metal-organic compounds
Tris(5,6-dimethyl-1,10-phenanthroline-κ2N,N′)copper(II) bis(hexafluoridophosphate) acetonitrile monosolvate
aInstituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán 04510, DF, México, and bFacultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, DF, México
*Correspondence e-mail: mfa@unam.mx
In the title compound, [Cu(C14H12N2)3](PF6)2·CH3CN, the [Cu(5,6-dmp)3]2+ cationic complex (5,6-dmp is 5,6-dimethyl-1,10-phenanthroline) is stabilized by two hexafluoridophosphate anions and one acetonitrile solvent molecule. The coordination geometry around the CuII atom can be described as distorted elongated octahedral with Rout = 2.277 (2) Å, Rin = 2.052 (2) Å and a tetragonality of 0.9011, acquiring a `static' stereochemistry. In the supramolecular network, there are intermolecular C—H⋯F and C—H⋯N interactions with R33(16), R22(7), R12(4), R33(16) and C32(7) motifs that lead to an infinite three-dimensional network.
Related literature
For literature on metal complexes with phenanthroline-based ligands related to their intense luminescence, their capacity to interact with DNA and also in some cases the induction of DNA cleavage, see: Bencini & Lippolis (2010). For details of octahedral distortion and motifs, see: Ramakrishnan & Palaniandavar (2008); Murphy et al. (2006); Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812028267/ru2037sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812028267/ru2037Isup2.hkl
1 mmol (232 mg) of hemi-pentahydrated Cu(NO3)2 was dissolved in 5 ml of MeOH and mixed with 10 ml of ethanol solution of 5,6-dimethyl-1,10-phenanthroline (3 mmol, 625 mg). After 2 h of strong stirring, the resulting emerald green solution was mixed with three equivalents of ammonium hexafluorophosphate (3 mmol, 489 mg) resulting in a green powder, washed several times with cold water to eliminate the NH4PF6 excess. Once dry, the green product was isolated with 89% yield (870 mg). The product was redissolved in EtOH and the solvent was slowly evaporated to get suitable single crystals. Anal. calcd. for C42H36N6P2F12Cu (978.24 g/mol): C, 51.56; H, 3.70; N, 8.59. Found: C, 51.02; H, 3.81; N, 8.67. IR (KBr disc, cm-1):3412 br, 3067 br, 2923 m, 1621 m, 1605 m, 1583 s, 1523 m, 1481 m, 1430 m, 1358 s,, 875 s, 728 m.
H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.95 (aromatic CH) and 0.98 (methyl CH3) and with Uiso of 1.2 and 1.5 Ueq(C) respectively.
Due the combination of structural and chemical properties, metal complexes with phen-based ligands have been actively studied for their catalytic, redox, photochemical and photophysical properties and, more recently, as building units for the construction of efficient luminescent materials and even photoswitchable molecular devices (Bencini & Lippolis, 2010). Here, we present the
of the title compound rac-[Cu(5,6-dmp)3](PF6)2 CH3CN 1.The X-ray structure of 1 consist of both Λ- and Δ-enantiomers of copper(II) complex cation, the molecular structure with crystallographic atom numbering scheme is illustrated in Fig. 1. Selected bond distances and bond angles are given in Table 1. The coordination geometry around Cu(II) can be described as distorted elongated octahedral (DEO) with N1, N1A, N2A, N2B nitrogen atoms occupying the corners of the square plane and N1B and N2 atoms occupying the trans axial positions. The distances (Cu1–N1B, 2.333 (2) Å; Cu1–N2, 2.220 (2) Å) mean Cu–Nout =Rout = 2.2766 (22) Å, are longer than the mean of the four in-plane Cu–N bond distances with Cu1–N1, 2.0063 (19); Cu1–N1A, 2.0144 (19); Cu1–N2A, 2.091 (2); Cu1–N2B, 2.095 (2) Å and mean of Cu–Nin = Rin = 2.0516 (20) Å. The average Cu–N bond distance (2.1641 (21) Å) is significantly longer than that [2.137 (4) Å] observed (Ramakrishnan & Palaniandavar, 2008) for rac-[Cu(5,6-dmp)3](ClO4)2 and very similar than that (2.189 (13) Å) observed (Murphy et al., 2006) for the rac-[Cu(phen)3](ClO4)2. Interestingly, the tetragonality (T =Rin/Rout = 0.9011) of 1 is shorter than that (0.952) of its rac-[Cu(5,6-dmp)3](ClO4)2 analogue suggesting that the former complex 1 acquires a static stereochemistry. Also, the bite angles of 5,6-dmp ligands in 1 (80.60 (8), 78.35 (8), 75.18 (8)°) deviate significantly from the ideal angle of 90°, which is consistent with the distorted coordination geometry. The average value (78.04°) of bite angles is less than that (78.5 °) (Murphy et al., 2006) for the rac-[Cu(phen)3]2+ analogue, which is in completely agreement with the stronger coordination of the 5,6-dmp ligand.
The hexafluorophosphate ion and acetonitrile solvent are not involved in the coordination sphere of the Cu ion, but are in the
In the supramolecular network there are C—H···F and C—H···N intermolecular interactions of type hydrogen bond (Table 2) that help stabilize crystal packing (Fig. 2). The intermolecular interactions C1A—H1A..N3, C59—H59..F4 and C8B—H8B··· F1 are forming the R33(16) motif. In addition, the hydrogen bond type formed from the donor-aceptor atoms: C3—H3···F8, C9—H9..F11, C10—H10···F7, C9A—H9A···F7 and C10—H10..F8 are forming the R22(7), R12(4), R33(16) and C32 (7) motif's mainly (Etter et al., 1990). All these interactions lead to infinite three-dimensional network superstructure.For literature on metal complexes with phenanthroline-based ligands related to their intense luminescence, their capacity to interact with DNA and also in some cases the induction of DNA cleavage, see: Bencini & Lippolis (2010). For details of octahedral distortion and motifs, see: Ramakrishnan & Palaniandavar (2008); Murphy et al. (2006); Etter et al. (1990). For related literature [on what subject?], see: Clark & Reid (1995).
Data collection: CrysAlis CCD (Oxford Diffraction (2009); cell
CrysAlis RED (Oxford Diffraction 2009); data reduction: CrysAlis RED (Oxford Diffraction 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure and the atom labelling scheme for (1). Displacement ellipsoids are draw at the 50% probability level and H atoms are shown as circles of arbitrary size. | |
Fig. 2. Intermolecular contacts of type hydrogen bond (dashed lines) in the crystal of (1,) forming infinite ribbons of R33(16), R22(7), R12(4), R33(16) and C32 (7) motif's. |
[Cu(C14H12N2)3](PF6)2·C2H3N | F(000) = 2076 |
Mr = 1019.3 | Dx = 1.557 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8566 (3) Å | Cell parameters from 6486 reflections |
b = 19.9317 (7) Å | θ = 3.4–26.0° |
c = 22.1822 (6) Å | µ = 0.67 mm−1 |
β = 93.603 (3)° | T = 130 K |
V = 4349.3 (2) Å3 | Block, blue |
Z = 4 | 0.34 × 0.21 × 0.09 mm |
Oxford Diffraction Xcalibur, Atlas, Gemini diffractometer | 8596 independent reflections |
Graphite monochromator | 5782 reflections with I > 2σ(I) |
Detector resolution: 10.4685 pixels mm-1 | Rint = 0.037 |
ω scans | θmax = 26.1°, θmin = 3.4° |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | h = −11→12 |
Tmin = 0.643, Tmax = 0.84 | k = −24→19 |
20467 measured reflections | l = −27→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3 |
8596 reflections | (Δ/σ)max = 0.001 |
602 parameters | Δρmax = 0.99 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[Cu(C14H12N2)3](PF6)2·C2H3N | V = 4349.3 (2) Å3 |
Mr = 1019.3 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.8566 (3) Å | µ = 0.67 mm−1 |
b = 19.9317 (7) Å | T = 130 K |
c = 22.1822 (6) Å | 0.34 × 0.21 × 0.09 mm |
β = 93.603 (3)° |
Oxford Diffraction Xcalibur, Atlas, Gemini diffractometer | 8596 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | 5782 reflections with I > 2σ(I) |
Tmin = 0.643, Tmax = 0.84 | Rint = 0.037 |
20467 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.99 e Å−3 |
8596 reflections | Δρmin = −0.42 e Å−3 |
602 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5532 (3) | 0.21466 (13) | 0.11579 (11) | 0.0210 (6) | |
H1 | 0.6285 | 0.2048 | 0.0926 | 0.025* | |
C1A | 0.3305 (3) | 0.27265 (14) | −0.13015 (10) | 0.0219 (6) | |
H1A | 0.2777 | 0.234 | −0.1227 | 0.026* | |
C1B | 0.7496 (3) | 0.24812 (15) | −0.03627 (11) | 0.0297 (7) | |
H1B | 0.7672 | 0.2916 | −0.0201 | 0.036* | |
C2 | 0.5593 (3) | 0.19719 (14) | 0.17668 (10) | 0.0245 (6) | |
H2 | 0.6372 | 0.175 | 0.1945 | 0.029* | |
C2A | 0.3324 (3) | 0.29670 (14) | −0.18916 (10) | 0.0245 (6) | |
H2A | 0.2821 | 0.2744 | −0.2212 | 0.029* | |
C2B | 0.8519 (3) | 0.21597 (17) | −0.06489 (12) | 0.0355 (8) | |
H2B | 0.9374 | 0.2372 | −0.0681 | 0.043* | |
C3 | 0.4527 (3) | 0.21216 (14) | 0.21058 (11) | 0.0263 (6) | |
H3 | 0.4563 | 0.2002 | 0.2521 | 0.032* | |
C3A | 0.4067 (3) | 0.35210 (14) | −0.20058 (11) | 0.0243 (6) | |
H3A | 0.4094 | 0.3683 | −0.2408 | 0.029* | |
C3B | 0.8290 (3) | 0.15336 (16) | −0.08846 (11) | 0.0316 (7) | |
H3B | 0.8985 | 0.1309 | −0.1083 | 0.038* | |
C4 | 0.3372 (3) | 0.24522 (12) | 0.18435 (10) | 0.0188 (6) | |
C4A | 0.4801 (3) | 0.38584 (13) | −0.15286 (10) | 0.0201 (6) | |
C4B | 0.7020 (3) | 0.12232 (14) | −0.08313 (10) | 0.0250 (6) | |
C5 | 0.2224 (3) | 0.26558 (14) | 0.21789 (11) | 0.0244 (6) | |
C5A | 0.5594 (3) | 0.44604 (14) | −0.16013 (11) | 0.0249 (6) | |
C5B | 0.6704 (3) | 0.05518 (15) | −0.10550 (11) | 0.0310 (7) | |
C6 | 0.1182 (3) | 0.30107 (13) | 0.19016 (11) | 0.0241 (6) | |
C6A | 0.6233 (3) | 0.47694 (13) | −0.11138 (11) | 0.0223 (6) | |
C6B | 0.5512 (3) | 0.02559 (14) | −0.09430 (11) | 0.0295 (7) | |
C7 | 0.1167 (3) | 0.31453 (13) | 0.12576 (10) | 0.0203 (6) | |
C7A | 0.6171 (3) | 0.44820 (13) | −0.05164 (11) | 0.0201 (6) | |
C7B | 0.4483 (3) | 0.06267 (13) | −0.06392 (10) | 0.0239 (6) | |
C8 | 0.0110 (3) | 0.34946 (13) | 0.09339 (12) | 0.0258 (6) | |
H8 | −0.0647 | 0.3654 | 0.1137 | 0.031* | |
C8A | 0.6846 (3) | 0.47501 (14) | 0.00109 (11) | 0.0247 (6) | |
H8A | 0.7379 | 0.5145 | −0.0014 | 0.03* | |
C8B | 0.3204 (3) | 0.03597 (15) | −0.05259 (11) | 0.0329 (7) | |
H8B | 0.299 | −0.009 | −0.0636 | 0.039* | |
C9 | 0.0173 (3) | 0.36040 (14) | 0.03297 (12) | 0.0269 (6) | |
H9 | −0.0529 | 0.3846 | 0.0112 | 0.032* | |
C9A | 0.6732 (3) | 0.44432 (14) | 0.05564 (11) | 0.0263 (6) | |
H9A | 0.719 | 0.4622 | 0.091 | 0.032* | |
C9B | 0.2267 (3) | 0.07456 (16) | −0.02572 (12) | 0.0341 (7) | |
H9B | 0.1411 | 0.0562 | −0.0171 | 0.041* | |
C10 | 0.1275 (3) | 0.33591 (13) | 0.00339 (11) | 0.0229 (6) | |
H10 | 0.1298 | 0.3431 | −0.0389 | 0.028* | |
C10A | 0.5942 (3) | 0.38676 (14) | 0.05904 (11) | 0.0238 (6) | |
H10A | 0.5863 | 0.3662 | 0.0973 | 0.029* | |
C10B | 0.2580 (3) | 0.14107 (14) | −0.01109 (11) | 0.0279 (7) | |
H10B | 0.1914 | 0.168 | 0.0064 | 0.033* | |
C11 | 0.2236 (3) | 0.29286 (12) | 0.09263 (10) | 0.0172 (5) | |
C11A | 0.5413 (3) | 0.38987 (13) | −0.04406 (10) | 0.0182 (6) | |
C11B | 0.4733 (3) | 0.12973 (13) | −0.04594 (10) | 0.0203 (6) | |
C12 | 0.3380 (3) | 0.25989 (12) | 0.12250 (10) | 0.0164 (5) | |
C12A | 0.4711 (2) | 0.35829 (12) | −0.09492 (10) | 0.0171 (5) | |
C12B | 0.6041 (3) | 0.15872 (13) | −0.05341 (10) | 0.0194 (6) | |
C13 | 0.2285 (3) | 0.24542 (17) | 0.28391 (11) | 0.0393 (8) | |
H13A | 0.1479 | 0.2624 | 0.3026 | 0.059* | |
H13B | 0.3104 | 0.2644 | 0.3047 | 0.059* | |
H13C | 0.2313 | 0.1964 | 0.2871 | 0.059* | |
C13A | 0.5722 (3) | 0.47206 (16) | −0.22359 (11) | 0.0389 (8) | |
H13D | 0.6152 | 0.5164 | −0.2218 | 0.058* | |
H13E | 0.4816 | 0.4756 | −0.2443 | 0.058* | |
H13F | 0.628 | 0.4411 | −0.2458 | 0.058* | |
C13B | 0.7767 (4) | 0.02161 (19) | −0.14158 (15) | 0.0549 (10) | |
H13G | 0.8516 | 0.0057 | −0.1141 | 0.082* | |
H13H | 0.8114 | 0.0539 | −0.1701 | 0.082* | |
H13I | 0.7358 | −0.0166 | −0.1638 | 0.082* | |
C14 | 0.0007 (3) | 0.32836 (16) | 0.22315 (12) | 0.0369 (7) | |
H14A | 0.0139 | 0.3174 | 0.2662 | 0.055* | |
H14B | −0.0842 | 0.3082 | 0.2065 | 0.055* | |
H14C | −0.0037 | 0.3772 | 0.2182 | 0.055* | |
C14A | 0.7017 (3) | 0.54104 (14) | −0.11791 (13) | 0.0321 (7) | |
H14D | 0.7988 | 0.5308 | −0.1188 | 0.048* | |
H14E | 0.6869 | 0.5706 | −0.0836 | 0.048* | |
H14F | 0.6705 | 0.5634 | −0.1556 | 0.048* | |
C14B | 0.5192 (4) | −0.04628 (15) | −0.11287 (13) | 0.0424 (8) | |
H14G | 0.4664 | −0.0465 | −0.1518 | 0.064* | |
H14H | 0.4663 | −0.0677 | −0.0822 | 0.064* | |
H14I | 0.6042 | −0.071 | −0.1166 | 0.064* | |
C59 | 0.2641 (4) | 0.05070 (17) | 0.78344 (15) | 0.0481 (9) | |
H59A | 0.3583 | 0.0615 | 0.7967 | 0.072* | |
H59B | 0.258 | 0.0423 | 0.7398 | 0.072* | |
H59C | 0.2352 | 0.0106 | 0.8047 | 0.072* | |
C61 | 0.1786 (5) | 0.1053 (2) | 0.7965 (2) | 0.0732 (13) | |
Cu1 | 0.42728 (3) | 0.267704 (15) | 0.001112 (12) | 0.01713 (9) | |
N1 | 0.4453 (2) | 0.24472 (10) | 0.08931 (8) | 0.0180 (5) | |
N1A | 0.3996 (2) | 0.30174 (10) | −0.08428 (8) | 0.0179 (5) | |
N1B | 0.6283 (2) | 0.22133 (11) | −0.03035 (9) | 0.0238 (5) | |
N2 | 0.2294 (2) | 0.30295 (10) | 0.03186 (8) | 0.0190 (5) | |
N2A | 0.5294 (2) | 0.35941 (11) | 0.01066 (8) | 0.0198 (5) | |
N2B | 0.3779 (2) | 0.16806 (11) | −0.02082 (8) | 0.0215 (5) | |
N3 | 0.1085 (5) | 0.1501 (2) | 0.8097 (2) | 0.1129 (16) | |
P1 | 0.93016 (7) | 0.12973 (4) | 0.10542 (3) | 0.02482 (17) | |
P2 | 0.03660 (8) | 0.42966 (4) | 0.84305 (3) | 0.02755 (18) | |
F1 | 0.78807 (15) | 0.12757 (8) | 0.06591 (7) | 0.0332 (4) | |
F2 | 0.98902 (18) | 0.18154 (10) | 0.05951 (7) | 0.0497 (5) | |
F3 | 0.98123 (19) | 0.06887 (10) | 0.06639 (9) | 0.0575 (6) | |
F4 | 0.8699 (2) | 0.07824 (10) | 0.15167 (7) | 0.0652 (7) | |
F5 | 0.87735 (18) | 0.19075 (9) | 0.14395 (8) | 0.0497 (5) | |
F6 | 1.07090 (19) | 0.13123 (9) | 0.14446 (8) | 0.0535 (5) | |
F7 | 0.18126 (16) | 0.42809 (8) | 0.88046 (7) | 0.0390 (4) | |
F8 | 0.02636 (18) | 0.34994 (8) | 0.85120 (7) | 0.0404 (4) | |
F9 | 0.10949 (18) | 0.41899 (9) | 0.78168 (6) | 0.0397 (4) | |
F10 | 0.0491 (2) | 0.50900 (9) | 0.83575 (7) | 0.0510 (5) | |
F11 | −0.03529 (19) | 0.44029 (10) | 0.90485 (7) | 0.0470 (5) | |
F12 | −0.10720 (18) | 0.43035 (11) | 0.80643 (7) | 0.0530 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0203 (14) | 0.0184 (14) | 0.0242 (13) | 0.0031 (12) | −0.0003 (11) | −0.0012 (11) |
C1A | 0.0193 (14) | 0.0213 (15) | 0.0249 (13) | 0.0001 (12) | −0.0006 (10) | −0.0044 (12) |
C1B | 0.0302 (17) | 0.0305 (17) | 0.0275 (14) | −0.0063 (14) | −0.0047 (12) | 0.0021 (12) |
C2 | 0.0265 (15) | 0.0237 (15) | 0.0226 (13) | 0.0053 (13) | −0.0050 (11) | −0.0008 (12) |
C2A | 0.0258 (15) | 0.0287 (16) | 0.0183 (12) | 0.0031 (13) | −0.0046 (11) | −0.0034 (12) |
C2B | 0.0232 (16) | 0.052 (2) | 0.0314 (15) | −0.0040 (15) | 0.0008 (12) | 0.0102 (15) |
C3 | 0.0383 (17) | 0.0225 (15) | 0.0174 (12) | −0.0008 (13) | −0.0037 (12) | 0.0009 (11) |
C3A | 0.0247 (15) | 0.0303 (16) | 0.0179 (12) | 0.0037 (13) | 0.0022 (11) | 0.0017 (12) |
C3B | 0.0266 (17) | 0.044 (2) | 0.0242 (14) | 0.0089 (15) | 0.0045 (12) | 0.0069 (14) |
C4 | 0.0238 (15) | 0.0133 (13) | 0.0196 (12) | −0.0035 (11) | 0.0033 (10) | −0.0020 (10) |
C4A | 0.0177 (14) | 0.0220 (15) | 0.0208 (12) | 0.0052 (12) | 0.0033 (10) | 0.0000 (11) |
C4B | 0.0289 (16) | 0.0288 (16) | 0.0173 (12) | 0.0088 (14) | 0.0004 (11) | 0.0032 (12) |
C5 | 0.0319 (16) | 0.0211 (15) | 0.0209 (12) | −0.0051 (13) | 0.0077 (11) | −0.0022 (12) |
C5A | 0.0223 (15) | 0.0238 (15) | 0.0293 (14) | 0.0016 (13) | 0.0066 (11) | 0.0048 (12) |
C5B | 0.0417 (19) | 0.0269 (17) | 0.0245 (14) | 0.0162 (15) | 0.0030 (13) | −0.0030 (13) |
C6 | 0.0283 (16) | 0.0182 (14) | 0.0267 (13) | −0.0025 (13) | 0.0101 (11) | 0.0000 (12) |
C6A | 0.0192 (14) | 0.0185 (14) | 0.0301 (14) | 0.0027 (12) | 0.0081 (11) | 0.0010 (12) |
C6B | 0.0449 (19) | 0.0181 (15) | 0.0253 (14) | 0.0088 (14) | 0.0003 (13) | −0.0023 (12) |
C7 | 0.0236 (15) | 0.0138 (13) | 0.0239 (13) | −0.0031 (12) | 0.0053 (11) | −0.0033 (11) |
C7A | 0.0136 (14) | 0.0181 (14) | 0.0286 (13) | 0.0038 (11) | 0.0029 (10) | −0.0044 (11) |
C7B | 0.0355 (17) | 0.0190 (14) | 0.0171 (12) | 0.0013 (13) | 0.0000 (11) | −0.0005 (11) |
C8 | 0.0204 (15) | 0.0207 (15) | 0.0368 (15) | −0.0003 (12) | 0.0049 (12) | −0.0004 (13) |
C8A | 0.0203 (15) | 0.0170 (14) | 0.0367 (15) | 0.0007 (12) | 0.0018 (11) | −0.0070 (12) |
C8B | 0.049 (2) | 0.0219 (16) | 0.0271 (14) | −0.0041 (15) | −0.0003 (13) | −0.0005 (13) |
C9 | 0.0199 (15) | 0.0216 (15) | 0.0385 (16) | 0.0040 (12) | −0.0041 (12) | 0.0022 (13) |
C9A | 0.0235 (15) | 0.0270 (16) | 0.0278 (14) | 0.0007 (13) | −0.0040 (11) | −0.0116 (13) |
C9B | 0.0319 (17) | 0.0358 (18) | 0.0353 (15) | −0.0085 (15) | 0.0079 (13) | 0.0044 (14) |
C10 | 0.0241 (15) | 0.0206 (15) | 0.0233 (13) | 0.0000 (13) | −0.0045 (11) | 0.0015 (12) |
C10A | 0.0270 (16) | 0.0247 (15) | 0.0193 (12) | 0.0047 (13) | −0.0002 (11) | −0.0045 (12) |
C10B | 0.0306 (17) | 0.0279 (16) | 0.0258 (14) | 0.0012 (14) | 0.0075 (12) | 0.0003 (12) |
C11 | 0.0215 (14) | 0.0106 (12) | 0.0194 (12) | −0.0035 (11) | 0.0013 (10) | −0.0029 (10) |
C11A | 0.0168 (14) | 0.0167 (14) | 0.0213 (12) | 0.0035 (11) | 0.0019 (10) | 0.0001 (11) |
C11B | 0.0284 (16) | 0.0182 (14) | 0.0144 (11) | 0.0056 (12) | 0.0012 (11) | 0.0024 (11) |
C12 | 0.0208 (14) | 0.0115 (12) | 0.0168 (11) | −0.0034 (11) | 0.0002 (10) | −0.0028 (10) |
C12A | 0.0147 (13) | 0.0167 (14) | 0.0199 (12) | 0.0027 (11) | 0.0019 (10) | −0.0008 (11) |
C12B | 0.0257 (15) | 0.0193 (14) | 0.0130 (11) | 0.0067 (12) | 0.0000 (10) | 0.0013 (11) |
C13 | 0.045 (2) | 0.051 (2) | 0.0232 (14) | 0.0070 (17) | 0.0122 (13) | 0.0049 (14) |
C13A | 0.048 (2) | 0.0389 (19) | 0.0305 (15) | −0.0091 (16) | 0.0043 (14) | 0.0113 (14) |
C13B | 0.060 (2) | 0.049 (2) | 0.058 (2) | 0.026 (2) | 0.0203 (17) | −0.0133 (18) |
C14 | 0.0410 (19) | 0.0337 (18) | 0.0382 (16) | 0.0100 (16) | 0.0205 (14) | 0.0043 (14) |
C14A | 0.0313 (17) | 0.0229 (16) | 0.0429 (16) | −0.0037 (14) | 0.0078 (13) | 0.0012 (14) |
C14B | 0.063 (2) | 0.0213 (17) | 0.0431 (17) | 0.0065 (16) | 0.0057 (16) | −0.0087 (14) |
C59 | 0.047 (2) | 0.042 (2) | 0.057 (2) | −0.0012 (18) | 0.0131 (17) | 0.0123 (17) |
C61 | 0.072 (3) | 0.049 (3) | 0.098 (3) | −0.019 (3) | 0.008 (3) | 0.003 (3) |
Cu1 | 0.02005 (17) | 0.01618 (17) | 0.01505 (15) | −0.00045 (14) | 0.00014 (11) | −0.00118 (13) |
N1 | 0.0195 (12) | 0.0158 (11) | 0.0186 (10) | 0.0003 (9) | 0.0006 (8) | −0.0018 (9) |
N1A | 0.0167 (11) | 0.0161 (11) | 0.0207 (10) | 0.0006 (9) | 0.0004 (8) | −0.0025 (9) |
N1B | 0.0301 (13) | 0.0202 (13) | 0.0204 (10) | −0.0002 (11) | −0.0029 (9) | −0.0003 (10) |
N2 | 0.0210 (12) | 0.0169 (12) | 0.0189 (10) | 0.0002 (10) | −0.0010 (9) | −0.0033 (9) |
N2A | 0.0181 (12) | 0.0201 (12) | 0.0213 (10) | 0.0004 (10) | 0.0016 (9) | −0.0033 (9) |
N2B | 0.0262 (13) | 0.0224 (12) | 0.0162 (10) | 0.0039 (11) | 0.0036 (9) | 0.0002 (9) |
N3 | 0.111 (4) | 0.078 (3) | 0.152 (4) | −0.009 (3) | 0.023 (3) | −0.022 (3) |
P1 | 0.0245 (4) | 0.0236 (4) | 0.0261 (3) | 0.0015 (3) | −0.0006 (3) | 0.0013 (3) |
P2 | 0.0312 (4) | 0.0258 (4) | 0.0251 (4) | 0.0061 (3) | −0.0020 (3) | −0.0028 (3) |
F1 | 0.0238 (9) | 0.0352 (10) | 0.0400 (9) | 0.0040 (8) | −0.0027 (7) | −0.0013 (8) |
F2 | 0.0442 (11) | 0.0628 (13) | 0.0426 (9) | −0.0153 (10) | 0.0059 (8) | 0.0144 (9) |
F3 | 0.0413 (11) | 0.0521 (13) | 0.0776 (13) | 0.0195 (10) | −0.0091 (10) | −0.0309 (11) |
F4 | 0.0966 (17) | 0.0602 (14) | 0.0367 (9) | −0.0424 (13) | −0.0132 (10) | 0.0215 (10) |
F5 | 0.0388 (11) | 0.0458 (12) | 0.0659 (11) | −0.0044 (9) | 0.0132 (9) | −0.0276 (10) |
F6 | 0.0442 (12) | 0.0435 (12) | 0.0688 (12) | 0.0025 (9) | −0.0291 (10) | −0.0036 (10) |
F7 | 0.0357 (10) | 0.0354 (10) | 0.0443 (9) | −0.0017 (8) | −0.0093 (8) | −0.0096 (8) |
F8 | 0.0501 (12) | 0.0291 (10) | 0.0409 (9) | −0.0071 (9) | −0.0069 (8) | −0.0016 (8) |
F9 | 0.0519 (11) | 0.0383 (11) | 0.0295 (8) | 0.0069 (9) | 0.0076 (8) | −0.0026 (8) |
F10 | 0.0838 (15) | 0.0231 (10) | 0.0463 (10) | 0.0131 (10) | 0.0066 (9) | 0.0018 (8) |
F11 | 0.0539 (12) | 0.0581 (13) | 0.0299 (8) | 0.0206 (10) | 0.0096 (8) | 0.0007 (8) |
F12 | 0.0383 (11) | 0.0735 (14) | 0.0452 (10) | 0.0160 (10) | −0.0131 (8) | −0.0013 (10) |
C1—N1 | 1.326 (3) | C10—H10 | 0.95 |
C1—C2 | 1.392 (3) | C10A—N2A | 1.331 (3) |
C1—H1 | 0.95 | C10A—H10A | 0.95 |
C1A—N1A | 1.322 (3) | C10B—N2B | 1.328 (4) |
C1A—C2A | 1.395 (3) | C10B—H10B | 0.95 |
C1A—H1A | 0.95 | C11—N2 | 1.368 (3) |
C1B—N1B | 1.323 (3) | C11—C12 | 1.431 (3) |
C1B—C2B | 1.383 (4) | C11A—N2A | 1.369 (3) |
C1B—H1B | 0.95 | C11A—C12A | 1.432 (3) |
C2—C3 | 1.363 (4) | C11B—N2B | 1.358 (3) |
C2—H2 | 0.95 | C11B—C12B | 1.432 (4) |
C2A—C3A | 1.357 (4) | C12—N1 | 1.360 (3) |
C2A—H2A | 0.95 | C12A—N1A | 1.358 (3) |
C2B—C3B | 1.366 (4) | C12B—N1B | 1.364 (3) |
C2B—H2B | 0.95 | C13—H13A | 0.98 |
C3—C4 | 1.409 (4) | C13—H13B | 0.98 |
C3—H3 | 0.95 | C13—H13C | 0.98 |
C3A—C4A | 1.414 (3) | C13A—H13D | 0.98 |
C3A—H3A | 0.95 | C13A—H13E | 0.98 |
C3B—C4B | 1.408 (4) | C13A—H13F | 0.98 |
C3B—H3B | 0.95 | C13B—H13G | 0.98 |
C4—C12 | 1.403 (3) | C13B—H13H | 0.98 |
C4—C5 | 1.451 (4) | C13B—H13I | 0.98 |
C4A—C12A | 1.405 (3) | C14—H14A | 0.98 |
C4A—C5A | 1.447 (4) | C14—H14B | 0.98 |
C4B—C12B | 1.404 (4) | C14—H14C | 0.98 |
C4B—C5B | 1.454 (4) | C14A—H14D | 0.98 |
C5—C6 | 1.361 (4) | C14A—H14E | 0.98 |
C5—C13 | 1.516 (3) | C14A—H14F | 0.98 |
C5A—C6A | 1.364 (4) | C14B—H14G | 0.98 |
C5A—C13A | 1.513 (3) | C14B—H14H | 0.98 |
C5B—C6B | 1.352 (4) | C14B—H14I | 0.98 |
C5B—C13B | 1.513 (4) | C59—C61 | 1.418 (6) |
C6—C7 | 1.453 (3) | C59—H59A | 0.98 |
C6—C14 | 1.509 (4) | C59—H59B | 0.98 |
C6A—C7A | 1.448 (3) | C59—H59C | 0.98 |
C6A—C14A | 1.505 (4) | C61—N3 | 1.176 (6) |
C6B—C7B | 1.454 (4) | Cu1—N1 | 2.0063 (19) |
C6B—C14B | 1.518 (4) | Cu1—N1A | 2.0144 (19) |
C7—C11 | 1.391 (3) | Cu1—N2A | 2.091 (2) |
C7—C8 | 1.411 (4) | Cu1—N2B | 2.095 (2) |
C7A—C11A | 1.398 (4) | Cu1—N2 | 2.220 (2) |
C7A—C8A | 1.413 (3) | Cu1—N1B | 2.333 (2) |
C7B—C8B | 1.405 (4) | P1—F2 | 1.5857 (18) |
C7B—C11B | 1.412 (4) | P1—F6 | 1.5889 (17) |
C8—C9 | 1.363 (4) | P1—F3 | 1.5904 (19) |
C8—H8 | 0.95 | P1—F4 | 1.5923 (19) |
C8A—C9A | 1.367 (4) | P1—F5 | 1.5927 (18) |
C8A—H8A | 0.95 | P1—F1 | 1.6053 (15) |
C8B—C9B | 1.367 (4) | P1—F1 | 1.6053 (15) |
C8B—H8B | 0.95 | P2—F12 | 1.5888 (17) |
C9—C10 | 1.392 (4) | P2—F9 | 1.5930 (17) |
C9—H9 | 0.95 | P2—F10 | 1.5954 (19) |
C9A—C10A | 1.391 (4) | P2—F11 | 1.5963 (17) |
C9A—H9A | 0.95 | P2—F8 | 1.6030 (18) |
C9B—C10B | 1.395 (4) | P2—F7 | 1.6044 (16) |
C9B—H9B | 0.95 | F1—F1 | 0.000 (6) |
C10—N2 | 1.327 (3) | ||
N1—C1—C2 | 121.8 (2) | C5—C13—H13C | 109.5 |
N1—C1—H1 | 119.1 | H13A—C13—H13C | 109.5 |
C2—C1—H1 | 119.1 | H13B—C13—H13C | 109.5 |
N1A—C1A—C2A | 122.3 (3) | C5A—C13A—H13D | 109.5 |
N1A—C1A—H1A | 118.8 | C5A—C13A—H13E | 109.5 |
C2A—C1A—H1A | 118.8 | H13D—C13A—H13E | 109.5 |
N1B—C1B—C2B | 123.2 (3) | C5A—C13A—H13F | 109.5 |
N1B—C1B—H1B | 118.4 | H13D—C13A—H13F | 109.5 |
C2B—C1B—H1B | 118.4 | H13E—C13A—H13F | 109.5 |
C3—C2—C1 | 119.5 (2) | C5B—C13B—H13G | 109.5 |
C3—C2—H2 | 120.2 | C5B—C13B—H13H | 109.5 |
C1—C2—H2 | 120.2 | H13G—C13B—H13H | 109.5 |
C3A—C2A—C1A | 119.6 (2) | C5B—C13B—H13I | 109.5 |
C3A—C2A—H2A | 120.2 | H13G—C13B—H13I | 109.5 |
C1A—C2A—H2A | 120.2 | H13H—C13B—H13I | 109.5 |
C3B—C2B—C1B | 119.4 (3) | C6—C14—H14A | 109.5 |
C3B—C2B—H2B | 120.3 | C6—C14—H14B | 109.5 |
C1B—C2B—H2B | 120.3 | H14A—C14—H14B | 109.5 |
C2—C3—C4 | 120.4 (2) | C6—C14—H14C | 109.5 |
C2—C3—H3 | 119.8 | H14A—C14—H14C | 109.5 |
C4—C3—H3 | 119.8 | H14B—C14—H14C | 109.5 |
C2A—C3A—C4A | 120.2 (2) | C6A—C14A—H14D | 109.5 |
C2A—C3A—H3A | 119.9 | C6A—C14A—H14E | 109.5 |
C4A—C3A—H3A | 119.9 | H14D—C14A—H14E | 109.5 |
C2B—C3B—C4B | 119.7 (3) | C6A—C14A—H14F | 109.5 |
C2B—C3B—H3B | 120.1 | H14D—C14A—H14F | 109.5 |
C4B—C3B—H3B | 120.1 | H14E—C14A—H14F | 109.5 |
C12—C4—C3 | 116.5 (2) | C6B—C14B—H14G | 109.5 |
C12—C4—C5 | 119.7 (2) | C6B—C14B—H14H | 109.5 |
C3—C4—C5 | 123.7 (2) | H14G—C14B—H14H | 109.5 |
C12A—C4A—C3A | 116.1 (2) | C6B—C14B—H14I | 109.5 |
C12A—C4A—C5A | 119.4 (2) | H14G—C14B—H14I | 109.5 |
C3A—C4A—C5A | 124.4 (2) | H14H—C14B—H14I | 109.5 |
C12B—C4B—C3B | 116.9 (3) | C61—C59—H59A | 109.5 |
C12B—C4B—C5B | 119.8 (3) | C61—C59—H59B | 109.5 |
C3B—C4B—C5B | 123.2 (3) | H59A—C59—H59B | 109.5 |
C6—C5—C4 | 120.3 (2) | C61—C59—H59C | 109.5 |
C6—C5—C13 | 123.9 (2) | H59A—C59—H59C | 109.5 |
C4—C5—C13 | 115.8 (2) | H59B—C59—H59C | 109.5 |
C6A—C5A—C4A | 120.8 (2) | N3—C61—C59 | 177.5 (5) |
C6A—C5A—C13A | 121.5 (3) | N1—Cu1—N1A | 172.89 (8) |
C4A—C5A—C13A | 117.7 (2) | N1—Cu1—N2A | 95.07 (8) |
C6B—C5B—C4B | 120.6 (3) | N1A—Cu1—N2A | 80.60 (8) |
C6B—C5B—C13B | 122.9 (3) | N1—Cu1—N2B | 90.86 (8) |
C4B—C5B—C13B | 116.6 (3) | N1A—Cu1—N2B | 94.88 (8) |
C5—C6—C7 | 120.1 (2) | N2A—Cu1—N2B | 162.88 (9) |
C5—C6—C14 | 123.2 (2) | N1—Cu1—N2 | 78.35 (8) |
C7—C6—C14 | 116.7 (2) | N1A—Cu1—N2 | 96.47 (8) |
C5A—C6A—C7A | 120.2 (2) | N2A—Cu1—N2 | 96.82 (8) |
C5A—C6A—C14A | 121.4 (2) | N2B—Cu1—N2 | 100.11 (8) |
C7A—C6A—C14A | 118.4 (2) | N1—Cu1—N1B | 100.17 (8) |
C5B—C6B—C7B | 120.2 (3) | N1A—Cu1—N1B | 85.38 (8) |
C5B—C6B—C14B | 122.0 (3) | N2A—Cu1—N1B | 87.95 (8) |
C7B—C6B—C14B | 117.8 (3) | N2B—Cu1—N1B | 75.18 (8) |
C11—C7—C8 | 116.4 (2) | N2—Cu1—N1B | 175.10 (8) |
C11—C7—C6 | 120.0 (2) | C1—N1—C12 | 119.4 (2) |
C8—C7—C6 | 123.6 (2) | C1—N1—Cu1 | 123.67 (17) |
C11A—C7A—C8A | 116.2 (2) | C12—N1—Cu1 | 116.96 (15) |
C11A—C7A—C6A | 119.5 (2) | C1A—N1A—C12A | 118.6 (2) |
C8A—C7A—C6A | 124.3 (2) | C1A—N1A—Cu1 | 127.48 (18) |
C8B—C7B—C11B | 116.8 (3) | C12A—N1A—Cu1 | 113.71 (14) |
C8B—C7B—C6B | 123.4 (3) | C1B—N1B—C12B | 118.1 (2) |
C11B—C7B—C6B | 119.8 (3) | C1B—N1B—Cu1 | 131.25 (19) |
C9—C8—C7 | 120.1 (3) | C12B—N1B—Cu1 | 110.03 (17) |
C9—C8—H8 | 120 | C10—N2—C11 | 117.7 (2) |
C7—C8—H8 | 120 | C10—N2—Cu1 | 131.61 (17) |
C9A—C8A—C7A | 120.2 (3) | C11—N2—Cu1 | 110.37 (15) |
C9A—C8A—H8A | 119.9 | C10A—N2A—C11A | 118.0 (2) |
C7A—C8A—H8A | 119.9 | C10A—N2A—Cu1 | 130.06 (18) |
C9B—C8B—C7B | 120.2 (3) | C11A—N2A—Cu1 | 111.44 (15) |
C9B—C8B—H8B | 119.9 | C10B—N2B—C11B | 119.0 (2) |
C7B—C8B—H8B | 119.9 | C10B—N2B—Cu1 | 122.84 (19) |
C8—C9—C10 | 119.5 (2) | C11B—N2B—Cu1 | 118.14 (18) |
C8—C9—H9 | 120.2 | F2—P1—F6 | 89.75 (10) |
C10—C9—H9 | 120.2 | F2—P1—F3 | 90.35 (11) |
C8A—C9A—C10A | 119.6 (2) | F6—P1—F3 | 90.90 (10) |
C8A—C9A—H9A | 120.2 | F2—P1—F4 | 179.41 (13) |
C10A—C9A—H9A | 120.2 | F6—P1—F4 | 90.54 (11) |
C8B—C9B—C10B | 119.4 (3) | F3—P1—F4 | 90.16 (12) |
C8B—C9B—H9B | 120.3 | F2—P1—F5 | 89.56 (11) |
C10B—C9B—H9B | 120.3 | F6—P1—F5 | 89.81 (10) |
N2—C10—C9 | 122.6 (2) | F3—P1—F5 | 179.28 (11) |
N2—C10—H10 | 118.7 | F4—P1—F5 | 89.92 (11) |
C9—C10—H10 | 118.7 | F2—P1—F1 | 90.50 (9) |
N2A—C10A—C9A | 122.4 (2) | F6—P1—F1 | 179.54 (11) |
N2A—C10A—H10A | 118.8 | F3—P1—F1 | 88.71 (9) |
C9A—C10A—H10A | 118.8 | F4—P1—F1 | 89.22 (10) |
N2B—C10B—C9B | 122.2 (3) | F5—P1—F1 | 90.58 (9) |
N2B—C10B—H10B | 118.9 | F2—P1—F1 | 90.50 (9) |
C9B—C10B—H10B | 118.9 | F6—P1—F1 | 179.54 (11) |
N2—C11—C7 | 123.7 (2) | F3—P1—F1 | 88.71 (9) |
N2—C11—C12 | 116.3 (2) | F4—P1—F1 | 89.22 (10) |
C7—C11—C12 | 119.9 (2) | F5—P1—F1 | 90.58 (9) |
N2A—C11A—C7A | 123.5 (2) | F1—P1—F1 | 0.00 (16) |
N2A—C11A—C12A | 116.1 (2) | F12—P2—F9 | 90.00 (9) |
C7A—C11A—C12A | 120.4 (2) | F12—P2—F10 | 90.66 (11) |
N2B—C11B—C7B | 122.3 (3) | F9—P2—F10 | 90.21 (10) |
N2B—C11B—C12B | 118.2 (2) | F12—P2—F11 | 90.46 (10) |
C7B—C11B—C12B | 119.5 (2) | F9—P2—F11 | 179.54 (11) |
N1—C12—C4 | 122.4 (2) | F10—P2—F11 | 89.82 (10) |
N1—C12—C11 | 117.9 (2) | F12—P2—F8 | 90.34 (10) |
C4—C12—C11 | 119.7 (2) | F9—P2—F8 | 89.95 (10) |
N1A—C12A—C4A | 123.1 (2) | F10—P2—F8 | 178.99 (10) |
N1A—C12A—C11A | 117.3 (2) | F11—P2—F8 | 90.01 (10) |
C4A—C12A—C11A | 119.6 (2) | F12—P2—F7 | 179.26 (12) |
N1B—C12B—C4B | 122.6 (3) | F9—P2—F7 | 90.32 (9) |
N1B—C12B—C11B | 117.6 (2) | F10—P2—F7 | 90.00 (10) |
C4B—C12B—C11B | 119.7 (2) | F11—P2—F7 | 89.22 (9) |
C5—C13—H13A | 109.5 | F8—P2—F7 | 89.00 (9) |
C5—C13—H13B | 109.5 | F1—F1—P1 | 0 (10) |
H13A—C13—H13B | 109.5 | ||
N1—C1—C2—C3 | −1.1 (4) | C11—C12—N1—C1 | 179.4 (2) |
N1A—C1A—C2A—C3A | −0.4 (4) | C4—C12—N1—Cu1 | 178.82 (18) |
N1B—C1B—C2B—C3B | −0.1 (4) | C11—C12—N1—Cu1 | −2.1 (3) |
C1—C2—C3—C4 | −0.2 (4) | N1A—Cu1—N1—C1 | −137.6 (6) |
C1A—C2A—C3A—C4A | −0.9 (4) | N2A—Cu1—N1—C1 | −85.4 (2) |
C1B—C2B—C3B—C4B | −0.2 (4) | N2B—Cu1—N1—C1 | 78.5 (2) |
C2—C3—C4—C12 | 1.4 (4) | N2—Cu1—N1—C1 | 178.7 (2) |
C2—C3—C4—C5 | −177.1 (3) | N1B—Cu1—N1—C1 | 3.4 (2) |
C2A—C3A—C4A—C12A | 0.4 (4) | N1A—Cu1—N1—C12 | 44.0 (8) |
C2A—C3A—C4A—C5A | −178.5 (3) | N2A—Cu1—N1—C12 | 96.21 (18) |
C2B—C3B—C4B—C12B | 0.3 (4) | N2B—Cu1—N1—C12 | −99.86 (18) |
C2B—C3B—C4B—C5B | −178.3 (2) | N2—Cu1—N1—C12 | 0.28 (17) |
C12—C4—C5—C6 | −2.6 (4) | N1B—Cu1—N1—C12 | −174.96 (17) |
C3—C4—C5—C6 | 175.9 (2) | C2A—C1A—N1A—C12A | 2.3 (4) |
C12—C4—C5—C13 | 178.0 (2) | C2A—C1A—N1A—Cu1 | −171.71 (19) |
C3—C4—C5—C13 | −3.6 (4) | C4A—C12A—N1A—C1A | −2.9 (4) |
C12A—C4A—C5A—C6A | −1.3 (4) | C11A—C12A—N1A—C1A | 178.0 (2) |
C3A—C4A—C5A—C6A | 177.6 (3) | C4A—C12A—N1A—Cu1 | 171.92 (19) |
C12A—C4A—C5A—C13A | 177.0 (2) | C11A—C12A—N1A—Cu1 | −7.2 (3) |
C3A—C4A—C5A—C13A | −4.2 (4) | N1—Cu1—N1A—C1A | −124.7 (6) |
C12B—C4B—C5B—C6B | −4.6 (4) | N2A—Cu1—N1A—C1A | −177.6 (2) |
C3B—C4B—C5B—C6B | 174.0 (2) | N2B—Cu1—N1A—C1A | 19.1 (2) |
C12B—C4B—C5B—C13B | 175.0 (2) | N2—Cu1—N1A—C1A | −81.7 (2) |
C3B—C4B—C5B—C13B | −6.4 (4) | N1B—Cu1—N1A—C1A | 93.7 (2) |
C4—C5—C6—C7 | 4.5 (4) | N1—Cu1—N1A—C12A | 61.1 (7) |
C13—C5—C6—C7 | −176.1 (3) | N2A—Cu1—N1A—C12A | 8.18 (17) |
C4—C5—C6—C14 | −175.3 (3) | N2B—Cu1—N1A—C12A | −155.17 (17) |
C13—C5—C6—C14 | 4.1 (4) | N2—Cu1—N1A—C12A | 104.05 (17) |
C4A—C5A—C6A—C7A | 2.6 (4) | N1B—Cu1—N1A—C12A | −80.50 (17) |
C13A—C5A—C6A—C7A | −175.6 (2) | C2B—C1B—N1B—C12B | 0.4 (4) |
C4A—C5A—C6A—C14A | −177.6 (2) | C2B—C1B—N1B—Cu1 | −169.13 (18) |
C13A—C5A—C6A—C14A | 4.2 (4) | C4B—C12B—N1B—C1B | −0.3 (3) |
C4B—C5B—C6B—C7B | 5.0 (4) | C11B—C12B—N1B—C1B | 179.0 (2) |
C13B—C5B—C6B—C7B | −174.6 (2) | C4B—C12B—N1B—Cu1 | 171.30 (17) |
C4B—C5B—C6B—C14B | −175.4 (2) | C11B—C12B—N1B—Cu1 | −9.3 (2) |
C13B—C5B—C6B—C14B | 5.1 (4) | N1—Cu1—N1B—C1B | −93.7 (2) |
C5—C6—C7—C11 | −1.9 (4) | N1A—Cu1—N1B—C1B | 81.8 (2) |
C14—C6—C7—C11 | 177.9 (2) | N2A—Cu1—N1B—C1B | 1.1 (2) |
C5—C6—C7—C8 | 178.4 (2) | N2B—Cu1—N1B—C1B | 178.1 (2) |
C14—C6—C7—C8 | −1.8 (4) | N2—Cu1—N1B—C1B | −165.8 (7) |
C5A—C6A—C7A—C11A | −2.2 (4) | N1—Cu1—N1B—C12B | 96.13 (15) |
C14A—C6A—C7A—C11A | 177.9 (2) | N1A—Cu1—N1B—C12B | −88.35 (15) |
C5A—C6A—C7A—C8A | 177.3 (3) | N2A—Cu1—N1B—C12B | −169.08 (15) |
C14A—C6A—C7A—C8A | −2.6 (4) | N2B—Cu1—N1B—C12B | 7.95 (14) |
C5B—C6B—C7B—C8B | 177.8 (2) | N2—Cu1—N1B—C12B | 24.1 (8) |
C14B—C6B—C7B—C8B | −1.8 (4) | C9—C10—N2—C11 | 0.4 (4) |
C5B—C6B—C7B—C11B | −0.2 (4) | C9—C10—N2—Cu1 | −172.33 (19) |
C14B—C6B—C7B—C11B | −179.8 (2) | C7—C11—N2—C10 | 0.7 (4) |
C11—C7—C8—C9 | −0.1 (4) | C12—C11—N2—C10 | −177.2 (2) |
C6—C7—C8—C9 | 179.7 (3) | C7—C11—N2—Cu1 | 174.89 (19) |
C11A—C7A—C8A—C9A | −0.3 (4) | C12—C11—N2—Cu1 | −3.0 (3) |
C6A—C7A—C8A—C9A | −179.8 (2) | N1—Cu1—N2—C10 | 174.6 (2) |
C11B—C7B—C8B—C9B | 0.4 (4) | N1A—Cu1—N2—C10 | −0.4 (2) |
C6B—C7B—C8B—C9B | −177.7 (2) | N2A—Cu1—N2—C10 | 80.8 (2) |
C7—C8—C9—C10 | 1.1 (4) | N2B—Cu1—N2—C10 | −96.6 (2) |
C7A—C8A—C9A—C10A | −0.4 (4) | N1B—Cu1—N2—C10 | −112.4 (8) |
C7B—C8B—C9B—C10B | 1.6 (4) | N1—Cu1—N2—C11 | 1.53 (16) |
C8—C9—C10—N2 | −1.3 (4) | N1A—Cu1—N2—C11 | −173.53 (16) |
C8A—C9A—C10A—N2A | 0.7 (4) | N2A—Cu1—N2—C11 | −92.28 (17) |
C8B—C9B—C10B—N2B | −1.9 (4) | N2B—Cu1—N2—C11 | 90.31 (16) |
C8—C7—C11—N2 | −0.9 (4) | N1B—Cu1—N2—C11 | 74.5 (8) |
C6—C7—C11—N2 | 179.4 (2) | C9A—C10A—N2A—C11A | −0.3 (4) |
C8—C7—C11—C12 | 177.0 (2) | C9A—C10A—N2A—Cu1 | 170.8 (2) |
C6—C7—C11—C12 | −2.8 (4) | C7A—C11A—N2A—C10A | −0.4 (4) |
C8A—C7A—C11A—N2A | 0.7 (4) | C12A—C11A—N2A—C10A | 179.3 (2) |
C6A—C7A—C11A—N2A | −179.7 (2) | C7A—C11A—N2A—Cu1 | −173.1 (2) |
C8A—C7A—C11A—C12A | −179.0 (2) | C12A—C11A—N2A—Cu1 | 6.6 (3) |
C6A—C7A—C11A—C12A | 0.6 (4) | N1—Cu1—N2A—C10A | 6.1 (2) |
C8B—C7B—C11B—N2B | −2.3 (3) | N1A—Cu1—N2A—C10A | −179.6 (2) |
C6B—C7B—C11B—N2B | 175.8 (2) | N2B—Cu1—N2A—C10A | −103.7 (3) |
C8B—C7B—C11B—C12B | 176.8 (2) | N2—Cu1—N2A—C10A | 85.0 (2) |
C6B—C7B—C11B—C12B | −5.1 (3) | N1B—Cu1—N2A—C10A | −93.9 (2) |
C3—C4—C12—N1 | −1.5 (4) | N1—Cu1—N2A—C11A | 177.71 (17) |
C5—C4—C12—N1 | 177.1 (2) | N1A—Cu1—N2A—C11A | −7.98 (16) |
C3—C4—C12—C11 | 179.4 (2) | N2B—Cu1—N2A—C11A | 67.9 (3) |
C5—C4—C12—C11 | −2.0 (4) | N2—Cu1—N2A—C11A | −103.45 (17) |
N2—C11—C12—N1 | 3.5 (3) | N1B—Cu1—N2A—C11A | 77.67 (17) |
C7—C11—C12—N1 | −174.5 (2) | C9B—C10B—N2B—C11B | 0.1 (4) |
N2—C11—C12—C4 | −177.3 (2) | C9B—C10B—N2B—Cu1 | −179.75 (19) |
C7—C11—C12—C4 | 4.6 (4) | C7B—C11B—N2B—C10B | 2.1 (3) |
C3A—C4A—C12A—N1A | 1.5 (4) | C12B—C11B—N2B—C10B | −177.0 (2) |
C5A—C4A—C12A—N1A | −179.5 (2) | C7B—C11B—N2B—Cu1 | −178.07 (17) |
C3A—C4A—C12A—C11A | −179.4 (2) | C12B—C11B—N2B—Cu1 | 2.8 (3) |
C5A—C4A—C12A—C11A | −0.4 (4) | N1—Cu1—N2B—C10B | 73.80 (19) |
N2A—C11A—C12A—N1A | 0.2 (3) | N1A—Cu1—N2B—C10B | −102.00 (19) |
C7A—C11A—C12A—N1A | 179.9 (2) | N2A—Cu1—N2B—C10B | −175.8 (2) |
N2A—C11A—C12A—C4A | −179.0 (2) | N2—Cu1—N2B—C10B | −4.52 (19) |
C7A—C11A—C12A—C4A | 0.7 (4) | N1B—Cu1—N2B—C10B | 174.1 (2) |
C3B—C4B—C12B—N1B | 0.0 (3) | N1—Cu1—N2B—C11B | −106.03 (17) |
C5B—C4B—C12B—N1B | 178.7 (2) | N1A—Cu1—N2B—C11B | 78.17 (17) |
C3B—C4B—C12B—C11B | −179.4 (2) | N2A—Cu1—N2B—C11B | 4.4 (4) |
C5B—C4B—C12B—C11B | −0.7 (3) | N2—Cu1—N2B—C11B | 175.65 (15) |
N2B—C11B—C12B—N1B | 5.2 (3) | N1B—Cu1—N2B—C11B | −5.73 (15) |
C7B—C11B—C12B—N1B | −174.0 (2) | F2—P1—F1—F1 | 0.00 (4) |
N2B—C11B—C12B—C4B | −175.4 (2) | F6—P1—F1—F1 | 0 (7) |
C7B—C11B—C12B—C4B | 5.4 (3) | F3—P1—F1—F1 | 0.00 (4) |
C2—C1—N1—C12 | 1.0 (4) | F4—P1—F1—F1 | 0.00 (4) |
C2—C1—N1—Cu1 | −177.38 (19) | F5—P1—F1—F1 | 0.00 (4) |
C4—C12—N1—C1 | 0.3 (4) | Cu1—N1—N2—N1A | −3.13 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···F1 | 0.95 | 2.3 | 3.149 (3) | 148 |
C1A—H1A···N3i | 0.95 | 2.74 | 3.489 (5) | 136 |
C9—H9···F11i | 0.95 | 2.62 | 3.270 (3) | 126 |
C10—H10···F7i | 0.95 | 2.54 | 3.358 (3) | 145 |
C10—H10···F8i | 0.95 | 2.59 | 3.471 (3) | 155 |
C59—H59C···F4ii | 0.98 | 2.3 | 3.265 (4) | 170 |
C8B—H8B···F1iii | 0.95 | 2.51 | 3.437 (3) | 164 |
C3—H3···F8iv | 0.95 | 2.47 | 3.392 (3) | 163 |
C3A—H3A···F4v | 0.95 | 2.62 | 3.557 (3) | 169 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z; (iv) x+1/2, −y+1/2, z−1/2; (v) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C14H12N2)3](PF6)2·C2H3N |
Mr | 1019.3 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 130 |
a, b, c (Å) | 9.8566 (3), 19.9317 (7), 22.1822 (6) |
β (°) | 93.603 (3) |
V (Å3) | 4349.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.34 × 0.21 × 0.09 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur, Atlas, Gemini |
Absorption correction | Analytical (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.643, 0.84 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20467, 8596, 5782 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.097, 0.92 |
No. of reflections | 8596 |
No. of parameters | 602 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.99, −0.42 |
Computer programs: CrysAlis CCD (Oxford Diffraction (2009), CrysAlis RED (Oxford Diffraction 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cu1—N1 | 2.0063 (19) | Cu1—N2B | 2.095 (2) |
Cu1—N1A | 2.0144 (19) | Cu1—N2 | 2.220 (2) |
Cu1—N2A | 2.091 (2) | Cu1—N1B | 2.333 (2) |
N1A—Cu1—N2A | 80.60 (8) | N2B—Cu1—N1B | 75.18 (8) |
N1—Cu1—N2 | 78.35 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···F1 | 0.95 | 2.3 | 3.149 (3) | 147.8 |
C1A—H1A···N3i | 0.95 | 2.74 | 3.489 (5) | 136 |
C9—H9···F11i | 0.95 | 2.62 | 3.270 (3) | 125.8 |
C10—H10···F7i | 0.95 | 2.54 | 3.358 (3) | 144.5 |
C10—H10···F8i | 0.95 | 2.59 | 3.471 (3) | 154.9 |
C59—H59C···F4ii | 0.98 | 2.3 | 3.265 (4) | 170 |
C8B—H8B···F1iii | 0.95 | 2.51 | 3.437 (3) | 164.3 |
C3—H3···F8iv | 0.95 | 2.47 | 3.392 (3) | 162.6 |
C3A—H3A···F4v | 0.95 | 2.62 | 3.557 (3) | 168.9 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z; (iv) x+1/2, −y+1/2, z−1/2; (v) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors thank CONACYT 87806, PAPIIT IN 227110 and PICSA10-61 for their financial support of this work. MFA is indebted to Dr A. L. Maldonado-Hermenegildo for useful comments.
References
Bencini, A. & Lippolis, V. (2010). Coord. Chem. Rev. 254, 2096–2180. CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Murphy, B., Aljabri, M., Mohamed Ahmed, A., Murphy, G., Hathway, B. J., Light, M. E., Geilbrich, T. & Hursthouse, M. B. (2006). Dalton Trans. pp. 357–367. Web of Science CSD CrossRef Google Scholar
Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Ramakrishnan, S. & Palaniandavar, M. (2008). Dalton Trans. pp. 3866–3878. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Due the combination of structural and chemical properties, metal complexes with phen-based ligands have been actively studied for their catalytic, redox, photochemical and photophysical properties and, more recently, as building units for the construction of efficient luminescent materials and even photoswitchable molecular devices (Bencini & Lippolis, 2010). Here, we present the crystal structure of the title compound rac-[Cu(5,6-dmp)3](PF6)2 CH3CN 1.
The X-ray structure of 1 consist of both Λ- and Δ-enantiomers of copper(II) complex cation, the molecular structure with crystallographic atom numbering scheme is illustrated in Fig. 1. Selected bond distances and bond angles are given in Table 1. The coordination geometry around Cu(II) can be described as distorted elongated octahedral (DEO) with N1, N1A, N2A, N2B nitrogen atoms occupying the corners of the square plane and N1B and N2 atoms occupying the trans axial positions. The distances (Cu1–N1B, 2.333 (2) Å; Cu1–N2, 2.220 (2) Å) mean Cu–Nout =Rout = 2.2766 (22) Å, are longer than the mean of the four in-plane Cu–N bond distances with Cu1–N1, 2.0063 (19); Cu1–N1A, 2.0144 (19); Cu1–N2A, 2.091 (2); Cu1–N2B, 2.095 (2) Å and mean of Cu–Nin = Rin = 2.0516 (20) Å. The average Cu–N bond distance (2.1641 (21) Å) is significantly longer than that [2.137 (4) Å] observed (Ramakrishnan & Palaniandavar, 2008) for rac-[Cu(5,6-dmp)3](ClO4)2 and very similar than that (2.189 (13) Å) observed (Murphy et al., 2006) for the rac-[Cu(phen)3](ClO4)2. Interestingly, the tetragonality (T =Rin/Rout = 0.9011) of 1 is shorter than that (0.952) of its rac-[Cu(5,6-dmp)3](ClO4)2 analogue suggesting that the former complex 1 acquires a static stereochemistry. Also, the bite angles of 5,6-dmp ligands in 1 (80.60 (8), 78.35 (8), 75.18 (8)°) deviate significantly from the ideal angle of 90°, which is consistent with the distorted coordination geometry. The average value (78.04°) of bite angles is less than that (78.5 °) (Murphy et al., 2006) for the rac-[Cu(phen)3]2+ analogue, which is in completely agreement with the stronger coordination of the 5,6-dmp ligand.
The hexafluorophosphate ion and acetonitrile solvent are not involved in the coordination sphere of the Cu ion, but are in the crystal lattice. In the supramolecular network there are C—H···F and C—H···N intermolecular interactions of type hydrogen bond (Table 2) that help stabilize crystal packing (Fig. 2). The intermolecular interactions C1A—H1A..N3, C59—H59..F4 and C8B—H8B··· F1 are forming the R33(16) motif. In addition, the hydrogen bond type formed from the donor-aceptor atoms: C3—H3···F8, C9—H9..F11, C10—H10···F7, C9A—H9A···F7 and C10—H10..F8 are forming the R22(7), R12(4), R33(16) and C32 (7) motif's mainly (Etter et al., 1990). All these interactions lead to infinite three-dimensional network superstructure.