metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[6,13-Bis(2,4-di­chloro­benzo­yl)-5,7,12,14-tetra­methyl­dibenzo[b,i][1,4,8,11]tetra­aza­cyclo­tetra­decinato- κ4N]nickel(II) acetone monosolvate

aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: shenxuan@njut.edu.cn, zhudr@njut.edu.cn

(Received 10 May 2012; accepted 30 May 2012; online 2 June 2012)

In the title complex, [Ni(C36H26Cl4N4O2)]·C3H6O, two 2,4-dichloro­benzoyl groups are grafted onto the methine groups of the NiII complex Ni(tmtaa) (H2tmtaa = 5,7,12,14-tetra­methyl-4,11-dihydro­dibenzo[b,i][1,4,8,11]tetra­aza­cyclo­tetra­decine). The complex has the shape of a saddle. The Ni atom is tetra­coordinated by the four N atoms of the macrocycle, forming a slightly tetra­hedrally distorted square-planar geometry. The metal is displaced by 0.0101 (8) Å from the N4 mean plane. The aromatic rings of the 2,4-dichloro­benzoyl groups form dihedral angles of 87.1 (2) and 82.1 (2)° with the N4 mean plane

Related literature

For general background to the chemistry of H2tmtaa and its complexes, see: Jäger (1969[Jäger, E. G. (1969). Z. Anorg. Allg. Chem. 364, 177-191.]); Cotton & Czuchajowska (1990[Cotton, F. A. & Czuchajowska, J. (1990). Polyhedron, 9, 2553-2566.]); Mountford (1998[Mountford, P. (1998). Chem. Soc. Rev. 27, 105-115.]). For the syntheses and structures of related compounds, see: Sakata et al. (1996[Sakata, K., Hashimoto, M., Hamada, T. & Matsuno, S. (1996). Polyhedron, 15, 967-972.]); Eilmes et al. (2001[Eilmes, J., Michalski, O. & Wozniak, K. (2001). Inorg. Chim. Acta, 317, 103-113.]); Shen et al. (2008[Shen, X., Miyashita, H., Qi, L., Zhu, D.-R., Hashimoto, M. & Sakata, K. (2008). Polyhedron, 27, 3105-3111.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C36H26Cl4N4O2)]·C3H6O

  • Mr = 805.20

  • Monoclinic, P 21 /c

  • a = 11.546 (3) Å

  • b = 27.134 (7) Å

  • c = 12.149 (3) Å

  • β = 110.372 (4)°

  • V = 3568.1 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 296 K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.901, Tmax = 0.949

  • 21315 measured reflections

  • 6137 independent reflections

  • 3204 reflections with I > 2σ(I)

  • Rint = 0.172

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.190

  • S = 1.04

  • 6137 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −2.37 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

H2tmtaa, a versatile ligand for transition and main group metals, is a macrocyclic compound with a 14-membered ring and has a structure and properties similar to porphyrin and phthalocyanine. The distinctive individual characteristics of this synthetic macrocycle make it interesting in a wide range of chemical areas (Cotton et al., 1990; Mountford, 1998). The syntheses of modified free H2tmtaa or tmtaa complexes through substitution at the γ and γ' positions have been extensively researched (Sakata et al., 1996; Eilmes et al., 2001; Shen et al., 2008). As a continuation of the investigation on the reactivity of γ and γ' positions in Ni(tmtaa) (Jäger, 1969), we herein report the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. The non-planar saddle-shaped conformation of the Nitmtaa is maintained with two 2,4-dichlorobenzoyl groups folding towards the central metal. The dihedral angle between the benzene rings of the tmtaa ligand is 62.4 (2)°. The Ni atom is coordinated to four N atoms of tmtaa in a sligthly tetrahedrally distorted coordination geometry and protrudes from the N4 plane by only 0.0101 (8) Å. The dihedral angle between two aromatic rings in the grafted substituents is 15.98° and both of them are almost perpendicular to the N4 plane forming dihedral angles of 87.1 (2) and 82.1 (2)°, respectively. The Ni–N bond distances range from 1.857 (4) to 1.862 (4) Å with a mean value of 1.860 (4) Å. In the crystal structure (Fig. 2), no hydrogen bonds or other weak intermolecular interactions are observed.

Related literature top

For general background to the chemistry of H2tmtaa and its complexes, see: Jäger (1969); Cotton & Czuchajowska (1990); Mountford (1998). For the syntheses and structures of related compounds, see: Sakata et al. (1996); Eilmes et al. (2001); Shen et al. (2008).

Experimental top

After a solution of Ni(tmtaa) (0.602 g, 1.50 mmol) and triethylamine (2 ml) in dry toluene (50 ml) was stirred at room temperature under nitrogen atmosphere for 10 min, a solution of 2,4-dichlorobenzoyl chloride (0.670 g, 3.20 mmol) in dry toluene (50 ml) was slowly added dropwise and the reaction mixture was further stirred at 80°C for 12 h. After been cooled to room temperature, the reacted mixture was filtered to eliminate the triethylamine hydrochloride formed. Evaporation of the filtrate resulted in a dark green powder. The powder was purified and separated on an alumina chromatographic column using petroleum ether and ethyl acetate (8:1 v/v) as the eluant. The product was recrystallized from acetone to give dark green crystals of the title compound in a yield of 0.652 g (54%).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.96 Å for aryl and methyl H–atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

H2tmtaa, a versatile ligand for transition and main group metals, is a macrocyclic compound with a 14-membered ring and has a structure and properties similar to porphyrin and phthalocyanine. The distinctive individual characteristics of this synthetic macrocycle make it interesting in a wide range of chemical areas (Cotton et al., 1990; Mountford, 1998). The syntheses of modified free H2tmtaa or tmtaa complexes through substitution at the γ and γ' positions have been extensively researched (Sakata et al., 1996; Eilmes et al., 2001; Shen et al., 2008). As a continuation of the investigation on the reactivity of γ and γ' positions in Ni(tmtaa) (Jäger, 1969), we herein report the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. The non-planar saddle-shaped conformation of the Nitmtaa is maintained with two 2,4-dichlorobenzoyl groups folding towards the central metal. The dihedral angle between the benzene rings of the tmtaa ligand is 62.4 (2)°. The Ni atom is coordinated to four N atoms of tmtaa in a sligthly tetrahedrally distorted coordination geometry and protrudes from the N4 plane by only 0.0101 (8) Å. The dihedral angle between two aromatic rings in the grafted substituents is 15.98° and both of them are almost perpendicular to the N4 plane forming dihedral angles of 87.1 (2) and 82.1 (2)°, respectively. The Ni–N bond distances range from 1.857 (4) to 1.862 (4) Å with a mean value of 1.860 (4) Å. In the crystal structure (Fig. 2), no hydrogen bonds or other weak intermolecular interactions are observed.

For general background to the chemistry of H2tmtaa and its complexes, see: Jäger (1969); Cotton & Czuchajowska (1990); Mountford (1998). For the syntheses and structures of related compounds, see: Sakata et al. (1996); Eilmes et al. (2001); Shen et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the unit cell packing along the a axis. H-atoms have been omitted for clarity.
[6,13-Bis(2,4-dichlorobenzoyl)-5,7,12,14- tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecinato- κ4N]nickel(II) acetone monosolvate top
Crystal data top
[Ni(C36H26Cl4N4O2)]·C3H6OF(000) = 1656
Mr = 805.20Dx = 1.499 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 34 reflections
a = 11.546 (3) Åθ = 2.3–26.2°
b = 27.134 (7) ŵ = 0.89 mm1
c = 12.149 (3) ÅT = 296 K
β = 110.372 (4)°Block, dark green
V = 3568.1 (17) Å30.12 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6137 independent reflections
Radiation source: fine-focus sealed tube3204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.172
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.901, Tmax = 0.949k = 3232
21315 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
6137 reflections(Δ/σ)max = 0.002
460 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 2.37 e Å3
Crystal data top
[Ni(C36H26Cl4N4O2)]·C3H6OV = 3568.1 (17) Å3
Mr = 805.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.546 (3) ŵ = 0.89 mm1
b = 27.134 (7) ÅT = 296 K
c = 12.149 (3) Å0.12 × 0.08 × 0.06 mm
β = 110.372 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
6137 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3204 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.949Rint = 0.172
21315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.04Δρmax = 1.65 e Å3
6137 reflectionsΔρmin = 2.37 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni12.16249 (6)0.17047 (3)2.42062 (6)0.0368 (2)
N12.3256 (4)0.17941 (19)2.4315 (4)0.0391 (12)
N21.9992 (4)0.16079 (19)2.4095 (4)0.0417 (13)
N32.1638 (4)0.11609 (19)2.3281 (4)0.0401 (12)
N42.1601 (4)0.2260 (2)2.5097 (4)0.0388 (12)
Cl12.4561 (2)0.41867 (9)2.59903 (17)0.0823 (6)
Cl21.6819 (2)0.03283 (9)1.90340 (18)0.0834 (7)
Cl31.60697 (19)0.21256 (10)1.71613 (17)0.0919 (8)
Cl42.2994 (2)0.47349 (11)2.1476 (2)0.0997 (9)
O11.8035 (6)0.0458 (3)2.1541 (5)0.104 (2)
O22.5123 (5)0.3123 (2)2.5822 (6)0.0883 (18)
O31.8191 (6)0.0670 (3)1.6827 (7)0.122 (3)
C12.3202 (6)0.3429 (3)2.2984 (7)0.066 (2)
H1A2.29800.31072.27400.079*
C22.2992 (6)0.3796 (3)2.2159 (7)0.067 (2)
H2A2.26750.37212.13630.081*
C32.3254 (6)0.4273 (3)2.2519 (6)0.059 (2)
C42.3716 (6)0.4398 (3)2.3686 (7)0.062 (2)
H4A2.38460.47262.39170.074*
C52.3982 (5)0.4026 (3)2.4505 (6)0.0518 (18)
C62.3747 (5)0.3530 (3)2.4192 (5)0.0477 (16)
C72.4127 (6)0.3101 (3)2.5037 (6)0.0534 (17)
C82.3334 (5)0.2649 (3)2.4819 (5)0.0451 (15)
C92.3812 (5)0.2225 (3)2.4453 (5)0.0435 (16)
C102.4962 (5)0.2289 (3)2.4109 (6)0.0584 (19)
H10A2.51930.19772.38780.088*
H10B2.47820.25172.34650.088*
H10C2.56290.24162.47670.088*
C112.3762 (5)0.1343 (2)2.4110 (5)0.0430 (16)
C122.5004 (5)0.1204 (3)2.4554 (6)0.0565 (19)
H12A2.55990.14322.49630.068*
C132.5356 (6)0.0732 (3)2.4393 (6)0.066 (2)
H13A2.61860.06432.46780.079*
C142.4468 (6)0.0391 (3)2.3804 (6)0.0574 (19)
H14A2.47030.00742.36780.069*
C152.3229 (6)0.0518 (3)2.3403 (5)0.0517 (17)
H15A2.26360.02832.30350.062*
C162.2870 (5)0.0986 (2)2.3540 (5)0.0433 (16)
C172.0664 (5)0.0984 (2)2.2450 (5)0.0425 (15)
C182.0783 (6)0.0667 (3)2.1465 (6)0.061 (2)
H18A2.16420.06122.15910.092*
H18B2.03810.03562.14530.092*
H18C2.04030.08322.07270.092*
C191.9455 (5)0.1101 (3)2.2400 (5)0.0486 (17)
C201.8430 (6)0.0871 (3)2.1423 (6)0.0563 (18)
C211.7900 (5)0.1152 (3)2.0300 (5)0.0479 (17)
C221.7121 (5)0.0950 (3)1.9237 (6)0.0519 (18)
C231.6576 (6)0.1247 (4)1.8269 (6)0.067 (2)
H23A1.60570.11111.75690.081*
C241.6808 (6)0.1743 (3)1.8351 (6)0.058 (2)
C251.7608 (6)0.1952 (3)1.9366 (6)0.063 (2)
H25A1.77880.22871.94030.076*
C261.8134 (6)0.1652 (3)2.0320 (6)0.0557 (18)
H26A1.86700.17922.10080.067*
C271.9141 (5)0.1369 (3)2.3232 (5)0.0501 (18)
C281.7787 (5)0.1420 (3)2.3064 (6)0.066 (2)
H28A1.77000.16122.36950.099*
H28B1.73660.15822.23300.099*
H28C1.74360.10992.30610.099*
C291.9799 (5)0.1845 (3)2.5064 (5)0.0453 (16)
C301.8935 (5)0.1707 (3)2.5579 (6)0.057 (2)
H30A1.83560.14632.52360.069*
C311.8948 (7)0.1937 (3)2.6600 (7)0.072 (2)
H31A1.83580.18502.69270.087*
C321.9796 (6)0.2283 (3)2.7133 (6)0.066 (2)
H32A1.97850.24312.78200.080*
C332.0680 (5)0.2418 (3)2.6664 (5)0.0507 (17)
H33A2.12750.26532.70370.061*
C342.0669 (5)0.2199 (3)2.5620 (5)0.0451 (16)
C352.2295 (5)0.2652 (3)2.5173 (5)0.0472 (17)
C362.1961 (6)0.3143 (3)2.5607 (7)0.064 (2)
H36A2.12420.30992.58230.096*
H36B2.26390.32522.62780.096*
H36C2.17920.33842.49940.096*
C371.9714 (9)0.0368 (5)1.6169 (9)0.133 (5)
H37A1.90200.02671.55010.200*
H37B2.02150.05941.59220.200*
H37C2.01960.00841.65230.200*
C381.9267 (8)0.0612 (3)1.7031 (8)0.077 (2)
C392.0198 (9)0.0793 (5)1.8118 (9)0.113 (4)
H39A1.97940.09431.86020.170*
H39B2.06960.05221.85320.170*
H39C2.07140.10321.79310.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0381 (3)0.0335 (5)0.0383 (4)0.0003 (3)0.0126 (3)0.0001 (4)
N10.040 (2)0.034 (4)0.042 (3)0.001 (2)0.013 (2)0.001 (2)
N20.039 (2)0.045 (4)0.042 (3)0.001 (2)0.015 (2)0.002 (2)
N30.046 (2)0.037 (4)0.040 (3)0.001 (2)0.016 (2)0.002 (2)
N40.039 (2)0.035 (4)0.039 (3)0.000 (2)0.009 (2)0.003 (2)
Cl10.1151 (15)0.0569 (17)0.0594 (12)0.0017 (13)0.0108 (11)0.0115 (11)
Cl20.0993 (14)0.0670 (18)0.0752 (14)0.0204 (13)0.0193 (11)0.0261 (12)
Cl30.1011 (14)0.119 (2)0.0605 (12)0.0510 (15)0.0348 (11)0.0259 (12)
Cl40.0996 (14)0.109 (2)0.0915 (16)0.0098 (14)0.0340 (13)0.0483 (15)
O10.109 (4)0.080 (6)0.085 (4)0.044 (4)0.016 (3)0.019 (4)
O20.070 (3)0.048 (4)0.112 (5)0.014 (3)0.012 (3)0.013 (4)
O30.090 (4)0.130 (8)0.160 (7)0.022 (4)0.060 (5)0.014 (5)
C10.064 (4)0.055 (6)0.068 (5)0.011 (4)0.011 (4)0.004 (4)
C20.077 (5)0.066 (7)0.060 (5)0.011 (4)0.025 (4)0.003 (4)
C30.059 (4)0.057 (6)0.064 (5)0.008 (4)0.027 (4)0.012 (4)
C40.065 (4)0.045 (5)0.080 (5)0.009 (4)0.030 (4)0.009 (4)
C50.054 (3)0.047 (5)0.052 (4)0.013 (3)0.014 (3)0.010 (4)
C60.043 (3)0.044 (5)0.053 (4)0.009 (3)0.012 (3)0.000 (3)
C70.059 (4)0.035 (5)0.062 (4)0.003 (3)0.015 (4)0.004 (4)
C80.042 (3)0.033 (5)0.053 (4)0.009 (3)0.008 (3)0.000 (3)
C90.044 (3)0.043 (5)0.043 (3)0.003 (3)0.013 (3)0.005 (3)
C100.055 (3)0.054 (5)0.070 (4)0.007 (3)0.026 (3)0.001 (4)
C110.048 (3)0.034 (4)0.052 (4)0.001 (3)0.023 (3)0.002 (3)
C120.049 (3)0.054 (5)0.068 (4)0.002 (3)0.022 (3)0.006 (4)
C130.059 (4)0.067 (7)0.072 (5)0.015 (4)0.022 (4)0.004 (4)
C140.061 (4)0.044 (5)0.070 (5)0.014 (4)0.025 (4)0.002 (4)
C150.060 (3)0.046 (5)0.051 (4)0.002 (3)0.021 (3)0.001 (3)
C160.045 (3)0.044 (5)0.044 (3)0.005 (3)0.020 (3)0.003 (3)
C170.051 (3)0.036 (5)0.036 (3)0.001 (3)0.009 (3)0.006 (3)
C180.070 (4)0.056 (6)0.057 (4)0.008 (4)0.022 (4)0.012 (4)
C190.043 (3)0.048 (5)0.049 (4)0.008 (3)0.008 (3)0.004 (3)
C200.055 (4)0.047 (5)0.058 (4)0.011 (3)0.008 (3)0.001 (4)
C210.040 (3)0.049 (5)0.049 (4)0.002 (3)0.007 (3)0.006 (3)
C220.048 (3)0.054 (5)0.055 (4)0.004 (3)0.019 (3)0.012 (4)
C230.047 (3)0.107 (8)0.043 (4)0.006 (4)0.010 (3)0.010 (5)
C240.056 (4)0.071 (7)0.048 (4)0.029 (4)0.019 (3)0.010 (4)
C250.066 (4)0.056 (6)0.068 (5)0.002 (4)0.024 (4)0.001 (4)
C260.064 (4)0.043 (5)0.053 (4)0.007 (3)0.011 (3)0.001 (4)
C270.038 (3)0.057 (6)0.049 (4)0.004 (3)0.008 (3)0.008 (3)
C280.042 (3)0.081 (7)0.071 (5)0.008 (4)0.015 (3)0.004 (4)
C290.038 (3)0.049 (5)0.047 (3)0.002 (3)0.013 (3)0.002 (3)
C300.047 (3)0.066 (6)0.064 (4)0.002 (3)0.025 (3)0.001 (4)
C310.071 (4)0.088 (7)0.076 (5)0.006 (5)0.049 (4)0.002 (5)
C320.075 (4)0.075 (7)0.060 (4)0.009 (4)0.037 (4)0.006 (4)
C330.055 (3)0.045 (5)0.046 (4)0.011 (3)0.010 (3)0.007 (3)
C340.046 (3)0.045 (5)0.042 (3)0.017 (3)0.014 (3)0.005 (3)
C350.041 (3)0.047 (5)0.043 (3)0.011 (3)0.001 (3)0.001 (3)
C360.066 (4)0.039 (5)0.086 (5)0.004 (4)0.024 (4)0.005 (4)
C370.112 (7)0.172 (15)0.116 (9)0.021 (8)0.039 (7)0.033 (9)
C380.087 (5)0.058 (7)0.093 (6)0.008 (5)0.039 (5)0.002 (5)
C390.123 (7)0.117 (12)0.088 (7)0.009 (7)0.021 (6)0.003 (7)
Geometric parameters (Å, º) top
Ni1—N11.857 (4)C15—H15A0.9300
Ni1—N31.858 (5)C17—C191.413 (7)
Ni1—N41.861 (5)C17—C181.519 (8)
Ni1—N21.862 (4)C18—H18A0.9600
N1—C91.315 (8)C18—H18B0.9600
N1—C111.415 (7)C18—H18C0.9600
N2—C271.330 (8)C19—C271.391 (9)
N2—C291.425 (7)C19—C201.490 (9)
N3—C171.313 (7)C20—C211.495 (9)
N3—C161.426 (7)C21—C261.383 (10)
N4—C351.316 (8)C21—C221.403 (9)
N4—C341.437 (6)C22—C231.383 (10)
Cl1—C51.747 (7)C23—C241.371 (11)
Cl2—C221.723 (8)C23—H23A0.9300
Cl3—C241.741 (7)C24—C251.379 (10)
Cl4—C31.732 (7)C25—C261.372 (10)
O1—C201.238 (9)C25—H25A0.9300
O2—C71.213 (8)C26—H26A0.9300
O3—C381.190 (9)C27—C281.511 (7)
C1—C21.374 (11)C28—H28A0.9600
C1—C61.407 (9)C28—H28B0.9600
C1—H1A0.9300C28—H28C0.9600
C2—C31.365 (11)C29—C341.384 (9)
C2—H2A0.9300C29—C301.400 (7)
C3—C41.372 (10)C30—C311.384 (10)
C4—C51.376 (10)C30—H30A0.9300
C4—H4A0.9300C31—C321.348 (11)
C5—C61.399 (10)C31—H31A0.9300
C6—C71.511 (10)C32—C331.382 (8)
C7—C81.498 (9)C32—H32A0.9300
C8—C351.409 (7)C33—C341.397 (8)
C8—C91.414 (9)C33—H33A0.9300
C9—C101.535 (6)C35—C361.530 (9)
C10—H10A0.9600C36—H36A0.9600
C10—H10B0.9600C36—H36B0.9600
C10—H10C0.9600C36—H36C0.9600
C11—C121.397 (8)C37—C381.475 (11)
C11—C161.408 (8)C37—H37A0.9600
C12—C131.378 (10)C37—H37B0.9600
C12—H12A0.9300C37—H37C0.9600
C13—C141.381 (10)C38—C391.467 (13)
C13—H13A0.9300C39—H39A0.9600
C14—C151.385 (8)C39—H39B0.9600
C14—H14A0.9300C39—H39C0.9600
C15—C161.364 (9)
N1—Ni1—N385.7 (2)H18B—C18—H18C109.5
N1—Ni1—N494.2 (2)C27—C19—C17126.1 (6)
N3—Ni1—N4178.5 (2)C27—C19—C20117.5 (5)
N1—Ni1—N2179.4 (2)C17—C19—C20116.1 (6)
N3—Ni1—N293.8 (2)O1—C20—C19120.7 (7)
N4—Ni1—N286.4 (2)O1—C20—C21121.1 (6)
C9—N1—C11125.3 (4)C19—C20—C21118.3 (6)
C9—N1—Ni1124.2 (4)C26—C21—C22117.3 (7)
C11—N1—Ni1110.2 (4)C26—C21—C20117.9 (6)
C27—N2—C29125.9 (4)C22—C21—C20124.7 (7)
C27—N2—Ni1125.2 (3)C23—C22—C21120.7 (8)
C29—N2—Ni1108.8 (4)C23—C22—Cl2116.1 (6)
C17—N3—C16124.7 (5)C21—C22—Cl2123.2 (6)
C17—N3—Ni1124.7 (4)C24—C23—C22119.5 (7)
C16—N3—Ni1110.4 (4)C24—C23—H23A120.3
C35—N4—C34126.5 (5)C22—C23—H23A120.3
C35—N4—Ni1124.3 (3)C23—C24—C25121.4 (7)
C34—N4—Ni1109.2 (4)C23—C24—Cl3119.9 (6)
C2—C1—C6121.3 (8)C25—C24—Cl3118.7 (7)
C2—C1—H1A119.3C26—C25—C24118.3 (8)
C6—C1—H1A119.3C26—C25—H25A120.8
C3—C2—C1119.4 (7)C24—C25—H25A120.8
C3—C2—H2A120.3C25—C26—C21122.7 (7)
C1—C2—H2A120.3C25—C26—H26A118.7
C2—C3—C4121.9 (7)C21—C26—H26A118.7
C2—C3—Cl4119.3 (6)N2—C27—C19121.4 (5)
C4—C3—Cl4118.8 (6)N2—C27—C28120.4 (6)
C3—C4—C5118.3 (7)C19—C27—C28118.0 (6)
C3—C4—H4A120.8C27—C28—H28A109.5
C5—C4—H4A120.8C27—C28—H28B109.5
C4—C5—C6122.4 (6)H28A—C28—H28B109.5
C4—C5—Cl1118.2 (6)C27—C28—H28C109.5
C6—C5—Cl1119.3 (5)H28A—C28—H28C109.5
C5—C6—C1116.4 (7)H28B—C28—H28C109.5
C5—C6—C7124.9 (6)C34—C29—C30118.5 (6)
C1—C6—C7118.5 (7)C34—C29—N2114.8 (4)
O2—C7—C8122.2 (7)C30—C29—N2126.1 (6)
O2—C7—C6117.9 (6)C31—C30—C29119.5 (7)
C8—C7—C6119.7 (6)C31—C30—H30A120.2
C35—C8—C9124.5 (6)C29—C30—H30A120.2
C35—C8—C7118.3 (6)C32—C31—C30121.6 (5)
C9—C8—C7116.2 (4)C32—C31—H31A119.2
N1—C9—C8122.5 (4)C30—C31—H31A119.2
N1—C9—C10119.8 (6)C31—C32—C33120.3 (6)
C8—C9—C10117.5 (6)C31—C32—H32A119.9
C9—C10—H10A109.5C33—C32—H32A119.9
C9—C10—H10B109.5C32—C33—C34119.1 (7)
H10A—C10—H10B109.5C32—C33—H33A120.4
C9—C10—H10C109.5C34—C33—H33A120.4
H10A—C10—H10C109.5C29—C34—C33121.0 (5)
H10B—C10—H10C109.5C29—C34—N4113.2 (5)
C12—C11—C16118.7 (6)C33—C34—N4125.4 (6)
C12—C11—N1126.7 (6)N4—C35—C8122.5 (6)
C16—C11—N1113.9 (5)N4—C35—C36120.5 (5)
C13—C12—C11120.7 (7)C8—C35—C36117.0 (6)
C13—C12—H12A119.6C35—C36—H36A109.5
C11—C12—H12A119.6C35—C36—H36B109.5
C12—C13—C14119.6 (6)H36A—C36—H36B109.5
C12—C13—H13A120.2C35—C36—H36C109.5
C14—C13—H13A120.2H36A—C36—H36C109.5
C13—C14—C15120.3 (7)H36B—C36—H36C109.5
C13—C14—H14A119.9C38—C37—H37A109.5
C15—C14—H14A119.9C38—C37—H37B109.5
C16—C15—C14120.7 (7)H37A—C37—H37B109.5
C16—C15—H15A119.6C38—C37—H37C109.5
C14—C15—H15A119.6H37A—C37—H37C109.5
C15—C16—C11119.9 (5)H37B—C37—H37C109.5
C15—C16—N3127.2 (6)O3—C38—C39121.8 (8)
C11—C16—N3112.5 (5)O3—C38—C37120.7 (9)
N3—C17—C19121.4 (5)C39—C38—C37117.5 (8)
N3—C17—C18121.6 (5)C38—C39—H39A109.5
C19—C17—C18116.9 (6)C38—C39—H39B109.5
C17—C18—H18A109.5H39A—C39—H39B109.5
C17—C18—H18B109.5C38—C39—H39C109.5
H18A—C18—H18B109.5H39A—C39—H39C109.5
C17—C18—H18C109.5H39B—C39—H39C109.5
H18A—C18—H18C109.5

Experimental details

Crystal data
Chemical formula[Ni(C36H26Cl4N4O2)]·C3H6O
Mr805.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.546 (3), 27.134 (7), 12.149 (3)
β (°) 110.372 (4)
V3)3568.1 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.901, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
21315, 6137, 3204
Rint0.172
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.190, 1.04
No. of reflections6137
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 2.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful to the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering, China (grant No. KL10–14) and the National Natural Science Foundation of China (grant No. 21171093) for financial support.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A. & Czuchajowska, J. (1990). Polyhedron, 9, 2553–2566.  CrossRef CAS Web of Science Google Scholar
First citationEilmes, J., Michalski, O. & Wozniak, K. (2001). Inorg. Chim. Acta, 317, 103–113.  Web of Science CSD CrossRef CAS Google Scholar
First citationJäger, E. G. (1969). Z. Anorg. Allg. Chem. 364, 177–191.  Google Scholar
First citationMountford, P. (1998). Chem. Soc. Rev. 27, 105–115.  Web of Science CrossRef CAS Google Scholar
First citationSakata, K., Hashimoto, M., Hamada, T. & Matsuno, S. (1996). Polyhedron, 15, 967–972.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, X., Miyashita, H., Qi, L., Zhu, D.-R., Hashimoto, M. & Sakata, K. (2008). Polyhedron, 27, 3105–3111.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds