organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-[(2-Hy­dr­oxy­phen­yl)imino]-3,5a,9-tri­methyl-3a,4,5,5a,8,9b-hexa­hydro­naphtho­[1,2-b]furan-2(3H)-one

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, bDepartment of Chemistry, Allama Iqbal Open University, Islamabad, and cRiphah Institute of Pharmaceutical Sciences, Riphah International University, 7th Avenue G-7/4, Islamabad, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 6 June 2012; accepted 15 June 2012; online 20 June 2012)

The title compound, C21H23NO3, is a phenyl­imine derivative of the well known anthelmintic agent α-santonin. The trans-fused cyclo­hexane and γ-lactone rings of the α-santonin ring system adopt chair and envelope conformations, respectively, whereas the hexa­diene ring is approximately planar [maximum deviation = 0.029 (4) Å] and forms a dihedral angle of 62.30 (11)° with the benzene ring. An intra­molecular O—H⋯N hydrogen bond is observed.

Related literature

For the isolation and anthelmintic use of α-santonin, see: Miana & Al-Lohedan (1986[Miana, G. A. & Al-Lohedan, H. A. (1986). J. Chem. Soc. Pak. 8, 241-274.]). For the crystal structure and stereochemistry of α-santonin, see: White & Sim (1975[White, D. N. J. & Sim, G. A. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1826-1831.]); Coggon & Sim (1969[Coggon, P. & Sim, G. A. (1969). J. Chem. Soc. B, pp. 237-242.]). For the crystal structure of a related compound, see: Yousuf et al. (2012[Yousuf, S., Younas, S. M., Ambreen, N., Khan, K. M. & Miana, G. A. (2012). Acta Cryst. E68, o2112.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO3

  • Mr = 337.40

  • Orthorhombic, P 21 21 21

  • a = 8.6000 (9) Å

  • b = 10.7458 (11) Å

  • c = 19.729 (2) Å

  • V = 1823.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.54 × 0.14 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.997

  • 10874 measured reflections

  • 1955 independent reflections

  • 1385 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.04

  • 1955 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.82 2.28 2.747 (4) 116

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

α-Santonin was isolated from Artemisia santonica (Miana & Al-Lohedan, 1986) and widely used in the past as an anthelmintic drug to expels parasitic worms (helminths) from the body, by either killing or stunning them. The title compound was prepared as a part of our ongoing reaserch to synthesize bioactive derivatives of α-santonin via biology oriented synthesis (BIOS). The title compound is an analogue of our previously reported compound 3,5a,9-trimethyl-3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione-8-(N-phenylhydrazone), with the difference that the phenylhydrazine moiety is replaced by a 2-hydroxyphenylimine group (C16–C21) attached to the α-santonin ring system (O1–O2/C1–C15). The cyclohexadiene ring (C6–C11) is almost planar with a maximum deviation from the least square plane of 0.029 (3) Å for atom C7 and forms a dihedral angle of 62.30 (11)° with the phenyl ring. The cyclohexane ring (C3–C6/C11–C12) adopts a chair conformation [Q = 0.594 (4) Å, θ = 8.2 (4)° and φ = 304 (2)°] and is trans fused to the γ-lactone ring (O1/C1–C3/C12) which adopts an envelope conformation with atom C3 0.228 (3) Å out of the plane formed by the rest of the ring atoms. The two methyl substituents at atoms C6 and C2 exist in axial and pseudo equatorial orientations, respectively (Fig. 1). The bond dimensions are similar to those found in the structurally related compounds (Yousuf et al., 2012; White & Sim, 1975; Coggon & Sim, 1969). An intramolecular O—H···N hydrogen bond is present (Table 1). In the crystal, molecules are arranged into layers parallel to the ab plane only by van der Waals forces (Fig. 2).

Related literature top

For the isolation and anthelmintic use of α-santonin, see: Miana & Al-Lohedan (1986). For the crystal structure and stereochemistry of α-santonin, see: White & Sim (1975); Coggon & Sim (1969). For the crystal structure of a related compound, see: Yousuf et al. (2012).

Experimental top

In a 100 ml round bottomed flask toluene (25 ml) and α-santonin (400 mg, 1.6 mmol) were taken, then 2-amino phenol (11.2 mmol) was added with continuous stirring. The reaction mixture was refluxed and monitored by TLC. After completion of reaction (24 h), the mixture was cooled and extracted with water. The organic layer was dried over Na2SO4, filtered and the solvent evaporated under vacuum in a rotary evaporator. The crude product was chromatographed on a silica gel column using n-hexane:ethyl acetate (7:3 v/v) as mobile phase to obtain yellow crystals of title compound in 85% yield.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2 Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms. A rotating group model was applied to the methyl groups. 1433 Friedel pairs were merged.

Structure description top

α-Santonin was isolated from Artemisia santonica (Miana & Al-Lohedan, 1986) and widely used in the past as an anthelmintic drug to expels parasitic worms (helminths) from the body, by either killing or stunning them. The title compound was prepared as a part of our ongoing reaserch to synthesize bioactive derivatives of α-santonin via biology oriented synthesis (BIOS). The title compound is an analogue of our previously reported compound 3,5a,9-trimethyl-3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione-8-(N-phenylhydrazone), with the difference that the phenylhydrazine moiety is replaced by a 2-hydroxyphenylimine group (C16–C21) attached to the α-santonin ring system (O1–O2/C1–C15). The cyclohexadiene ring (C6–C11) is almost planar with a maximum deviation from the least square plane of 0.029 (3) Å for atom C7 and forms a dihedral angle of 62.30 (11)° with the phenyl ring. The cyclohexane ring (C3–C6/C11–C12) adopts a chair conformation [Q = 0.594 (4) Å, θ = 8.2 (4)° and φ = 304 (2)°] and is trans fused to the γ-lactone ring (O1/C1–C3/C12) which adopts an envelope conformation with atom C3 0.228 (3) Å out of the plane formed by the rest of the ring atoms. The two methyl substituents at atoms C6 and C2 exist in axial and pseudo equatorial orientations, respectively (Fig. 1). The bond dimensions are similar to those found in the structurally related compounds (Yousuf et al., 2012; White & Sim, 1975; Coggon & Sim, 1969). An intramolecular O—H···N hydrogen bond is present (Table 1). In the crystal, molecules are arranged into layers parallel to the ab plane only by van der Waals forces (Fig. 2).

For the isolation and anthelmintic use of α-santonin, see: Miana & Al-Lohedan (1986). For the crystal structure and stereochemistry of α-santonin, see: White & Sim (1975); Coggon & Sim (1969). For the crystal structure of a related compound, see: Yousuf et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c axis.
8-[(2-Hydroxyphenyl)imino]-3,5a,9-trimethyl-3a,4,5,5a,8,9b- hexahydronaphtho[1,2-b]furan-2(3H)-one top
Crystal data top
C21H23NO3F(000) = 720
Mr = 337.40Dx = 1.229 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1151 reflections
a = 8.6000 (9) Åθ = 2.8–18.6°
b = 10.7458 (11) ŵ = 0.08 mm1
c = 19.729 (2) ÅT = 273 K
V = 1823.2 (3) Å3Plate, yellow
Z = 40.54 × 0.14 × 0.04 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1955 independent reflections
Radiation source: fine-focus sealed tube1385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scanθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.957, Tmax = 0.997k = 1213
10874 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.1849P]
where P = (Fo2 + 2Fc2)/3
1955 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C21H23NO3V = 1823.2 (3) Å3
Mr = 337.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.6000 (9) ŵ = 0.08 mm1
b = 10.7458 (11) ÅT = 273 K
c = 19.729 (2) Å0.54 × 0.14 × 0.04 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1955 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1385 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.997Rint = 0.055
10874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
1955 reflectionsΔρmin = 0.13 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2992 (3)0.14972 (19)0.03121 (11)0.0530 (6)
O20.2744 (3)0.3535 (2)0.01341 (12)0.0647 (7)
O30.1643 (3)0.2894 (3)0.23668 (15)0.0871 (9)
H3A0.12720.22650.21960.131*
N10.0397 (3)0.2580 (2)0.13093 (14)0.0542 (7)
C10.3452 (4)0.2701 (3)0.03985 (17)0.0491 (8)
C20.4849 (4)0.2769 (3)0.08582 (16)0.0501 (8)
H2A0.57850.28050.05760.060*
C30.4799 (4)0.1507 (3)0.12056 (15)0.0450 (8)
H3B0.40370.15500.15740.054*
C40.6257 (4)0.0914 (3)0.14781 (18)0.0553 (9)
H4A0.66610.14030.18520.066*
H4B0.70430.08810.11260.066*
C50.5871 (4)0.0399 (3)0.17203 (17)0.0569 (9)
H5A0.52360.03380.21250.068*
H5B0.68320.08120.18450.068*
C60.4998 (4)0.1229 (3)0.11905 (16)0.0501 (8)
C70.4574 (4)0.2407 (3)0.15386 (18)0.0585 (10)
H7A0.53620.28550.17500.070*
C80.3150 (4)0.2855 (3)0.15666 (17)0.0546 (9)
H8A0.29840.36200.17750.066*
C90.1825 (4)0.2191 (3)0.12821 (17)0.0476 (8)
C100.2116 (4)0.0959 (3)0.09669 (17)0.0500 (8)
C110.3588 (4)0.0537 (3)0.09191 (15)0.0417 (8)
C120.4121 (4)0.0698 (3)0.06425 (16)0.0446 (8)
H12A0.49550.05330.03160.053*
C130.4820 (5)0.3915 (3)0.1308 (2)0.0783 (12)
H13A0.47350.46470.10310.118*
H13B0.57630.39530.15680.118*
H13C0.39450.38700.16090.118*
C140.0693 (4)0.0278 (3)0.0730 (2)0.0805 (14)
H14A0.08890.00840.02940.121*
H14B0.04400.03670.10480.121*
H14C0.01610.08500.06970.121*
C150.6148 (4)0.1591 (3)0.0611 (2)0.0707 (11)
H15A0.56140.20900.02810.106*
H15B0.70000.20560.07970.106*
H15C0.65360.08500.03990.106*
C160.0030 (4)0.3792 (3)0.15327 (17)0.0525 (8)
C170.0571 (4)0.4863 (3)0.12167 (19)0.0626 (10)
H17A0.12920.48000.08670.075*
C180.0048 (5)0.6021 (3)0.1418 (2)0.0709 (11)
H18A0.04050.67330.12000.085*
C190.0998 (5)0.6117 (4)0.1940 (2)0.0745 (12)
H19A0.13370.68980.20800.089*
C200.1549 (4)0.5067 (4)0.2258 (2)0.0701 (11)
H20A0.22570.51360.26120.084*
C210.1051 (4)0.3920 (3)0.20502 (18)0.0567 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0561 (14)0.0463 (13)0.0566 (14)0.0012 (12)0.0146 (12)0.0084 (10)
O20.0708 (16)0.0514 (14)0.0718 (16)0.0061 (14)0.0142 (14)0.0115 (12)
O30.0668 (18)0.081 (2)0.114 (2)0.0007 (15)0.0180 (17)0.0079 (17)
N10.0475 (17)0.0515 (17)0.0638 (19)0.0068 (15)0.0000 (15)0.0104 (14)
C10.050 (2)0.048 (2)0.049 (2)0.0008 (18)0.0019 (16)0.0019 (16)
C20.046 (2)0.0471 (18)0.057 (2)0.0002 (17)0.0028 (17)0.0032 (16)
C30.0446 (18)0.0487 (18)0.0416 (18)0.0018 (16)0.0005 (16)0.0006 (15)
C40.053 (2)0.057 (2)0.057 (2)0.0018 (18)0.0101 (18)0.0053 (17)
C50.044 (2)0.066 (2)0.061 (2)0.0025 (18)0.0112 (17)0.0118 (17)
C60.047 (2)0.0504 (19)0.053 (2)0.0012 (17)0.0003 (18)0.0115 (15)
C70.054 (2)0.051 (2)0.071 (2)0.0098 (19)0.0099 (19)0.0143 (18)
C80.059 (2)0.0432 (19)0.061 (2)0.0028 (18)0.0053 (19)0.0095 (17)
C90.049 (2)0.0442 (18)0.050 (2)0.0004 (17)0.0018 (16)0.0050 (15)
C100.048 (2)0.0449 (19)0.057 (2)0.0007 (17)0.0079 (17)0.0057 (15)
C110.046 (2)0.0399 (18)0.0392 (18)0.0007 (15)0.0039 (15)0.0024 (14)
C120.0452 (18)0.0470 (19)0.0415 (19)0.0053 (16)0.0012 (15)0.0054 (14)
C130.082 (3)0.061 (2)0.093 (3)0.006 (2)0.027 (3)0.021 (2)
C140.052 (2)0.060 (2)0.129 (4)0.003 (2)0.016 (2)0.033 (2)
C150.061 (2)0.066 (2)0.085 (3)0.015 (2)0.009 (2)0.004 (2)
C160.0445 (19)0.053 (2)0.060 (2)0.0052 (17)0.0041 (18)0.0100 (17)
C170.066 (2)0.058 (2)0.064 (2)0.006 (2)0.0036 (19)0.0054 (19)
C180.073 (3)0.057 (2)0.083 (3)0.011 (2)0.002 (3)0.001 (2)
C190.064 (3)0.064 (3)0.095 (3)0.017 (2)0.004 (2)0.022 (2)
C200.051 (2)0.083 (3)0.076 (3)0.012 (2)0.007 (2)0.019 (2)
C210.0457 (19)0.059 (2)0.065 (2)0.0004 (19)0.0006 (19)0.0023 (19)
Geometric parameters (Å, º) top
O1—C11.363 (4)C8—H8A0.9300
O1—C121.451 (3)C9—C101.484 (4)
O2—C11.203 (4)C10—C111.348 (4)
O3—C211.366 (4)C10—C141.500 (5)
O3—H3A0.8200C11—C121.506 (4)
N1—C91.299 (4)C12—H12A0.9800
N1—C161.411 (4)C13—H13A0.9600
C1—C21.507 (5)C13—H13B0.9600
C2—C131.517 (4)C13—H13C0.9600
C2—C31.521 (4)C14—H14A0.9600
C2—H2A0.9800C14—H14B0.9600
C3—C41.506 (4)C14—H14C0.9600
C3—C121.526 (4)C15—H15A0.9600
C3—H3B0.9800C15—H15B0.9600
C4—C51.527 (4)C15—H15C0.9600
C4—H4A0.9700C16—C211.388 (5)
C4—H4B0.9700C16—C171.389 (5)
C5—C61.566 (4)C17—C181.382 (5)
C5—H5A0.9700C17—H17A0.9300
C5—H5B0.9700C18—C191.372 (5)
C6—C71.486 (4)C18—H18A0.9300
C6—C111.520 (4)C19—C201.375 (5)
C6—C151.561 (5)C19—H19A0.9300
C7—C81.317 (4)C20—C211.368 (5)
C7—H7A0.9300C20—H20A0.9300
C8—C91.457 (5)
C1—O1—C12108.1 (2)C9—C10—C14115.3 (3)
C21—O3—H3A109.5C10—C11—C12127.4 (3)
C9—N1—C16121.4 (3)C10—C11—C6124.1 (3)
O2—C1—O1120.4 (3)C12—C11—C6108.4 (3)
O2—C1—C2128.9 (3)O1—C12—C11118.7 (3)
O1—C1—C2110.7 (3)O1—C12—C3104.2 (2)
C1—C2—C13112.3 (3)C11—C12—C3110.7 (2)
C1—C2—C3101.8 (3)O1—C12—H12A107.6
C13—C2—C3117.4 (3)C11—C12—H12A107.6
C1—C2—H2A108.3C3—C12—H12A107.6
C13—C2—H2A108.3C2—C13—H13A109.5
C3—C2—H2A108.3C2—C13—H13B109.5
C4—C3—C2121.0 (3)H13A—C13—H13B109.5
C4—C3—C12109.7 (3)C2—C13—H13C109.5
C2—C3—C12101.0 (2)H13A—C13—H13C109.5
C4—C3—H3B108.2H13B—C13—H13C109.5
C2—C3—H3B108.2C10—C14—H14A109.5
C12—C3—H3B108.2C10—C14—H14B109.5
C3—C4—C5108.8 (3)H14A—C14—H14B109.5
C3—C4—H4A109.9C10—C14—H14C109.5
C5—C4—H4A109.9H14A—C14—H14C109.5
C3—C4—H4B109.9H14B—C14—H14C109.5
C5—C4—H4B109.9C6—C15—H15A109.5
H4A—C4—H4B108.3C6—C15—H15B109.5
C4—C5—C6115.0 (3)H15A—C15—H15B109.5
C4—C5—H5A108.5C6—C15—H15C109.5
C6—C5—H5A108.5H15A—C15—H15C109.5
C4—C5—H5B108.5H15B—C15—H15C109.5
C6—C5—H5B108.5C21—C16—C17118.2 (3)
H5A—C5—H5B107.5C21—C16—N1118.1 (3)
C7—C6—C11112.6 (3)C17—C16—N1123.4 (3)
C7—C6—C15106.4 (3)C18—C17—C16120.5 (4)
C11—C6—C15111.7 (3)C18—C17—H17A119.7
C7—C6—C5107.1 (3)C16—C17—H17A119.7
C11—C6—C5109.8 (3)C19—C18—C17119.8 (4)
C15—C6—C5109.1 (3)C19—C18—H18A120.1
C8—C7—C6124.0 (3)C17—C18—H18A120.1
C8—C7—H7A118.0C18—C19—C20120.4 (4)
C6—C7—H7A118.0C18—C19—H19A119.8
C7—C8—C9122.1 (3)C20—C19—H19A119.8
C7—C8—H8A118.9C21—C20—C19119.6 (3)
C9—C8—H8A118.9C21—C20—H20A120.2
N1—C9—C8124.5 (3)C19—C20—H20A120.2
N1—C9—C10117.6 (3)O3—C21—C20118.3 (3)
C8—C9—C10117.8 (3)O3—C21—C16120.4 (3)
C11—C10—C9119.2 (3)C20—C21—C16121.3 (3)
C11—C10—C14125.5 (3)
C12—O1—C1—O2175.7 (3)C14—C10—C11—C6177.4 (3)
C12—O1—C1—C25.8 (3)C7—C6—C11—C102.1 (5)
O2—C1—C2—C1334.0 (5)C15—C6—C11—C10117.5 (4)
O1—C1—C2—C13144.4 (3)C5—C6—C11—C10121.3 (3)
O2—C1—C2—C3160.4 (3)C7—C6—C11—C12174.2 (3)
O1—C1—C2—C318.0 (3)C15—C6—C11—C1266.2 (3)
C1—C2—C3—C4153.7 (3)C5—C6—C11—C1254.9 (3)
C13—C2—C3—C483.3 (4)C1—O1—C12—C11151.1 (3)
C1—C2—C3—C1232.6 (3)C1—O1—C12—C327.3 (3)
C13—C2—C3—C12155.6 (3)C10—C11—C12—O18.0 (5)
C2—C3—C4—C5173.5 (3)C6—C11—C12—O1175.9 (3)
C12—C3—C4—C556.6 (3)C10—C11—C12—C3112.5 (4)
C3—C4—C5—C651.6 (4)C6—C11—C12—C363.6 (3)
C4—C5—C6—C7173.9 (3)C4—C3—C12—O1166.0 (2)
C4—C5—C6—C1151.4 (4)C2—C3—C12—O137.2 (3)
C4—C5—C6—C1571.3 (4)C4—C3—C12—C1165.3 (3)
C11—C6—C7—C84.8 (5)C2—C3—C12—C11165.9 (3)
C15—C6—C7—C8117.8 (4)C9—N1—C16—C21126.8 (4)
C5—C6—C7—C8125.6 (4)C9—N1—C16—C1760.1 (5)
C6—C7—C8—C93.2 (6)C21—C16—C17—C180.4 (5)
C16—N1—C9—C89.8 (5)N1—C16—C17—C18173.5 (3)
C16—N1—C9—C10173.1 (3)C16—C17—C18—C190.9 (6)
C7—C8—C9—N1178.5 (4)C17—C18—C19—C201.0 (6)
C7—C8—C9—C101.4 (5)C18—C19—C20—C210.1 (6)
N1—C9—C10—C11178.8 (3)C19—C20—C21—O3178.7 (4)
C8—C9—C10—C113.9 (5)C19—C20—C21—C161.4 (6)
N1—C9—C10—C141.7 (5)C17—C16—C21—O3178.6 (3)
C8—C9—C10—C14175.6 (3)N1—C16—C21—O35.1 (5)
C9—C10—C11—C12177.6 (3)C17—C16—C21—C201.5 (5)
C14—C10—C11—C121.9 (6)N1—C16—C21—C20175.0 (3)
C9—C10—C11—C62.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.822.282.747 (4)116

Experimental details

Crystal data
Chemical formulaC21H23NO3
Mr337.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)8.6000 (9), 10.7458 (11), 19.729 (2)
V3)1823.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.14 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.957, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
10874, 1955, 1385
Rint0.055
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.04
No. of reflections1955
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.822.282.747 (4)116
 

Acknowledgements

The authors gratefully acknowledge the Pakistan Academy of Sciences for funding Project Reference No. 5–9/PAS/1335 entitled "Biology-Oriented Syntheses (BIOS) Based Synthesis of Libraries of Santonin".

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoggon, P. & Sim, G. A. (1969). J. Chem. Soc. B, pp. 237–242.  Google Scholar
First citationMiana, G. A. & Al-Lohedan, H. A. (1986). J. Chem. Soc. Pak. 8, 241–274.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, D. N. J. & Sim, G. A. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1826–1831.  CrossRef Google Scholar
First citationYousuf, S., Younas, S. M., Ambreen, N., Khan, K. M. & Miana, G. A. (2012). Acta Cryst. E68, o2112.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds