organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Ethyl-N-phen­yl{[eth­yl(phen­yl)carbamo­thio­yl]disulfan­yl}carbo­thio­amide

aDepartment of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa, and bSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
*Correspondence e-mail: owaga@ukzn.ac.za

(Received 13 June 2012; accepted 19 June 2012; online 23 June 2012)

The asymmetric unit of the title compound, C18H20N2S4, contains one half-mol­ecule, the complete molecule being generated by a twofold rotation axis. The plane through the NCS2 group [maximum deviation = 0.01 (7) Å] is orthogonal to the phenyl ring, forming a dihedral angle of 89.4 (3)°. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For background to the chemistry of thiuram disulfides and their potential applications, see: Chieh (1977[Chieh, C. (1977). Can. J. Chem. 55, 1116-1119.]); McCleverty & Morrison (1976[McCleverty, J. A. & Morrison, N. (1976). J. Chem. Soc. Dalton Trans. pp. 2169-2175.]); Victoriano (2000[Victoriano, L. I. (2000). Coord. Chem. Rev. 196, 383-398.]). For related structures, see: Fun et al. (2001[Fun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717-o718.]); Raya et al. (2005[Raya, I., Baba, I., Rosli, F. Z. & Yamin, B. M. (2005). Acta Cryst. E61, o3131-o3132.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2S4

  • Mr = 392.6

  • Monoclinic, C 2/c

  • a = 15.1923 (2) Å

  • b = 11.5954 (2) Å

  • c = 12.3762 (2) Å

  • β = 115.039 (1)°

  • V = 1975.31 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 100 K

  • 0.40 × 0.37 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.931

  • 19720 measured reflections

  • 2481 independent reflections

  • 2405 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.068

  • S = 1.06

  • 2481 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCgi 0.98 2.97 3.7972 (14) 143
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiuram disulfides are semi-esters of dialkyldithiocarbamic acids (Victoriano, 2000). They are unique among thiolato type ligands in that reductive scission of the S—S bond leads to chelating dithiocarbamtes anions which are particularly well suited to stabilize high oxidation state transition metals like dithiocarbamate ligands (Victoriano, 2000). Metal species with closed shell configuration typically react with thiuram disulfides to yield adducts. Some adducts of well defined thiuram complexes have been obtained by the reaction of group 12 halides and the ligands McCleverty & Morrison (1976)).

The structure of (I) Fig. 1, consists of two Nethyl-N-phenyldithiocarbamate units linked by an S–S bond. The plane of NCS2 group is orthogonal to the plane of the phenyl ring forming a dihedral angle of 89.40 (3)° between them. The torsion angle between the thiocarbamate moieties (NCS2) is 79.01 (8)°. The lattice is stabilized by C—H···π intermolecular interactions with a Cg···H distance of 3.7972 (14) Å.

The S–C, S==C and C–N bond distances are comparable to those of related structures (Fun et al. 2001; Raya et al. 2005).

Related literature top

For background to the chemistry of thiuram disulfides and their potential applications, see: Chieh (1977); McCleverty & Morrison (1976); Victoriano (2000). For related structures, see: Fun et al. (2001); Raya et al. (2005).

Experimental top

A mixture of 6.44 ml of ethylaniline and 15.00 ml of concentrated aqueous ammonia in ice was added into 3.00 ml of ice-cold carbon disulfide and the resultant solution stirred for 6–7 h. The solid product obtained was filtered and rinsed three times with ice cold ethanol three times. The yellowish white was recrystallized in water/methanol mixture to yield crystal suitable for X-ray crystallographic analysis.

Structure description top

Thiuram disulfides are semi-esters of dialkyldithiocarbamic acids (Victoriano, 2000). They are unique among thiolato type ligands in that reductive scission of the S—S bond leads to chelating dithiocarbamtes anions which are particularly well suited to stabilize high oxidation state transition metals like dithiocarbamate ligands (Victoriano, 2000). Metal species with closed shell configuration typically react with thiuram disulfides to yield adducts. Some adducts of well defined thiuram complexes have been obtained by the reaction of group 12 halides and the ligands McCleverty & Morrison (1976)).

The structure of (I) Fig. 1, consists of two Nethyl-N-phenyldithiocarbamate units linked by an S–S bond. The plane of NCS2 group is orthogonal to the plane of the phenyl ring forming a dihedral angle of 89.40 (3)° between them. The torsion angle between the thiocarbamate moieties (NCS2) is 79.01 (8)°. The lattice is stabilized by C—H···π intermolecular interactions with a Cg···H distance of 3.7972 (14) Å.

The S–C, S==C and C–N bond distances are comparable to those of related structures (Fun et al. 2001; Raya et al. 2005).

For background to the chemistry of thiuram disulfides and their potential applications, see: Chieh (1977); McCleverty & Morrison (1976); Victoriano (2000). For related structures, see: Fun et al. (2001); Raya et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
N-Ethyl-N- phenyl{[ethyl(phenyl)carbamothioyl]disulfanyl}carbothioamide top
Crystal data top
C18H20N2S4F(000) = 824
Mr = 392.6Dx = 1.32 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 20252 reflections
a = 15.1923 (2) Åθ = 2.3–28.5°
b = 11.5954 (2) ŵ = 0.48 mm1
c = 12.3762 (2) ÅT = 100 K
β = 115.039 (1)°Block, yellow
V = 1975.31 (5) Å30.4 × 0.37 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2018
Tmin = 0.830, Tmax = 0.931k = 1515
19720 measured reflectionsl = 1616
2481 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.5002P]
where P = (Fo2 + 2Fc2)/3
2481 reflections(Δ/σ)max = 0.003
110 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C18H20N2S4V = 1975.31 (5) Å3
Mr = 392.6Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.1923 (2) ŵ = 0.48 mm1
b = 11.5954 (2) ÅT = 100 K
c = 12.3762 (2) Å0.4 × 0.37 × 0.15 mm
β = 115.039 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2481 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2405 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.931Rint = 0.027
19720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
2481 reflectionsΔρmin = 0.29 e Å3
110 parameters
Special details top

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.98 Å for Me H atoms, 0.99 Å for Methylene H atoms and 0.95 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) and were included in the refinement in the riding model approximation.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 18 PLAT153_ALERT_1_G The su's on the Cell Axes are Equal ···. 0.00020 A ng. PLAT960_ALERT_3_G Number of Intensities with I. LT. - 2*sig(I) ··· 1

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20064 (7)0.61036 (8)0.15533 (8)0.01472 (18)
C20.19847 (7)0.51377 (9)0.08775 (9)0.01904 (19)
H20.1430.49790.01570.023*
C30.27850 (8)0.44056 (9)0.12688 (10)0.0220 (2)
H30.27810.37470.0810.026*
C40.35898 (8)0.46347 (9)0.23282 (10)0.0204 (2)
H40.41370.41360.2590.025*
C50.35949 (8)0.55942 (9)0.30067 (9)0.0201 (2)
H50.41410.57390.37390.024*
C60.28059 (7)0.63409 (9)0.26191 (9)0.01764 (19)
H60.28120.70030.30750.021*
C70.12241 (7)0.78155 (9)0.03173 (9)0.01789 (19)
H7A0.19050.80750.05810.021*
H7B0.08390.84810.03780.021*
C80.08306 (9)0.74308 (10)0.09751 (10)0.0250 (2)
H8A0.12270.67950.10470.038*
H8B0.08530.80780.14720.038*
H8C0.01570.71710.12410.038*
C90.04038 (7)0.67095 (8)0.13196 (8)0.01398 (18)
N10.11909 (6)0.68889 (7)0.11179 (7)0.01472 (16)
S10.060555 (17)0.55219 (2)0.23600 (2)0.01695 (8)
S20.060995 (17)0.74667 (2)0.07505 (2)0.01764 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0137 (4)0.0164 (4)0.0163 (4)0.0020 (3)0.0085 (3)0.0022 (3)
C20.0173 (4)0.0203 (5)0.0180 (4)0.0012 (4)0.0059 (4)0.0024 (4)
C30.0231 (5)0.0197 (5)0.0247 (5)0.0045 (4)0.0116 (4)0.0020 (4)
C40.0171 (4)0.0211 (5)0.0250 (5)0.0055 (4)0.0107 (4)0.0056 (4)
C50.0163 (5)0.0234 (5)0.0180 (4)0.0005 (4)0.0048 (4)0.0032 (4)
C60.0186 (4)0.0184 (4)0.0164 (4)0.0001 (4)0.0078 (4)0.0005 (3)
C70.0202 (5)0.0167 (4)0.0188 (4)0.0004 (4)0.0102 (4)0.0032 (4)
C80.0332 (6)0.0274 (5)0.0183 (5)0.0015 (4)0.0146 (5)0.0031 (4)
C90.0152 (4)0.0147 (4)0.0121 (4)0.0013 (3)0.0058 (3)0.0007 (3)
N10.0151 (4)0.0154 (4)0.0150 (4)0.0025 (3)0.0075 (3)0.0020 (3)
S10.01842 (13)0.01685 (13)0.01994 (13)0.00345 (8)0.01235 (10)0.00384 (8)
S20.01423 (13)0.02036 (14)0.01803 (13)0.00421 (8)0.00654 (10)0.00127 (8)
Geometric parameters (Å, º) top
C1—C21.3898 (13)C7—N11.4768 (12)
C1—C61.3910 (13)C7—C81.5183 (15)
C1—N11.4454 (12)C7—H7A0.99
C2—C31.3910 (14)C7—H7B0.99
C2—H20.95C8—H8A0.98
C3—C41.3884 (15)C8—H8B0.98
C3—H30.95C8—H8C0.98
C4—C51.3920 (15)C9—N11.3372 (12)
C4—H40.95C9—S21.6495 (9)
C5—C61.3892 (14)C9—S11.8205 (9)
C5—H50.95S1—S1i2.0112 (5)
C6—H60.95
C2—C1—C6121.25 (9)N1—C7—H7A109.1
C2—C1—N1119.01 (8)C8—C7—H7A109.1
C6—C1—N1119.71 (9)N1—C7—H7B109.1
C1—C2—C3119.19 (9)C8—C7—H7B109.1
C1—C2—H2120.4H7A—C7—H7B107.8
C3—C2—H2120.4C7—C8—H8A109.5
C4—C3—C2120.17 (10)C7—C8—H8B109.5
C4—C3—H3119.9H8A—C8—H8B109.5
C2—C3—H3119.9C7—C8—H8C109.5
C3—C4—C5120.03 (9)H8A—C8—H8C109.5
C3—C4—H4120H8B—C8—H8C109.5
C5—C4—H4120N1—C9—S2125.78 (7)
C6—C5—C4120.41 (9)N1—C9—S1110.70 (7)
C6—C5—H5119.8S2—C9—S1123.49 (6)
C4—C5—H5119.8C9—N1—C1121.70 (8)
C5—C6—C1118.93 (9)C9—N1—C7121.70 (8)
C5—C6—H6120.5C1—N1—C7116.18 (8)
C1—C6—H6120.5C9—S1—S1i103.26 (3)
N1—C7—C8112.52 (8)
C6—C1—C2—C30.94 (15)S2—C9—N1—C70.83 (13)
N1—C1—C2—C3177.36 (9)S1—C9—N1—C7179.17 (7)
C1—C2—C3—C40.63 (16)C2—C1—N1—C985.13 (12)
C2—C3—C4—C50.48 (16)C6—C1—N1—C996.55 (11)
C3—C4—C5—C61.31 (16)C2—C1—N1—C787.62 (11)
C4—C5—C6—C11.01 (15)C6—C1—N1—C790.70 (11)
C2—C1—C6—C50.12 (15)C8—C7—N1—C987.47 (11)
N1—C1—C6—C5178.16 (9)C8—C7—N1—C185.28 (11)
S2—C9—N1—C1173.18 (7)N1—C9—S1—S1i174.72 (6)
S1—C9—N1—C18.48 (11)S2—C9—S1—S1i3.66 (7)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgii0.982.973.7972 (14)143
Symmetry code: (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC18H20N2S4
Mr392.6
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.1923 (2), 11.5954 (2), 12.3762 (2)
β (°) 115.039 (1)
V3)1975.31 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.4 × 0.37 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.830, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
19720, 2481, 2405
Rint0.027
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.068, 1.06
No. of reflections2481
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.982.973.7972 (14)143
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

We thank the University of KwaZulu-Natal and the National Research Foundation (NRF) for financial support.

References

First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChieh, C. (1977). Can. J. Chem. 55, 1116–1119.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717–o718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcCleverty, J. A. & Morrison, N. (1976). J. Chem. Soc. Dalton Trans. pp. 2169–2175.  CrossRef Web of Science Google Scholar
First citationRaya, I., Baba, I., Rosli, F. Z. & Yamin, B. M. (2005). Acta Cryst. E61, o3131–o3132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVictoriano, L. I. (2000). Coord. Chem. Rev. 196, 383–398.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds