tunnel (Fig. 2) is formed of rings of four VO6 octahedra and two AsO4 tetrahedra linked by their corners.

The great similarity of the framework [VAsO5] with hexagonal tungsten bronze structure (HTB) described by Magnéli (1953) concerns necessary the hexagonal tunnel which can be deduced from HTB tunnels by replacing two octahedra out of six in an ordered way by two AsO4 tetrahedra (Fig. 5).

As a result, the remplacement of tungsten by the vanadium element in the structure of K1.65V1.78W0.22O2(AsO4)2 led to irregular octahedra VO6 with one short (1.6551 (18) Å) and one long bond V—O (2.2301 (18) Å). Whereas in the case of K1.65V1.78W0.22O2(AsO4)2, the presence of the tungsten element in MO6 with (M=V+W) creates an irregular octahedra MO6 with two short bonds M—O (1.774 (7) Å) and(1.824 (8) Å).

The comparaison between the MO6 octahedra of K1.65V1.78W0.22O2(AsO4)2 and VO6 octahedra of K2V2O2(AsO4)2 (Fig. 6) shows clearly that the distortion is more important in MO6 than in VO6 due to the mixed occupation of the MO6 by the tungsten and vanadium simultaneously. Furthermore the mixed occupation creates two short bonds which can have an impact on the non linear optical property.

Among our perspectives is to realise the non linear optical property for K1.65V1.78W0.22O2(AsO4)2 and K2V2O2(AsO4)2 and to show the influence of the vanadium and the tungsten on the second harmonic generation.

For the properties of the potassium titanyl phosphate KTiOPO4 (KTP) family, see: El Haidouri et al. (1990); Harrison & Phillips (1999); Phillips et al. (1990). For the structures of AMOXO4 compounds (A: K, Na, Li..), (M: tansition metal) and (X: P, As) of the KTP family, see: Phillips et al. (1990); Harrison & Phillips (1999); El Haidouri et al. (1990). For the synthesis of K1.65V1.78W0.22O2(AsO4)2, see: Belkhiri et al. (2009). For the synthesis and structure of the isotypic compound K2V2O2(AsO4)2, see: Benhamada et al. (1991). For the effect on the electron transport properties of distortion of the octahedral V(IV) polyhedra , see: El Haidouri et al. (1990); El Brahimi & Durand (1986); Nakagawa et al. (1999). For the hexagonal tungsten bronze structure, see: Magnéli (1953)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: (SuperFlip Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: ATOMS (Dowty, 1994) and GRETEP (Laugier & Bochu, 2002); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The projection of K2V2O2(AsO4)2 along a.
[Figure 2] Fig. 2. The projection of K2V2O2(AsO4)2 along c.
[Figure 3] Fig. 3. The projection of K2V2O2(AsO4)2 along (011).
[Figure 4] Fig. 4. octahedral infinite [VO3] chains running along [011] direction with [Symmetry codes: (i) ?x + 1/2, y, z?1/2; (ii) x + 1, y, z; (iii) ?x + 1/2, y, z + 1/2; (iv) ?x + 1, y + 1/2, ?z; (v) ?x + 1, y?1/2, ?z; (vi) x?1, y, z].
[Figure 5] Fig. 5. The comparison between K2V2O2(AsO4)2 and HTB structures.
[Figure 6] Fig. 6. MO6 and VO6 octahedra of K1.65V1.78W0.22O2(AsO4)2 and K2V2O2(AsO4)2 respectively.
dipotassium divanadium dioxide diarsenate top
Crystal data top
K2V2O2(AsO4)2F(000) = 920
Mr = 489.9Dx = 3.552 Mg m3
Orthorhombic, Pc21nMo Kα radiation, λ = 0.71069 Å
Hall symbol: P -2n -2acCell parameters from 5952 reflections
a = 6.5368 (2) Åθ = 3.5–40.2°
b = 10.7228 (5) ŵ = 10.16 mm1
c = 13.0666 (4) ÅT = 150 K
V = 915.87 (6) Å3Prism, black
Z = 40.3 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII
diffractometer
4169 independent reflections
Radiation source: fine-focus sealed tube3805 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.033
CCD rotation images, thin slices scansθmax = 40.2°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 2323
Tmin = 0.073, Tmax = 0.107k = 1110
11866 measured reflectionsl = 1915
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.000049F2)
R[F > 3σ(F)] = 0.028(Δ/σ)max = 0.003
wR(F) = 0.034Δρmax = 0.94 e Å3
S = 1.60Δρmin = 0.77 e Å3
4169 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
139 parametersExtinction coefficient: 970 (110)
0 restraintsAbsolute structure: Flack (1983), 1256 Friedel pairs
0 constraintsAbsolute structure parameter: 0.387 (8)
Crystal data top
K2V2O2(AsO4)2V = 915.87 (6) Å3
Mr = 489.9Z = 4
Orthorhombic, Pc21nMo Kα radiation
a = 6.5368 (2) ŵ = 10.16 mm1
b = 10.7228 (5) ÅT = 150 K
c = 13.0666 (4) Å0.3 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII
diffractometer
4169 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3805 reflections with I > 3σ(I)
Tmin = 0.073, Tmax = 0.107Rint = 0.033
11866 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0280 restraints
wR(F) = 0.034Δρmax = 0.94 e Å3
S = 1.60Δρmin = 0.77 e Å3
4169 reflectionsAbsolute structure: Flack (1983), 1256 Friedel pairs
139 parametersAbsolute structure parameter: 0.387 (8)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As20.99887 (4)0.3331030.18131 (2)0.00293 (5)
V10.27644 (5)0.59847 (6)0.25107 (3)0.00255 (8)
V20.49984 (6)0.34895 (5)0.12277 (3)0.00271 (8)
K10.22511 (9)0.53150 (8)0.12103 (6)0.01172 (15)
K20.79227 (10)0.77688 (8)0.10496 (5)0.01127 (15)
O10.5484 (3)0.4499 (2)0.23637 (18)0.0058 (5)
O20.7996 (3)0.3653 (2)0.10470 (17)0.0060 (3)
O30.1652 (3)0.6001 (3)0.09922 (15)0.0060 (4)
O40.4565 (3)0.4521 (2)0.21415 (18)0.0060 (5)
O50.4859 (3)0.7051 (2)0.01550 (19)0.0061 (5)
O60.1747 (3)0.5671 (2)0.10771 (16)0.0053 (4)
O70.4687 (4)0.4564 (2)0.00520 (17)0.0063 (5)
O81.2015 (3)0.2971 (2)0.10749 (17)0.0060 (3)
O90.9597 (3)0.2103 (2)0.26290 (18)0.0062 (5)
O100.4516 (3)0.7042 (2)0.22272 (18)0.0061 (5)
As10.32206 (3)0.58763 (5)0.00215 (2)0.00258 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As20.00216 (8)0.00404 (10)0.00258 (10)0.00032 (7)0.00002 (9)0.00035 (10)
V10.00278 (13)0.00322 (15)0.00164 (15)0.00008 (15)0.00028 (13)0.00010 (14)
V20.00261 (13)0.00336 (17)0.00216 (15)0.00019 (13)0.00004 (13)0.00031 (14)
K10.0052 (2)0.0156 (3)0.0144 (3)0.0015 (2)0.0016 (2)0.0047 (3)
K20.0104 (2)0.0171 (3)0.0063 (2)0.0012 (2)0.00160 (19)0.0001 (3)
O10.0065 (7)0.0053 (8)0.0057 (9)0.0026 (6)0.0020 (7)0.0030 (7)
O20.0028 (4)0.0093 (5)0.0060 (5)0.0001 (4)0.0006 (5)0.0005 (6)
O30.0046 (6)0.0114 (9)0.0020 (7)0.0014 (7)0.0015 (5)0.0004 (8)
O40.0046 (7)0.0073 (8)0.0063 (9)0.0009 (6)0.0009 (6)0.0011 (7)
O50.0062 (8)0.0071 (8)0.0049 (9)0.0031 (7)0.0010 (6)0.0017 (7)
O60.0044 (7)0.0088 (9)0.0026 (7)0.0013 (6)0.0005 (6)0.0012 (7)
O70.0069 (8)0.0079 (8)0.0043 (9)0.0035 (7)0.0020 (6)0.0017 (7)
O80.0028 (4)0.0093 (5)0.0060 (5)0.0001 (4)0.0006 (5)0.0005 (6)
O90.0066 (7)0.0067 (8)0.0052 (9)0.0025 (7)0.0018 (7)0.0018 (8)
O100.0075 (8)0.0070 (8)0.0039 (8)0.0012 (7)0.0011 (7)0.0012 (7)
As10.00244 (8)0.00385 (9)0.00144 (9)0.00024 (9)0.00003 (8)0.00044 (9)
Geometric parameters (Å, º) top
As2—O1i1.682 (2)V2—O21.9811 (19)
As2—O21.679 (2)V2—O41.652 (2)
As2—O81.684 (2)V2—O5v2.087 (2)
As2—O91.714 (2)V2—O71.931 (2)
V1—O1ii1.971 (2)V2—O8vi2.0375 (19)
V1—O3iii1.993 (2)V2—O10v2.053 (2)
V1—O4iii2.234 (2)O3—As11.6805 (19)
V1—O62.016 (2)O5—As11.662 (2)
V1—O9iv1.960 (2)O6—As11.697 (2)
V1—O101.654 (2)O7—As11.705 (2)
O1i—As2—O2112.20 (11)O4—V2—O5v171.20 (10)
O1i—As2—O8112.68 (10)O4—V2—O799.06 (11)
O1i—As2—O9101.71 (11)O4—V2—O8vi95.14 (10)
O2—As2—O8108.44 (10)O4—V2—O10v94.17 (10)
O2—As2—O9114.38 (10)O5v—V2—O784.92 (10)
O8—As2—O9107.32 (11)O5v—V2—O8vi77.00 (9)
O1ii—V1—O3iii89.52 (10)O5v—V2—O10v82.04 (9)
O1ii—V1—O4iii81.24 (9)O7—V2—O8vi89.08 (10)
O1ii—V1—O688.06 (9)O7—V2—O10v166.76 (10)
O1ii—V1—O9iv163.57 (9)O8vi—V2—O10v90.22 (9)
O1ii—V1—O1097.49 (10)As2iii—O1—V1vi130.63 (13)
O3iii—V1—O4iii86.39 (9)As2—O2—V2132.71 (13)
O3iii—V1—O6167.57 (9)V1i—O3—As1131.00 (10)
O3iii—V1—O9iv93.90 (10)V1i—O4—V2137.25 (13)
O3iii—V1—O1094.66 (11)V2iv—O5—As1131.25 (13)
O4iii—V1—O681.19 (9)V1—O6—As1123.11 (10)
O4iii—V1—O9iv82.94 (9)V2—O7—As1126.62 (13)
O4iii—V1—O10178.35 (10)As2—O8—V2ii129.37 (13)
O6—V1—O9iv85.16 (9)As2—O9—V1v122.59 (12)
O6—V1—O1097.74 (10)V1—O10—V2iv140.17 (13)
O9iv—V1—O1098.24 (11)O3—As1—O5114.55 (12)
O2—V2—O4101.33 (10)O3—As1—O6107.73 (9)
O2—V2—O5v86.62 (9)O3—As1—O7111.36 (12)
O2—V2—O787.53 (10)O5—As1—O6112.26 (11)
O2—V2—O8vi163.51 (9)O5—As1—O7105.60 (11)
O2—V2—O10v89.41 (9)O6—As1—O7104.94 (11)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y, z; (iii) x+1/2, y, z+1/2; (iv) x+1, y+1/2, z; (v) x+1, y1/2, z; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formulaK2V2O2(AsO4)2
Mr489.9
Crystal system, space groupOrthorhombic, Pc21n
Temperature (K)150
a, b, c (Å)6.5368 (2), 10.7228 (5), 13.0666 (4)
V3)915.87 (6)
Z4
Radiation typeMo Kα
µ (mm1)10.16
Crystal size (mm)0.3 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.073, 0.107
No. of measured, independent and
observed [I > 3σ(I)] reflections
11866, 4169, 3805
Rint0.033
(sin θ/λ)max1)0.907
Refinement
R[F > 3σ(F)], wR(F), S 0.028, 0.034, 1.60
No. of reflections4169
No. of parameters139
Δρmax, Δρmin (e Å3)0.94, 0.77
Absolute structureFlack (1983), 1256 Friedel pairs
Absolute structure parameter0.387 (8)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), (SuperFlip Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), ATOMS (Dowty, 1994) and GRETEP (Laugier & Bochu, 2002).

 

References

First citationBelkhiri, S., Kars, M. & Mezaoui, D. (2009). Acta Cryst. E65, i69.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBenhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1991). Acta Cryst. C47, 1138–1141.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (1994). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEl Brahimi, M. & Durand, J. (1986). Rev. Chim. Miner. 23, 146–153.  CAS Google Scholar
First citationEl Haidouri, A., Durand, J. & Cot, L. (1990). Mater. Res. Bull. 25, 1193–1202.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A. & Phillips, M. L. F. (1999). Chem. Mater. 11, 3555–3560.  Web of Science CrossRef CAS Google Scholar
First citationLaugier, J. & Bochu, B. (2002). GRETEP. http://www.CCP14.ac.uk/tutorial/lmgp/gretep.html.  Google Scholar
First citationMagnéli, A. (1953). Acta Chem. Scand. 7, 315–319.  Google Scholar
First citationNakagawa, T., Matsumoto, T., Chani, V. I. & Fukuda, T. (1999). Acta Cryst. C55, 1391–1393.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationPhillips, M. L. F., Harrison, W. T. A., Gier, T. E., Stucky, G. D., Kulkarni, G. V. & Burdett, J. K. (1990). Inorg. Chem. 29, 2158–2163.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds