organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2-anilino-2-oxoeth­yl)-1H-imidazol-3-ium chloride

aNational Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 8 June 2012; accepted 15 June 2012; online 27 June 2012)

In the cation of the title salt, C19H19N4O2+·Cl, the dihedral angles between the imidazole ring and the phenyl rings are 70.39 (8) and 86.26 (9)°. The chloride anion inter­acts with the cation through an N—H⋯Cl hydrogen bond. In the crystal, classical N—H⋯O hydrogen bonds link the cations into chains parallel to the b axis. Non-classical C—H⋯Cl and C—H⋯O hydrogen bonds further connect the chains into a three-dimensional network.

Related literature

For the crystal structure of an acetonitrile monosolvate deriv­ative of the title compound, see: Liao & Lee (2011[Liao, C.-Y. & Lee, H. M. (2011). Acta Cryst. E67, o3362.]). For the crystal structures of nickel, palladium, and silver complexes with ligands derived from the title compound, see: Liao, Chan, Chang et al. (2007[Liao, C.-Y., Chan, K.-T., Chang, Y.-C., Chen, C.-Y., Tu, C.-Y., Hu, C.-H. & Lee, H. M. (2007). Organometallics, 26, 5826-5833.]); Liao, Chan, Zeng et al. (2007[Liao, C.-Y., Chan, K.-T., Zeng, J.-Y., Hu, C.-H., Tu, C.-Y. & Lee, H. M. (2007). Organometallics, 26, 1692-1702.]); Liao et al. (2008[Liao, C.-Y., Chan, K.-T., Chiu, P.-L., Chen, C.-Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973-2978.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19N4O2+·Cl

  • Mr = 370.83

  • Monoclinic, P 21 /c

  • a = 8.4375 (5) Å

  • b = 12.0446 (7) Å

  • c = 17.5449 (10) Å

  • β = 90.789 (3)°

  • V = 1782.85 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 150 K

  • 0.11 × 0.09 × 0.07 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.984

  • 11822 measured reflections

  • 3684 independent reflections

  • 1924 reflections with I > 2σ

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.096

  • S = 0.92

  • 3684 reflections

  • 311 parameters

  • All H-atom parameters refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.87 (2) 1.94 (2) 2.799 (3) 171 (2)
N4—H4A⋯Cl1ii 0.99 (2) 2.19 (2) 3.182 (2) 177.4 (19)
C1—H1⋯Cl1iii 0.97 (2) 2.58 (2) 3.482 (3) 155.0 (16)
C2—H2⋯O1ii 0.91 (2) 2.32 (2) 3.082 (3) 140.6 (17)
C13—H13⋯O2 0.97 (2) 2.29 (2) 2.862 (3) 116.9 (16)
C4—H24B⋯O2i 0.98 (2) 2.54 (2) 3.308 (3) 136.0 (16)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

The crystal structure of a related acetonitrile monosolvate was reported by us previously (Liao & Lee 2011). The compound is a good precursor for the preparation of transition metal complexes of N-heterocyclic carbene (NHC) ligands. Nickel (Liao, Chan, Chang et al. 2007), palladium (Liao, Chan, Zeng et al. 2007) and silver (Liao et al. 2008) complexes with NHC ligands derived from the title compound were successfully prepared.

The structure of the title compound is shown in Fig. 1. The chloride anion forms a hydrogen bond with one of the amido H-atoms (Table 1). In the cation, the dihedral angles formed by the imidazole ring with the C5–C10 and C12–C17 phenyl rings are 70.39 (8) and 86.26 (9)°, respectively. Classical N—H···O hydrogen bonds link the cations into chains parallel to the b axis. Non-classical hydrogen bonds of the type C—H···Cl and C—H···O further connects the chains into a three-dimensional network (Fig. 2).

Related literature top

For the crystal structure of an acetonitrile monosolvate derivative of the title compound, see: Liao & Lee (2011). For the crystal structures of nickel, palladium, and silver complexes with ligands derived from the title compound, see: Liao, Chan, Chang et al. (2007); Liao, Chan, Zeng et al. (2007); Liao et al. (2008).

Experimental top

The compound was prepared according to the literature method (Liao, Chan, Zeng et al. 2007). Crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a dichloromethane solution of the compound at room temperature.

Refinement top

All the hydrogen atoms were located in a difference Fourier map and freely refined.

Structure description top

The crystal structure of a related acetonitrile monosolvate was reported by us previously (Liao & Lee 2011). The compound is a good precursor for the preparation of transition metal complexes of N-heterocyclic carbene (NHC) ligands. Nickel (Liao, Chan, Chang et al. 2007), palladium (Liao, Chan, Zeng et al. 2007) and silver (Liao et al. 2008) complexes with NHC ligands derived from the title compound were successfully prepared.

The structure of the title compound is shown in Fig. 1. The chloride anion forms a hydrogen bond with one of the amido H-atoms (Table 1). In the cation, the dihedral angles formed by the imidazole ring with the C5–C10 and C12–C17 phenyl rings are 70.39 (8) and 86.26 (9)°, respectively. Classical N—H···O hydrogen bonds link the cations into chains parallel to the b axis. Non-classical hydrogen bonds of the type C—H···Cl and C—H···O further connects the chains into a three-dimensional network (Fig. 2).

For the crystal structure of an acetonitrile monosolvate derivative of the title compound, see: Liao & Lee (2011). For the crystal structures of nickel, palladium, and silver complexes with ligands derived from the title compound, see: Liao, Chan, Chang et al. (2007); Liao, Chan, Zeng et al. (2007); Liao et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are dipicted by circles of an arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal packing along the b axis, displaying the hydrogen bonds as dashed lines.
1,3-Bis(2-anilino-2-oxoethyl)-1H-imidazol-3-ium chloride top
Crystal data top
C19H19N4O2+·ClF(000) = 776
Mr = 370.83Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1122 reflections
a = 8.4375 (5) Åθ = 2.9–18.5°
b = 12.0446 (7) ŵ = 0.24 mm1
c = 17.5449 (10) ÅT = 150 K
β = 90.789 (3)°Prism, colourless
V = 1782.85 (18) Å30.11 × 0.09 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3684 independent reflections
Radiation source: fine-focus sealed tube1924 reflections with I > 2σ
Graphite monochromatorRint = 0.062
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.975, Tmax = 0.984k = 1115
11822 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096All H-atom parameters refined
S = 0.92 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
3684 reflections(Δ/σ)max = 0.004
311 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H19N4O2+·ClV = 1782.85 (18) Å3
Mr = 370.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4375 (5) ŵ = 0.24 mm1
b = 12.0446 (7) ÅT = 150 K
c = 17.5449 (10) Å0.11 × 0.09 × 0.07 mm
β = 90.789 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
3684 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1924 reflections with I > 2σ
Tmin = 0.975, Tmax = 0.984Rint = 0.062
11822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 0.92Δρmax = 0.25 e Å3
3684 reflectionsΔρmin = 0.22 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2603 (3)0.6481 (2)0.34316 (15)0.0272 (6)
C20.3583 (3)0.5510 (2)0.24844 (14)0.0311 (6)
C30.2750 (3)0.6355 (2)0.21849 (16)0.0320 (7)
C40.1131 (3)0.7918 (2)0.26932 (16)0.0302 (6)
C50.1673 (3)1.0668 (2)0.17161 (13)0.0244 (6)
C60.2754 (3)1.1355 (2)0.20752 (15)0.0306 (6)
C70.3198 (3)1.2344 (2)0.17338 (17)0.0368 (7)
C80.2524 (3)1.2655 (3)0.10441 (17)0.0449 (8)
C90.1429 (3)1.1971 (2)0.06952 (16)0.0421 (8)
C100.1013 (3)1.0980 (2)0.10172 (14)0.0331 (7)
C110.3070 (3)0.3735 (2)0.37508 (13)0.0295 (6)
C120.3050 (3)0.1740 (2)0.40765 (12)0.0283 (6)
C130.1423 (3)0.1560 (2)0.40360 (13)0.0322 (7)
C140.0841 (4)0.0495 (2)0.41476 (14)0.0392 (7)
C150.1843 (4)0.0380 (2)0.42981 (14)0.0405 (7)
C160.3452 (4)0.0205 (2)0.43115 (14)0.0386 (7)
C170.4066 (3)0.0855 (2)0.42045 (13)0.0328 (7)
C180.2067 (3)0.8904 (2)0.23976 (13)0.0274 (6)
C190.4067 (3)0.4786 (2)0.38240 (16)0.0314 (7)
Cl10.26726 (7)0.80315 (6)0.03880 (3)0.0388 (2)
H10.231 (2)0.6733 (16)0.3934 (11)0.022 (6)*
H20.416 (3)0.4943 (18)0.2284 (12)0.028 (7)*
H30.264 (3)0.6624 (18)0.1704 (13)0.034 (7)*
H60.320 (3)1.1175 (18)0.2553 (12)0.033 (7)*
H70.392 (3)1.2781 (18)0.2008 (12)0.032 (7)*
H80.282 (3)1.3315 (19)0.0838 (13)0.035 (7)*
H90.091 (3)1.2152 (19)0.0257 (13)0.042 (8)*
H100.023 (2)1.0480 (17)0.0767 (11)0.027 (6)*
H130.068 (3)0.2155 (18)0.3914 (11)0.028 (6)*
H140.026 (3)0.0440 (19)0.4129 (13)0.043 (8)*
H150.139 (3)0.113 (2)0.4405 (12)0.039 (7)*
H170.522 (3)0.1020 (18)0.4243 (12)0.038 (7)*
H180.424 (3)0.080 (2)0.4398 (13)0.052 (8)*
H3A0.020 (3)0.9449 (18)0.1915 (13)0.037 (8)*
H4A0.487 (3)0.2905 (19)0.4204 (12)0.044 (7)*
H19A0.515 (3)0.4632 (17)0.3747 (11)0.025 (7)*
H24A0.072 (2)0.8109 (17)0.3210 (12)0.029 (6)*
H19B0.392 (3)0.5105 (18)0.4335 (13)0.035 (7)*
H24B0.025 (3)0.7722 (17)0.2349 (12)0.029 (7)*
N10.3482 (2)0.55995 (16)0.32678 (11)0.0268 (5)
N20.2136 (2)0.69471 (16)0.27795 (11)0.0253 (5)
N30.1147 (3)0.96669 (17)0.20510 (11)0.0286 (5)
N40.3760 (2)0.28106 (17)0.40204 (11)0.0297 (5)
O10.34999 (19)0.89706 (13)0.25021 (9)0.0334 (4)
O20.1733 (2)0.37764 (14)0.34706 (10)0.0438 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0260 (15)0.0289 (16)0.0266 (15)0.0041 (12)0.0008 (12)0.0001 (13)
C20.0312 (16)0.0303 (16)0.0317 (16)0.0086 (14)0.0023 (13)0.0032 (14)
C30.0300 (16)0.0372 (17)0.0288 (15)0.0026 (13)0.0001 (13)0.0056 (14)
C40.0237 (15)0.0287 (16)0.0384 (17)0.0032 (13)0.0004 (14)0.0028 (14)
C50.0216 (13)0.0228 (14)0.0289 (14)0.0005 (11)0.0042 (12)0.0003 (12)
C60.0289 (15)0.0280 (16)0.0347 (17)0.0020 (13)0.0004 (14)0.0004 (13)
C70.0296 (16)0.0288 (17)0.0523 (19)0.0011 (13)0.0042 (15)0.0083 (15)
C80.0396 (18)0.0392 (19)0.056 (2)0.0003 (16)0.0123 (16)0.0167 (17)
C90.0372 (17)0.050 (2)0.0388 (17)0.0016 (16)0.0035 (15)0.0133 (16)
C100.0300 (16)0.0366 (17)0.0326 (16)0.0007 (14)0.0001 (13)0.0004 (14)
C110.0252 (15)0.0331 (16)0.0302 (14)0.0024 (13)0.0006 (12)0.0030 (12)
C120.0329 (16)0.0292 (16)0.0227 (13)0.0001 (13)0.0021 (12)0.0023 (12)
C130.0336 (17)0.0351 (18)0.0279 (14)0.0003 (14)0.0019 (13)0.0040 (13)
C140.0385 (19)0.047 (2)0.0322 (16)0.0070 (16)0.0050 (14)0.0011 (14)
C150.054 (2)0.0349 (19)0.0322 (16)0.0101 (17)0.0051 (15)0.0017 (14)
C160.051 (2)0.0366 (18)0.0284 (15)0.0083 (16)0.0033 (14)0.0005 (13)
C170.0341 (17)0.0357 (18)0.0287 (15)0.0039 (14)0.0023 (13)0.0000 (13)
C180.0247 (15)0.0299 (16)0.0276 (14)0.0002 (13)0.0011 (12)0.0029 (12)
C190.0251 (17)0.0349 (17)0.0341 (17)0.0027 (13)0.0054 (14)0.0062 (14)
Cl10.0346 (4)0.0441 (4)0.0375 (4)0.0001 (3)0.0066 (3)0.0045 (3)
N10.0215 (11)0.0291 (13)0.0298 (12)0.0011 (10)0.0009 (9)0.0033 (10)
N20.0231 (11)0.0233 (11)0.0297 (11)0.0004 (10)0.0004 (10)0.0031 (10)
N30.0215 (13)0.0295 (13)0.0348 (12)0.0016 (11)0.0041 (11)0.0045 (10)
N40.0230 (12)0.0335 (14)0.0325 (12)0.0013 (11)0.0047 (10)0.0044 (11)
O10.0239 (10)0.0311 (10)0.0451 (11)0.0004 (8)0.0039 (9)0.0031 (8)
O20.0294 (11)0.0372 (12)0.0644 (13)0.0015 (9)0.0159 (10)0.0118 (9)
Geometric parameters (Å, º) top
C1—N11.329 (3)C10—H100.99 (2)
C1—N21.329 (3)C11—O21.225 (3)
C1—H10.97 (2)C11—N41.340 (3)
C2—C31.340 (3)C11—C191.523 (3)
C2—N11.382 (3)C12—C171.384 (3)
C2—H20.91 (2)C12—C131.391 (3)
C3—N21.371 (3)C12—N41.426 (3)
C3—H30.91 (2)C13—C141.387 (4)
C4—N21.451 (3)C13—H130.97 (2)
C4—C181.522 (3)C14—C151.375 (4)
C4—H24A1.00 (2)C14—H140.93 (2)
C4—H24B0.98 (2)C15—C161.374 (4)
C5—C61.378 (3)C15—H151.00 (2)
C5—C101.392 (3)C16—C171.392 (4)
C5—N31.415 (3)C16—H180.99 (3)
C6—C71.387 (3)C17—H171.00 (2)
C6—H60.94 (2)C18—O11.223 (3)
C7—C81.382 (4)C18—N31.343 (3)
C7—H70.94 (2)C19—N11.464 (3)
C8—C91.376 (4)C19—H19A0.94 (2)
C8—H80.91 (2)C19—H19B0.99 (2)
C9—C101.368 (4)N3—H3A0.87 (2)
C9—H90.91 (2)N4—H4A0.99 (2)
N1—C1—N2108.1 (2)C13—C12—N4123.6 (2)
N1—C1—H1126.8 (12)C14—C13—C12119.2 (3)
N2—C1—H1125.1 (12)C14—C13—H13118.9 (13)
C3—C2—N1107.0 (2)C12—C13—H13121.8 (13)
C3—C2—H2134.2 (13)C15—C14—C13121.2 (3)
N1—C2—H2118.8 (13)C15—C14—H14124.2 (15)
C2—C3—N2107.3 (2)C13—C14—H14114.6 (15)
C2—C3—H3133.2 (14)C16—C15—C14119.4 (3)
N2—C3—H3119.0 (14)C16—C15—H15121.0 (13)
N2—C4—C18111.1 (2)C14—C15—H15119.6 (14)
N2—C4—H24A107.4 (12)C15—C16—C17120.5 (3)
C18—C4—H24A108.4 (13)C15—C16—H18123.5 (15)
N2—C4—H24B107.8 (13)C17—C16—H18116.0 (15)
C18—C4—H24B111.7 (12)C12—C17—C16119.9 (3)
H24A—C4—H24B110.3 (18)C12—C17—H17117.5 (13)
C6—C5—C10119.6 (2)C16—C17—H17122.6 (13)
C6—C5—N3122.1 (2)O1—C18—N3126.0 (2)
C10—C5—N3118.2 (2)O1—C18—C4121.1 (2)
C5—C6—C7120.0 (2)N3—C18—C4112.9 (2)
C5—C6—H6121.5 (14)N1—C19—C11108.6 (2)
C7—C6—H6118.6 (14)N1—C19—H19A110.7 (13)
C8—C7—C6120.1 (3)C11—C19—H19A111.0 (13)
C8—C7—H7123.8 (14)N1—C19—H19B107.5 (13)
C6—C7—H7116.0 (14)C11—C19—H19B109.0 (13)
C9—C8—C7119.5 (3)H19A—C19—H19B109.9 (18)
C9—C8—H8122.1 (15)C1—N1—C2108.6 (2)
C7—C8—H8118.3 (15)C1—N1—C19125.1 (2)
C10—C9—C8120.9 (3)C2—N1—C19125.9 (2)
C10—C9—H9115.8 (16)C1—N2—C3108.9 (2)
C8—C9—H9123.3 (16)C1—N2—C4126.6 (2)
C9—C10—C5119.9 (3)C3—N2—C4124.5 (2)
C9—C10—H10121.3 (12)C18—N3—C5126.0 (2)
C5—C10—H10118.8 (12)C18—N3—H3A116.1 (15)
O2—C11—N4124.6 (2)C5—N3—H3A115.7 (15)
O2—C11—C19120.3 (2)C11—N4—C12126.5 (2)
N4—C11—C19115.1 (2)C11—N4—H4A115.0 (14)
C17—C12—C13119.7 (2)C12—N4—H4A118.5 (13)
C17—C12—N4116.6 (2)
N1—C2—C3—N20.6 (3)N2—C1—N1—C20.4 (3)
C10—C5—C6—C71.0 (4)N2—C1—N1—C19172.4 (2)
N3—C5—C6—C7178.1 (2)C3—C2—N1—C10.1 (3)
C5—C6—C7—C81.8 (4)C3—C2—N1—C19172.8 (2)
C6—C7—C8—C90.9 (4)C11—C19—N1—C1104.1 (3)
C7—C8—C9—C100.8 (4)C11—C19—N1—C267.5 (3)
C8—C9—C10—C51.6 (4)N1—C1—N2—C30.8 (3)
C6—C5—C10—C90.7 (4)N1—C1—N2—C4178.8 (2)
N3—C5—C10—C9176.5 (2)C2—C3—N2—C10.8 (3)
C17—C12—C13—C141.9 (4)C2—C3—N2—C4178.7 (2)
N4—C12—C13—C14175.7 (2)C18—C4—N2—C1110.3 (3)
C12—C13—C14—C150.1 (4)C18—C4—N2—C370.2 (3)
C13—C14—C15—C162.3 (4)O1—C18—N3—C52.7 (4)
C14—C15—C16—C172.6 (4)C4—C18—N3—C5179.6 (2)
C13—C12—C17—C161.7 (4)C6—C5—N3—C1845.1 (3)
N4—C12—C17—C16176.1 (2)C10—C5—N3—C18137.8 (2)
C15—C16—C17—C120.6 (4)O2—C11—N4—C124.3 (4)
N2—C4—C18—O125.1 (3)C19—C11—N4—C12174.8 (2)
N2—C4—C18—N3157.1 (2)C17—C12—N4—C11165.6 (2)
O2—C11—C19—N122.6 (3)C13—C12—N4—C1116.7 (4)
N4—C11—C19—N1158.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.87 (2)1.94 (2)2.799 (3)171 (2)
N4—H4A···Cl1ii0.99 (2)2.19 (2)3.182 (2)177.4 (19)
C1—H1···Cl1iii0.97 (2)2.58 (2)3.482 (3)155.0 (16)
C2—H2···O1ii0.91 (2)2.32 (2)3.082 (3)140.6 (17)
C13—H13···O20.97 (2)2.29 (2)2.862 (3)116.9 (16)
C4—H24B···O2i0.98 (2)2.54 (2)3.308 (3)136.0 (16)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H19N4O2+·Cl
Mr370.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.4375 (5), 12.0446 (7), 17.5449 (10)
β (°) 90.789 (3)
V3)1782.85 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.11 × 0.09 × 0.07
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed (I > 2σ) reflections
11822, 3684, 1924
Rint0.062
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.096, 0.92
No. of reflections3684
No. of parameters311
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.87 (2)1.94 (2)2.799 (3)171 (2)
N4—H4A···Cl1ii0.99 (2)2.19 (2)3.182 (2)177.4 (19)
C1—H1···Cl1iii0.97 (2)2.58 (2)3.482 (3)155.0 (16)
C2—H2···O1ii0.91 (2)2.32 (2)3.082 (3)140.6 (17)
C13—H13···O20.97 (2)2.29 (2)2.862 (3)116.9 (16)
C4—H24B···O2i0.98 (2)2.54 (2)3.308 (3)136.0 (16)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the National Science Council of Taiwan for financial support of this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiao, C.-Y., Chan, K.-T., Chang, Y.-C., Chen, C.-Y., Tu, C.-Y., Hu, C.-H. & Lee, H. M. (2007). Organometallics, 26, 5826–5833.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, C.-Y., Chan, K.-T., Chiu, P.-L., Chen, C.-Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, C.-Y., Chan, K.-T., Zeng, J.-Y., Hu, C.-H., Tu, C.-Y. & Lee, H. M. (2007). Organometallics, 26, 1692–1702.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, C.-Y. & Lee, H. M. (2011). Acta Cryst. E67, o3362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds