metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis{1-[4-(1H-imidazol-1-yl-κN3)phen­yl]ethanone}bis­­(iso­thio­cyanato-κN)nickel(II)

aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China, and bKey Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: zhaojuanqd@163.com

(Received 31 May 2012; accepted 14 June 2012; online 23 June 2012)

The title complex mol­ecule, [Ni(NCS)2(C11H10N2O)4], has a crystallographically imposed centre of symmetry. The NiII atom is coordinated by the N atoms of two trans-arranged NCS anions and four 1-[4-(1H-imidazol-1-yl)phen­yl]ethan­one ligands in a distorted octa­hedral geometry. In the crystal, C—H⋯S hydrogen bonds link the complex mol­ecules into chains parallel to the b axis. The chains are further connected by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane.

Related literature

For the structures of related compounds, see: Liu et al. (2005[Liu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. & Wang, X. (2005). Acta Cryst. E61, m1568-m1570.], 2006[Liu, F.-Q., Chen, H.-N., Li, R.-X., Liu, G.-Y. & Li, W.-H. (2006). Acta Cryst. E62, m2457-m2458.]); Pang et al. (2007[Pang, S.-J., Su, J. & Lin, Q. (2007). Acta Cryst. E63, m2369.]); Zheng & Jin (2012[Zheng, S.-M. & Jin, Y.-L. (2012). Acta Cryst. E68, m188-m189.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C11H10N2O)4]

  • Mr = 919.71

  • Triclinic, [P \overline 1]

  • a = 8.4816 (4) Å

  • b = 8.8834 (4) Å

  • c = 15.0357 (8) Å

  • α = 85.701 (1)°

  • β = 88.161 (2)°

  • γ = 73.684 (1)°

  • V = 1084.12 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.18 × 0.12 × 0.08 mm

Data collection
  • Rigaku R-AXIS SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.918, Tmax = 0.951

  • 8987 measured reflections

  • 4005 independent reflections

  • 2231 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.259

  • S = 1.09

  • 4005 reflections

  • 287 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −1.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.93 2.44 3.355 (8) 168
C9—H9A⋯Sii 0.93 2.87 3.759 (7) 160
C16—H16A⋯Sii 0.93 2.88 3.803 (8) 173
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo,Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole is of considerable interest as a ligand in many biological systems in which it provides a potential binding site for metal ions. Furthermore, the isothiocyanato anion is a versatile inorganic ligand in the synthesis of coordination compounds. As a continuation of our project devoted to study the conditions of the formation of thiocyanate-containing complexes with imidazole derivatives and to investigate the influence of steric properties on the stoichiometry of the resulting species (Liu et al., 2005; Liu et al., 2006; Pang, et al., 2007; Zheng et al., 2012), we report in the paper the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The Ni atom lies on a centre of symmetry and displays a distorted octahedral coordination geometry, with the N atoms from two trans-arranged thiocyanate anions in the axial positions [Ni—N = 2.087 (5) Å] and the N atom of four 1-[4-(1H-imidazol-1-yl)phenyl]ethanone ligands at the equatorial plane [Ni—N = 2.097 (5)-2.125 (5) Å]. These values are in agreement with those ob served for the related compounds [Ni(NCS)2(1-methyl-1H-imidazole)4] (Liu, et al., 2005), [Ni(NCS)2(1-ethyl-1H-imidazole)4] (Liu, et al., 2006), [Ni(NCS)2(1-vinyl-1H-imidazole)4] (Pang, et al., 2007), and [Ni(NCS)2(1-allyl-1H-imidazole)4] (Zheng, et al., 2012). The equatorial N—Ni—N bond angles are close to those expected for a regular octahedral geometry [86.53 (18)–93.47 (18) °]. In the crystal structure, weak intermolecular C—H···S hydrogen interactions link the molecules into chains parallel to the b axis, which are further connected by C—H···O hydrogen bonds to form two-dimensional layers parallel to the bc plane.

Related literature top

For the structures of related compounds, see: Liu et al. (2005, 2006); Pang et al. (2007); Zheng & Jin (2012).

Experimental top

The title compound was prepared by the reaction of 1-[4-(1H-imidazol-1-yl)phenyl]ethanone (3.72 g, 20 mmol) with NiSO4.6H2O (1.31 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 393 K for 24 h. Single crystals suitable for X-ray measurements were obtained by slow evaporation of a methanol solution at room temperature. Analysis, calculated for C46H40NiN10O4S2: C 60.07, H 4.38, N 15.23%; found: C 60.21, H 4.34, N 15.36%.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) or or 1.5 Ueq(C) for methyl H atoms.

Structure description top

Imidazole is of considerable interest as a ligand in many biological systems in which it provides a potential binding site for metal ions. Furthermore, the isothiocyanato anion is a versatile inorganic ligand in the synthesis of coordination compounds. As a continuation of our project devoted to study the conditions of the formation of thiocyanate-containing complexes with imidazole derivatives and to investigate the influence of steric properties on the stoichiometry of the resulting species (Liu et al., 2005; Liu et al., 2006; Pang, et al., 2007; Zheng et al., 2012), we report in the paper the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The Ni atom lies on a centre of symmetry and displays a distorted octahedral coordination geometry, with the N atoms from two trans-arranged thiocyanate anions in the axial positions [Ni—N = 2.087 (5) Å] and the N atom of four 1-[4-(1H-imidazol-1-yl)phenyl]ethanone ligands at the equatorial plane [Ni—N = 2.097 (5)-2.125 (5) Å]. These values are in agreement with those ob served for the related compounds [Ni(NCS)2(1-methyl-1H-imidazole)4] (Liu, et al., 2005), [Ni(NCS)2(1-ethyl-1H-imidazole)4] (Liu, et al., 2006), [Ni(NCS)2(1-vinyl-1H-imidazole)4] (Pang, et al., 2007), and [Ni(NCS)2(1-allyl-1H-imidazole)4] (Zheng, et al., 2012). The equatorial N—Ni—N bond angles are close to those expected for a regular octahedral geometry [86.53 (18)–93.47 (18) °]. In the crystal structure, weak intermolecular C—H···S hydrogen interactions link the molecules into chains parallel to the b axis, which are further connected by C—H···O hydrogen bonds to form two-dimensional layers parallel to the bc plane.

For the structures of related compounds, see: Liu et al. (2005, 2006); Pang et al. (2007); Zheng & Jin (2012).

Computing details top

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO (Rigaku 2004); data reduction: RAPID-AUTO (Rigaku 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Unlabelled atoms are generated by the symmetry operation 2-x, 2-y, 1-z.
Tetrakis{1-[4-(1H-imidazol-1-yl- κN3)phenyl]ethanone}bis(isothiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C11H10N2O)4]Z = 1
Mr = 919.71F(000) = 478
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4816 (4) ÅCell parameters from 4970 reflections
b = 8.8834 (4) Åθ = 6.6–54.9°
c = 15.0357 (8) ŵ = 0.60 mm1
α = 85.701 (1)°T = 293 K
β = 88.161 (2)°Block, blue
γ = 73.684 (1)°0.18 × 0.12 × 0.08 mm
V = 1084.12 (9) Å3
Data collection top
Rigaku R-AXIS SPIDER
diffractometer
2231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 25.5°, θmin = 3.3°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
k = 910
Tmin = 0.918, Tmax = 0.951l = 1818
8987 measured reflections13 standard reflections every 0 reflections
4005 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.259 w = 1/[σ2(Fo2) + (0.1329P)2 + 1.2354P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4005 reflectionsΔρmax = 0.65 e Å3
287 parametersΔρmin = 1.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (6)
Crystal data top
[Ni(NCS)2(C11H10N2O)4]γ = 73.684 (1)°
Mr = 919.71V = 1084.12 (9) Å3
Triclinic, P1Z = 1
a = 8.4816 (4) ÅMo Kα radiation
b = 8.8834 (4) ŵ = 0.60 mm1
c = 15.0357 (8) ÅT = 293 K
α = 85.701 (1)°0.18 × 0.12 × 0.08 mm
β = 88.161 (2)°
Data collection top
Rigaku R-AXIS SPIDER
diffractometer
2231 reflections with I > 2σ(I)
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
Rint = 0.057
Tmin = 0.918, Tmax = 0.95113 standard reflections every 0 reflections
8987 measured reflections intensity decay: none
4005 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.259H-atom parameters constrained
S = 1.09Δρmax = 0.65 e Å3
4005 reflectionsΔρmin = 1.22 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni1.00001.00000.50000.0402 (4)
S1.2589 (3)0.45967 (19)0.44721 (13)0.0642 (6)
O11.2327 (8)0.1316 (6)1.0204 (3)0.0820 (17)
O20.3162 (8)0.6234 (6)0.0530 (3)0.0815 (17)
N10.9580 (6)0.8862 (5)0.6220 (3)0.0434 (12)
N20.9810 (6)0.7107 (5)0.7363 (3)0.0447 (12)
N30.7715 (6)0.9988 (5)0.4465 (3)0.0414 (12)
N40.6043 (6)0.9326 (6)0.3569 (4)0.0487 (13)
N51.1113 (7)0.7805 (6)0.4516 (3)0.0493 (13)
C11.0105 (8)0.7372 (8)0.6480 (4)0.0518 (16)
H1A1.06180.65870.61060.062*
C20.8867 (8)0.9585 (7)0.6959 (4)0.0507 (16)
H2A0.83571.06570.69720.061*
C30.9002 (8)0.8533 (8)0.7670 (4)0.0532 (17)
H3A0.86230.87370.82480.064*
C41.0289 (8)0.5639 (7)0.7894 (4)0.0462 (15)
C51.0964 (8)0.5577 (7)0.8703 (4)0.0496 (16)
H5A1.11010.64880.89170.060*
C61.1448 (8)0.4186 (7)0.9209 (4)0.0508 (16)
H6A1.19060.41580.97660.061*
C71.1257 (8)0.2803 (7)0.8896 (4)0.0443 (15)
C81.0581 (9)0.2894 (8)0.8055 (4)0.0572 (18)
H8A1.04570.19870.78300.069*
C91.0093 (8)0.4304 (7)0.7551 (4)0.0509 (16)
H9A0.96410.43540.69900.061*
C101.1798 (8)0.1322 (8)0.9466 (5)0.0546 (17)
C111.1688 (13)0.0185 (9)0.9111 (6)0.088 (3)
H11A1.20830.10400.95500.131*
H11B1.23450.03790.85770.131*
H11C1.05650.00970.89780.131*
C120.7482 (8)0.8852 (7)0.4024 (4)0.0495 (16)
H12A0.82080.78490.40220.059*
C130.6349 (8)1.1254 (8)0.4293 (5)0.0598 (18)
H13A0.61731.22360.45180.072*
C140.5321 (9)1.0864 (8)0.3760 (5)0.065 (2)
H14A0.43131.15040.35570.078*
C150.5460 (8)0.8397 (7)0.2991 (4)0.0495 (16)
C160.5548 (9)0.6859 (8)0.3247 (5)0.0614 (19)
H16A0.59440.64380.38080.074*
C170.5056 (9)0.5935 (8)0.2679 (5)0.0572 (18)
H17A0.51450.48880.28530.069*
C180.4430 (8)0.6558 (7)0.1852 (4)0.0509 (16)
C190.4326 (8)0.8124 (8)0.1608 (4)0.0552 (17)
H19A0.38940.85580.10550.066*
C200.4846 (8)0.9049 (7)0.2163 (4)0.0510 (16)
H20A0.47871.00890.19860.061*
C210.3882 (10)0.5613 (9)0.1216 (5)0.066 (2)
C220.4202 (12)0.3878 (8)0.1422 (6)0.086 (3)
H22A0.37760.34350.09530.129*
H22B0.36730.36890.19760.129*
H22C0.53640.33980.14690.129*
C231.1725 (8)0.6465 (7)0.4481 (4)0.0470 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0483 (7)0.0358 (6)0.0356 (7)0.0097 (5)0.0031 (5)0.0029 (4)
S0.0822 (14)0.0385 (9)0.0632 (12)0.0011 (9)0.0132 (10)0.0039 (8)
O10.128 (5)0.067 (3)0.045 (3)0.019 (3)0.024 (3)0.009 (2)
O20.112 (5)0.077 (4)0.060 (3)0.032 (3)0.038 (3)0.001 (3)
N10.055 (3)0.026 (2)0.048 (3)0.009 (2)0.007 (2)0.001 (2)
N20.056 (3)0.039 (3)0.037 (3)0.009 (2)0.000 (2)0.002 (2)
N30.045 (3)0.032 (2)0.046 (3)0.010 (2)0.002 (2)0.003 (2)
N40.049 (3)0.041 (3)0.056 (3)0.010 (2)0.010 (3)0.009 (2)
N50.061 (3)0.050 (3)0.040 (3)0.020 (3)0.001 (2)0.003 (2)
C10.064 (4)0.056 (4)0.037 (3)0.019 (3)0.005 (3)0.013 (3)
C20.054 (4)0.044 (3)0.048 (4)0.004 (3)0.008 (3)0.007 (3)
C30.061 (4)0.058 (4)0.036 (3)0.010 (3)0.002 (3)0.006 (3)
C40.058 (4)0.049 (4)0.028 (3)0.011 (3)0.004 (3)0.004 (3)
C50.060 (4)0.049 (4)0.039 (4)0.014 (3)0.007 (3)0.000 (3)
C60.064 (4)0.052 (4)0.035 (3)0.013 (3)0.019 (3)0.002 (3)
C70.049 (4)0.043 (3)0.036 (3)0.008 (3)0.002 (3)0.011 (3)
C80.078 (5)0.052 (4)0.043 (4)0.021 (4)0.010 (3)0.000 (3)
C90.067 (4)0.048 (4)0.038 (3)0.016 (3)0.012 (3)0.000 (3)
C100.058 (4)0.059 (4)0.046 (4)0.019 (3)0.006 (3)0.005 (3)
C110.129 (8)0.058 (5)0.074 (6)0.024 (5)0.008 (5)0.008 (4)
C120.054 (4)0.043 (3)0.052 (4)0.015 (3)0.004 (3)0.003 (3)
C130.051 (4)0.053 (4)0.073 (5)0.009 (3)0.013 (4)0.010 (3)
C140.059 (4)0.054 (4)0.079 (5)0.007 (3)0.026 (4)0.009 (4)
C150.043 (4)0.051 (4)0.057 (4)0.016 (3)0.007 (3)0.009 (3)
C160.070 (5)0.057 (4)0.058 (4)0.018 (4)0.020 (4)0.001 (3)
C170.068 (5)0.054 (4)0.054 (4)0.021 (3)0.016 (3)0.009 (3)
C180.049 (4)0.051 (4)0.059 (4)0.021 (3)0.005 (3)0.013 (3)
C190.059 (4)0.059 (4)0.048 (4)0.016 (3)0.012 (3)0.004 (3)
C200.053 (4)0.044 (3)0.054 (4)0.009 (3)0.018 (3)0.002 (3)
C210.070 (5)0.075 (5)0.058 (5)0.023 (4)0.007 (4)0.011 (4)
C220.117 (7)0.053 (4)0.094 (6)0.030 (5)0.028 (6)0.001 (4)
C230.059 (4)0.047 (4)0.032 (3)0.010 (3)0.008 (3)0.007 (3)
Geometric parameters (Å, º) top
Ni—N5i2.087 (5)C6—H6A0.9300
Ni—N52.087 (5)C7—C81.392 (8)
Ni—N12.097 (5)C7—C101.482 (8)
Ni—N1i2.097 (5)C8—C91.379 (8)
Ni—N32.125 (5)C8—H8A0.9300
Ni—N3i2.125 (5)C9—H9A0.9300
S—C231.616 (7)C10—C111.506 (10)
O1—C101.209 (8)C11—H11A0.9600
O2—C211.228 (8)C11—H11B0.9600
N1—C11.306 (7)C11—H11C0.9600
N1—C21.363 (8)C12—H12A0.9300
N2—C11.359 (8)C13—C141.334 (9)
N2—C31.366 (8)C13—H13A0.9300
N2—C41.439 (7)C14—H14A0.9300
N3—C121.310 (8)C15—C161.373 (9)
N3—C131.385 (8)C15—C201.386 (8)
N4—C121.363 (8)C16—C171.378 (9)
N4—C141.378 (8)C16—H16A0.9300
N4—C151.431 (7)C17—C181.381 (9)
N5—C231.162 (8)C17—H17A0.9300
C1—H1A0.9300C18—C191.391 (9)
C2—C31.353 (9)C18—C211.483 (9)
C2—H2A0.9300C19—C201.377 (9)
C3—H3A0.9300C19—H19A0.9300
C4—C51.352 (8)C20—H20A0.9300
C4—C91.381 (8)C21—C221.498 (10)
C5—C61.368 (8)C22—H22A0.9600
C5—H5A0.9300C22—H22B0.9600
C6—C71.400 (8)C22—H22C0.9600
N5i—Ni—N5180.0 (3)C7—C8—H8A119.4
N5i—Ni—N191.00 (19)C8—C9—C4118.7 (6)
N5—Ni—N189.00 (19)C8—C9—H9A120.6
N5i—Ni—N1i89.00 (19)C4—C9—H9A120.6
N5—Ni—N1i91.00 (19)O1—C10—C7120.8 (6)
N1—Ni—N1i180.000 (1)O1—C10—C11120.3 (6)
N5i—Ni—N389.69 (19)C7—C10—C11118.9 (6)
N5—Ni—N390.31 (19)C10—C11—H11A109.5
N1—Ni—N393.47 (18)C10—C11—H11B109.5
N1i—Ni—N386.53 (18)H11A—C11—H11B109.5
N5i—Ni—N3i90.31 (19)C10—C11—H11C109.5
N5—Ni—N3i89.69 (19)H11A—C11—H11C109.5
N1—Ni—N3i86.53 (18)H11B—C11—H11C109.5
N1i—Ni—N3i93.47 (18)N3—C12—N4111.5 (6)
N3—Ni—N3i180.000 (1)N3—C12—H12A124.3
C1—N1—C2105.1 (5)N4—C12—H12A124.3
C1—N1—Ni128.7 (4)C14—C13—N3110.3 (6)
C2—N1—Ni125.7 (4)C14—C13—H13A124.9
C1—N2—C3106.5 (5)N3—C13—H13A124.9
C1—N2—C4127.7 (5)C13—C14—N4106.7 (6)
C3—N2—C4125.7 (5)C13—C14—H14A126.7
C12—N3—C13105.3 (5)N4—C14—H14A126.7
C12—N3—Ni124.7 (4)C16—C15—C20120.4 (6)
C13—N3—Ni128.0 (4)C16—C15—N4120.1 (6)
C12—N4—C14106.3 (5)C20—C15—N4119.4 (6)
C12—N4—C15125.6 (5)C15—C16—C17120.5 (6)
C14—N4—C15128.1 (5)C15—C16—H16A119.7
C23—N5—Ni162.1 (5)C17—C16—H16A119.7
N1—C1—N2111.8 (6)C16—C17—C18120.3 (6)
N1—C1—H1A124.1C16—C17—H17A119.9
N2—C1—H1A124.1C18—C17—H17A119.9
C3—C2—N1110.8 (5)C17—C18—C19118.5 (6)
C3—C2—H2A124.6C17—C18—C21122.4 (6)
N1—C2—H2A124.6C19—C18—C21119.1 (6)
C2—C3—N2105.7 (6)C20—C19—C18121.7 (6)
C2—C3—H3A127.1C20—C19—H19A119.1
N2—C3—H3A127.1C18—C19—H19A119.1
C5—C4—C9121.2 (5)C19—C20—C15118.5 (6)
C5—C4—N2119.8 (6)C19—C20—H20A120.7
C9—C4—N2119.0 (5)C15—C20—H20A120.7
C4—C5—C6120.5 (6)O2—C21—C18121.0 (7)
C4—C5—H5A119.8O2—C21—C22119.7 (7)
C6—C5—H5A119.8C18—C21—C22119.3 (6)
C5—C6—C7120.5 (5)C21—C22—H22A109.5
C5—C6—H6A119.8C21—C22—H22B109.5
C7—C6—H6A119.8H22A—C22—H22B109.5
C8—C7—C6117.9 (5)C21—C22—H22C109.5
C8—C7—C10123.4 (6)H22A—C22—H22C109.5
C6—C7—C10118.7 (6)H22B—C22—H22C109.5
C9—C8—C7121.1 (6)N5—C23—S177.9 (6)
C9—C8—H8A119.4
N5i—Ni—N1—C1172.5 (5)C5—C6—C7—C10180.0 (6)
N5—Ni—N1—C17.5 (5)C6—C7—C8—C90.8 (10)
N3—Ni—N1—C197.8 (5)C10—C7—C8—C9179.9 (6)
N3i—Ni—N1—C182.2 (5)C7—C8—C9—C40.1 (11)
N5i—Ni—N1—C21.9 (5)C5—C4—C9—C80.8 (11)
N5—Ni—N1—C2178.1 (5)N2—C4—C9—C8178.9 (6)
N3—Ni—N1—C291.6 (5)C8—C7—C10—O1177.5 (7)
N3i—Ni—N1—C288.4 (5)C6—C7—C10—O13.2 (10)
N5i—Ni—N3—C12179.8 (5)C8—C7—C10—C112.8 (10)
N5—Ni—N3—C120.2 (5)C6—C7—C10—C11176.5 (7)
N1—Ni—N3—C1289.2 (5)C13—N3—C12—N40.6 (7)
N1i—Ni—N3—C1290.8 (5)Ni—N3—C12—N4164.2 (4)
N5i—Ni—N3—C1318.5 (6)C14—N4—C12—N31.3 (7)
N5—Ni—N3—C13161.5 (6)C15—N4—C12—N3177.0 (6)
N1—Ni—N3—C13109.5 (6)C12—N3—C13—C140.3 (8)
N1i—Ni—N3—C1370.5 (6)Ni—N3—C13—C14164.4 (5)
N1—Ni—N5—C2314.2 (17)N3—C13—C14—N41.0 (9)
N1i—Ni—N5—C23165.8 (17)C12—N4—C14—C131.4 (8)
N3—Ni—N5—C23107.7 (17)C15—N4—C14—C13176.8 (6)
N3i—Ni—N5—C2372.3 (17)C12—N4—C15—C1644.8 (10)
C2—N1—C1—N22.1 (7)C14—N4—C15—C16137.4 (8)
Ni—N1—C1—N2170.0 (4)C12—N4—C15—C20133.6 (7)
C3—N2—C1—N11.7 (7)C14—N4—C15—C2044.3 (10)
C4—N2—C1—N1176.3 (6)C20—C15—C16—C171.1 (11)
C1—N1—C2—C31.6 (8)N4—C15—C16—C17177.2 (6)
Ni—N1—C2—C3170.7 (4)C15—C16—C17—C181.5 (12)
N1—C2—C3—N20.6 (8)C16—C17—C18—C190.6 (11)
C1—N2—C3—C20.6 (7)C16—C17—C18—C21180.0 (7)
C4—N2—C3—C2177.4 (6)C17—C18—C19—C200.8 (11)
C1—N2—C4—C5134.3 (7)C21—C18—C19—C20178.7 (7)
C3—N2—C4—C543.4 (9)C18—C19—C20—C151.2 (11)
C1—N2—C4—C943.8 (9)C16—C15—C20—C190.2 (10)
C3—N2—C4—C9138.6 (7)N4—C15—C20—C19178.5 (6)
C9—C4—C5—C61.0 (11)C17—C18—C21—O2171.7 (8)
N2—C4—C5—C6179.1 (6)C19—C18—C21—O28.9 (11)
C4—C5—C6—C70.3 (10)C17—C18—C21—C227.7 (11)
C5—C6—C7—C80.6 (10)C19—C18—C21—C22171.7 (8)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1ii0.932.443.355 (8)168
C9—H9A···Siii0.932.873.759 (7)160
C16—H16A···Siii0.932.883.803 (8)173
Symmetry codes: (ii) x+2, y+1, z+2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C11H10N2O)4]
Mr919.71
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4816 (4), 8.8834 (4), 15.0357 (8)
α, β, γ (°)85.701 (1), 88.161 (2), 73.684 (1)
V3)1084.12 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.18 × 0.12 × 0.08
Data collection
DiffractometerRigaku R-AXIS SPIDER
Absorption correctionMulti-scan
(ABSCOR; Higashi 1995)
Tmin, Tmax0.918, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
8987, 4005, 2231
Rint0.057
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.259, 1.09
No. of reflections4005
No. of parameters287
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 1.22

Computer programs: RAPID-AUTO (Rigaku 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.443.355 (8)168
C9—H9A···Sii0.932.873.759 (7)160
C16—H16A···Sii0.932.883.803 (8)173
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the NSF of China (No. 20871072), the NSF of Shandong Province (No. 2009ZRA02071) and the Scientific Development Plan of Universities in Shandong Province (No. J09LB53).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, F.-Q., Chen, H.-N., Li, R.-X., Liu, G.-Y. & Li, W.-H. (2006). Acta Cryst. E62, m2457–m2458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. & Wang, X. (2005). Acta Cryst. E61, m1568–m1570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPang, S.-J., Su, J. & Lin, Q. (2007). Acta Cryst. E63, m2369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo,Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, S.-M. & Jin, Y.-L. (2012). Acta Cryst. E68, m188–m189.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds