metal-organic compounds
catena-Poly[{μ3-4,4′,6,6′-tetrabromo-2,2′-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato}{μ2-4,4′,6,6′-tetrabromo-2,2′-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato}dicopper(II)]
aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cStructural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com
The 2(C18H14Br4N2O2)2]n. One of the CuII ions is coordinated in a distorted square-planar geometry, whereas the other is coordinated in a distorted square-pyramidal geometry, the long apical Cu—O bond [2.885 (4) Å] of the square-pyramidal coordination being provided by a symmetry-related O atom creating a one-dimensional polymer along [010]. π–π stacking interactions [centroid–centroid distance = 3.783 (4) Å] and short interchain Br⋯Br interactions [3.6142 (12)–3.6797 (12) Å] are observed.
of the title coordination polymer consists of a dinuclear neutral complex molecule of formula [CuRelated literature
For standard bond lengths, see: Allen et al. (1987). For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000). For related structures, see: Kargar & Kia (2011a,b).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812029285/rz2776sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812029285/rz2776Isup2.hkl
The title complex was synthesized by the reaction of an methanolic solution (50 ml) of bis(3,5-bromosalicylaldeyde)-1,4-butanediimine (2 mmol) and CuCl2.4H2O (2 mmol). After stirring at reflux conditions for 2 h, the solution was filtered and the resulting dark-brown powder was crystallized from DMF, giving single crystals suitable for X-ray diffraction.
All H atoms were positioned geometrically and constrained to refine with their parent atoms using a riding-model approximation, with C—H = 0.93-0.97 Å and Uiso(H) = 1.2 Ueq(C).
The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand,
are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).The molecular structure of the title complex (Fig. 1) consists of dinuclear units in which the Schiff base ligands are twisted around copper(II) metal centres in a bis-bidentate coordination mode. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Kargar & Kia, 2011a,b). Both metal atoms show a tetrahedrally distorted square-planar coordination geometry provided by two nitrogen and two oxygen atoms of the Schiff-base ligands. Two C—H···O hydrogen bonds (Table 1) stabilize the conformation of the complex molecule. A fifth coordination site is provided for atom Cu2 by the O4 oxygen atom of a neighbouring complex forming one-dimensional coordination polymeric chains along the b axis (Fig. 2). The length of the Cu2—O4i bond [2.885 (4)Å; symmetry code: (i) x, 1 + y, z] is shorter than the sum of the van der Waals radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964]. The chains are further stabilized π-π stacking interactions [Cg1···Cg2ii = 3.736 (2) Å; symmetry code (ii) x, -1 + y, z; Cg1 and Cg2 are the centroids of the C1–C6 and C19–C24 rings, respectively]. In the short interchain Br···Br contacts are observed [Br(1)···Br(7)iii = 3.6797 (12) Å; Br(2)···Br(4)iv = 3.6142 (12) Å; Br(4)···Br(6)v = 3.6142 (12) Å; Br(6)···Br(8)vi = 3.6401 (12) Å; symmetry codes: (iii) -1/2 + x, 1 - y, z; (iv) 1/2 - x, y, 1/2 + z; (v) 1/2 - x, y, -1/2 + z; (vi) -1/2 + x, 2 - y, z]. A Br(8)···C(12)ii [3.447 (6) Å] interaction is also present in the which is shorter than sum of the van der Waals radii of Br [3.70Å] and C [1.70 Å] atoms (Bondi, 1964).
For standard bond lengths, see: Allen et al., (1987). For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000). For related structures, see: Kargar & Kia (2011a,b).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Cu2(C18H14Br4N2O2)2] | F(000) = 2564 |
Mr = 1345.98 | Dx = 2.191 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 2567 reflections |
a = 27.4100 (11) Å | θ = 2.5–27.7° |
b = 7.9055 (4) Å | µ = 8.92 mm−1 |
c = 18.8291 (7) Å | T = 291 K |
V = 4080.1 (3) Å3 | Needle, dark-brown |
Z = 4 | 0.36 × 0.18 × 0.16 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 8854 independent reflections |
Radiation source: fine-focus sealed tube | 5887 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
φ and ω scans | θmax = 27.2°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −35→35 |
Tmin = 0.142, Tmax = 0.329 | k = −10→7 |
33878 measured reflections | l = −24→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0125P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
8854 reflections | Δρmax = 0.55 e Å−3 |
487 parameters | Δρmin = −0.45 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 4178 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.069 (8) |
[Cu2(C18H14Br4N2O2)2] | V = 4080.1 (3) Å3 |
Mr = 1345.98 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 27.4100 (11) Å | µ = 8.92 mm−1 |
b = 7.9055 (4) Å | T = 291 K |
c = 18.8291 (7) Å | 0.36 × 0.18 × 0.16 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 8854 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 5887 reflections with I > 2σ(I) |
Tmin = 0.142, Tmax = 0.329 | Rint = 0.071 |
33878 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.068 | Δρmax = 0.55 e Å−3 |
S = 1.00 | Δρmin = −0.45 e Å−3 |
8854 reflections | Absolute structure: Flack (1983), 4178 Friedel pairs |
487 parameters | Absolute structure parameter: 0.069 (8) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.33709 (3) | 0.59065 (10) | 0.49527 (4) | 0.03293 (19) | |
Cu2 | 0.37343 (2) | 1.17409 (10) | 0.50858 (4) | 0.03289 (19) | |
Br1 | 0.17168 (3) | 0.56192 (11) | 0.40823 (4) | 0.0593 (2) | |
Br2 | 0.10462 (3) | 0.83048 (10) | 0.66708 (4) | 0.0541 (2) | |
Br3 | 0.62640 (3) | 0.96666 (13) | 0.39602 (5) | 0.0732 (3) | |
Br4 | 0.44790 (3) | 1.16280 (11) | 0.27446 (4) | 0.0561 (2) | |
Br5 | 0.30469 (3) | 1.27351 (11) | 0.74365 (4) | 0.0578 (2) | |
Br6 | 0.11632 (3) | 1.30310 (11) | 0.62177 (5) | 0.0632 (2) | |
Br7 | 0.56876 (3) | 0.57140 (14) | 0.29593 (4) | 0.0761 (3) | |
Br8 | 0.50186 (2) | 0.48746 (10) | 0.57844 (4) | 0.05028 (19) | |
O1 | 0.26874 (14) | 0.5837 (6) | 0.4829 (2) | 0.0381 (11) | |
O2 | 0.41492 (15) | 1.1542 (6) | 0.4276 (2) | 0.0405 (12) | |
O3 | 0.33343 (14) | 1.2315 (5) | 0.5877 (2) | 0.0404 (11) | |
O4 | 0.40368 (14) | 0.5235 (5) | 0.5055 (2) | 0.0402 (11) | |
N1 | 0.32999 (17) | 0.6362 (6) | 0.5991 (2) | 0.0308 (13) | |
N2 | 0.42674 (17) | 1.1050 (6) | 0.5741 (2) | 0.0310 (12) | |
N3 | 0.31486 (19) | 1.1816 (7) | 0.4438 (3) | 0.0368 (14) | |
N4 | 0.34345 (17) | 0.6214 (6) | 0.3909 (2) | 0.0306 (12) | |
C1 | 0.2344 (2) | 0.6384 (8) | 0.5247 (3) | 0.0339 (16) | |
C2 | 0.1857 (2) | 0.6452 (8) | 0.5005 (3) | 0.0377 (16) | |
C3 | 0.1483 (2) | 0.7013 (8) | 0.5410 (3) | 0.0390 (17) | |
H3 | 0.1167 | 0.7031 | 0.5230 | 0.047* | |
C4 | 0.1575 (2) | 0.7563 (8) | 0.6100 (3) | 0.0356 (16) | |
C5 | 0.2036 (2) | 0.7512 (8) | 0.6359 (3) | 0.0398 (17) | |
H5 | 0.2093 | 0.7868 | 0.6822 | 0.048* | |
C6 | 0.24245 (19) | 0.6945 (8) | 0.5954 (3) | 0.0300 (15) | |
C7 | 0.2895 (2) | 0.6784 (8) | 0.6279 (3) | 0.0354 (16) | |
H7 | 0.2908 | 0.7015 | 0.6763 | 0.042* | |
C8 | 0.3727 (2) | 0.6193 (8) | 0.6465 (3) | 0.0338 (16) | |
H8A | 0.3904 | 0.5168 | 0.6346 | 0.041* | |
H8B | 0.3616 | 0.6094 | 0.6952 | 0.041* | |
C9 | 0.4068 (2) | 0.7694 (8) | 0.6403 (3) | 0.0349 (17) | |
H9A | 0.4358 | 0.7475 | 0.6684 | 0.042* | |
H9B | 0.4169 | 0.7810 | 0.5912 | 0.042* | |
C10 | 0.3844 (2) | 0.9332 (8) | 0.6645 (3) | 0.0367 (16) | |
H10A | 0.3777 | 0.9263 | 0.7149 | 0.044* | |
H10B | 0.3536 | 0.9495 | 0.6400 | 0.044* | |
C11 | 0.4172 (2) | 1.0860 (9) | 0.6505 (3) | 0.0391 (17) | |
H11A | 0.4016 | 1.1874 | 0.6684 | 0.047* | |
H11B | 0.4479 | 1.0717 | 0.6755 | 0.047* | |
C12 | 0.4703 (2) | 1.0696 (8) | 0.5534 (3) | 0.0372 (17) | |
H12 | 0.4922 | 1.0414 | 0.5892 | 0.045* | |
C13 | 0.4896 (2) | 1.0676 (8) | 0.4826 (3) | 0.0334 (16) | |
C14 | 0.5388 (2) | 1.0243 (9) | 0.4740 (3) | 0.0440 (18) | |
H14 | 0.5574 | 0.9950 | 0.5135 | 0.053* | |
C15 | 0.5599 (2) | 1.0248 (9) | 0.4078 (4) | 0.0479 (19) | |
C16 | 0.5327 (2) | 1.0691 (9) | 0.3491 (3) | 0.0452 (19) | |
H16 | 0.5470 | 1.0714 | 0.3043 | 0.054* | |
C17 | 0.4846 (2) | 1.1095 (8) | 0.3570 (3) | 0.0354 (17) | |
C18 | 0.4607 (2) | 1.1130 (8) | 0.4237 (3) | 0.0334 (16) | |
C19 | 0.2864 (2) | 1.2337 (8) | 0.5952 (3) | 0.0315 (15) | |
C20 | 0.2645 (2) | 1.2575 (8) | 0.6626 (3) | 0.0388 (17) | |
C21 | 0.2150 (2) | 1.2745 (8) | 0.6710 (4) | 0.0444 (18) | |
H21 | 0.2021 | 1.2931 | 0.7160 | 0.053* | |
C22 | 0.1841 (2) | 1.2639 (9) | 0.6129 (4) | 0.0408 (18) | |
C23 | 0.2034 (2) | 1.2353 (8) | 0.5477 (4) | 0.0389 (17) | |
H23 | 0.1826 | 1.2261 | 0.5088 | 0.047* | |
C24 | 0.2540 (2) | 1.2192 (8) | 0.5373 (3) | 0.0331 (16) | |
C25 | 0.2710 (2) | 1.2002 (9) | 0.4655 (3) | 0.0407 (18) | |
H25 | 0.2471 | 1.2017 | 0.4304 | 0.049* | |
C26 | 0.3207 (2) | 1.1622 (8) | 0.3660 (3) | 0.0369 (17) | |
H26A | 0.3478 | 1.2310 | 0.3499 | 0.044* | |
H26B | 0.2914 | 1.2019 | 0.3423 | 0.044* | |
C27 | 0.3299 (2) | 0.9758 (9) | 0.3458 (3) | 0.0408 (18) | |
H27A | 0.3369 | 0.9704 | 0.2954 | 0.049* | |
H27B | 0.3588 | 0.9373 | 0.3708 | 0.049* | |
C28 | 0.2886 (2) | 0.8547 (9) | 0.3619 (4) | 0.0417 (18) | |
H28A | 0.2796 | 0.8666 | 0.4114 | 0.050* | |
H28B | 0.2605 | 0.8859 | 0.3334 | 0.050* | |
C29 | 0.3009 (2) | 0.6721 (8) | 0.3476 (3) | 0.0370 (17) | |
H29 | 0.2841 | 0.6019 | 0.3163 | 0.044* | |
C30 | 0.3837 (2) | 0.6062 (8) | 0.3574 (3) | 0.0363 (17) | |
H30 | 0.3821 | 0.6166 | 0.3083 | 0.044* | |
C31 | 0.4315 (2) | 0.5745 (8) | 0.3870 (3) | 0.0362 (16) | |
C32 | 0.4705 (2) | 0.5838 (8) | 0.3391 (3) | 0.0404 (17) | |
H32 | 0.4647 | 0.6030 | 0.2911 | 0.048* | |
C33 | 0.5173 (2) | 0.5642 (10) | 0.3635 (4) | 0.049 (2) | |
C34 | 0.5266 (2) | 0.5366 (8) | 0.4343 (4) | 0.0432 (18) | |
H34 | 0.5586 | 0.5253 | 0.4501 | 0.052* | |
C35 | 0.4886 (2) | 0.5256 (8) | 0.4817 (3) | 0.0365 (17) | |
C36 | 0.4388 (2) | 0.5406 (8) | 0.4602 (3) | 0.0361 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0269 (4) | 0.0410 (5) | 0.0308 (4) | 0.0002 (4) | 0.0004 (3) | −0.0006 (4) |
Cu2 | 0.0310 (4) | 0.0391 (5) | 0.0286 (4) | 0.0032 (4) | −0.0009 (3) | −0.0020 (4) |
Br1 | 0.0431 (4) | 0.0917 (7) | 0.0429 (4) | 0.0022 (4) | −0.0096 (3) | −0.0238 (4) |
Br2 | 0.0415 (4) | 0.0759 (6) | 0.0448 (4) | 0.0152 (4) | 0.0078 (3) | −0.0095 (4) |
Br3 | 0.0422 (5) | 0.1092 (8) | 0.0683 (5) | 0.0223 (5) | 0.0063 (4) | −0.0097 (5) |
Br4 | 0.0487 (4) | 0.0878 (7) | 0.0318 (4) | −0.0031 (4) | −0.0042 (3) | −0.0035 (4) |
Br5 | 0.0506 (5) | 0.0907 (7) | 0.0321 (4) | −0.0025 (4) | 0.0023 (3) | −0.0020 (4) |
Br6 | 0.0347 (4) | 0.0777 (7) | 0.0770 (5) | 0.0032 (4) | 0.0163 (4) | 0.0150 (5) |
Br7 | 0.0415 (5) | 0.1278 (9) | 0.0589 (5) | 0.0105 (5) | 0.0207 (4) | 0.0162 (5) |
Br8 | 0.0361 (4) | 0.0671 (6) | 0.0476 (4) | 0.0007 (4) | −0.0064 (3) | 0.0057 (4) |
O1 | 0.025 (2) | 0.057 (3) | 0.033 (2) | −0.001 (2) | 0.0020 (18) | −0.012 (2) |
O2 | 0.036 (3) | 0.058 (4) | 0.028 (2) | 0.005 (2) | 0.0009 (19) | 0.001 (2) |
O3 | 0.030 (3) | 0.056 (3) | 0.035 (2) | 0.005 (2) | −0.002 (2) | −0.008 (2) |
O4 | 0.027 (2) | 0.058 (3) | 0.035 (3) | 0.002 (2) | 0.005 (2) | 0.007 (2) |
N1 | 0.029 (3) | 0.027 (4) | 0.036 (3) | −0.008 (2) | −0.001 (2) | 0.001 (2) |
N2 | 0.033 (3) | 0.032 (3) | 0.028 (3) | −0.008 (3) | 0.002 (2) | −0.002 (2) |
N3 | 0.037 (3) | 0.046 (4) | 0.027 (3) | 0.003 (3) | 0.001 (2) | −0.001 (3) |
N4 | 0.026 (3) | 0.036 (4) | 0.030 (3) | −0.006 (2) | −0.003 (2) | −0.002 (2) |
C1 | 0.035 (4) | 0.031 (5) | 0.036 (4) | −0.007 (3) | 0.001 (3) | 0.004 (3) |
C2 | 0.033 (4) | 0.047 (5) | 0.033 (4) | −0.003 (3) | −0.001 (3) | −0.005 (3) |
C3 | 0.029 (4) | 0.045 (5) | 0.044 (4) | −0.002 (3) | −0.004 (3) | 0.000 (3) |
C4 | 0.034 (4) | 0.047 (5) | 0.027 (4) | 0.008 (3) | 0.005 (3) | 0.004 (3) |
C5 | 0.040 (4) | 0.058 (5) | 0.022 (3) | 0.001 (3) | 0.005 (3) | −0.001 (3) |
C6 | 0.023 (3) | 0.038 (4) | 0.029 (3) | −0.005 (3) | 0.002 (3) | 0.001 (3) |
C7 | 0.037 (4) | 0.041 (5) | 0.028 (3) | −0.003 (3) | −0.004 (3) | 0.000 (3) |
C8 | 0.032 (4) | 0.032 (5) | 0.038 (4) | −0.001 (3) | −0.010 (3) | 0.004 (3) |
C9 | 0.025 (3) | 0.040 (5) | 0.040 (4) | −0.003 (3) | 0.000 (3) | 0.000 (3) |
C10 | 0.039 (4) | 0.041 (5) | 0.030 (3) | −0.003 (3) | −0.001 (3) | 0.003 (3) |
C11 | 0.040 (4) | 0.054 (5) | 0.024 (3) | −0.001 (4) | −0.001 (3) | −0.006 (3) |
C12 | 0.042 (4) | 0.040 (5) | 0.030 (4) | −0.004 (3) | −0.003 (3) | 0.002 (3) |
C13 | 0.033 (4) | 0.032 (5) | 0.035 (4) | −0.005 (3) | 0.004 (3) | 0.003 (3) |
C14 | 0.039 (4) | 0.051 (5) | 0.042 (4) | 0.006 (4) | −0.010 (3) | −0.003 (3) |
C15 | 0.042 (4) | 0.063 (6) | 0.039 (4) | 0.007 (4) | 0.008 (4) | −0.005 (4) |
C16 | 0.035 (4) | 0.068 (6) | 0.033 (4) | 0.000 (4) | 0.011 (3) | −0.014 (4) |
C17 | 0.034 (4) | 0.041 (5) | 0.032 (3) | −0.001 (3) | −0.001 (3) | −0.006 (3) |
C18 | 0.032 (4) | 0.033 (5) | 0.035 (4) | −0.003 (3) | 0.003 (3) | −0.008 (3) |
C19 | 0.036 (4) | 0.026 (4) | 0.032 (4) | −0.002 (3) | 0.001 (3) | 0.002 (3) |
C20 | 0.041 (4) | 0.045 (5) | 0.031 (3) | −0.006 (3) | 0.008 (3) | −0.002 (3) |
C21 | 0.052 (5) | 0.037 (5) | 0.044 (4) | −0.002 (3) | 0.017 (4) | −0.003 (4) |
C22 | 0.027 (4) | 0.039 (5) | 0.056 (5) | 0.003 (3) | 0.014 (3) | 0.004 (4) |
C23 | 0.034 (4) | 0.039 (5) | 0.044 (4) | 0.000 (3) | −0.005 (3) | 0.006 (3) |
C24 | 0.040 (4) | 0.032 (5) | 0.027 (3) | 0.004 (3) | 0.001 (3) | 0.004 (3) |
C25 | 0.033 (4) | 0.056 (5) | 0.033 (4) | 0.001 (4) | −0.008 (3) | −0.004 (3) |
C26 | 0.033 (4) | 0.052 (5) | 0.026 (3) | 0.004 (3) | −0.006 (3) | 0.001 (3) |
C27 | 0.041 (4) | 0.049 (5) | 0.032 (4) | −0.003 (4) | 0.001 (3) | −0.007 (3) |
C28 | 0.033 (4) | 0.049 (5) | 0.043 (4) | 0.004 (3) | 0.005 (3) | 0.009 (4) |
C29 | 0.037 (4) | 0.039 (5) | 0.035 (4) | 0.001 (3) | −0.015 (3) | −0.011 (3) |
C30 | 0.039 (4) | 0.044 (5) | 0.026 (3) | 0.005 (3) | 0.005 (3) | 0.004 (3) |
C31 | 0.032 (4) | 0.038 (5) | 0.038 (4) | 0.003 (3) | 0.006 (3) | 0.002 (3) |
C32 | 0.031 (4) | 0.055 (5) | 0.035 (4) | 0.007 (3) | 0.007 (3) | 0.009 (4) |
C33 | 0.030 (4) | 0.065 (6) | 0.050 (4) | 0.009 (4) | 0.019 (3) | 0.006 (4) |
C34 | 0.032 (4) | 0.039 (5) | 0.059 (5) | 0.002 (3) | 0.004 (3) | 0.008 (4) |
C35 | 0.030 (4) | 0.031 (5) | 0.049 (4) | 0.011 (3) | 0.002 (3) | −0.001 (3) |
C36 | 0.026 (4) | 0.035 (5) | 0.047 (4) | 0.003 (3) | 0.009 (3) | 0.000 (3) |
Cu1—O1 | 1.889 (4) | C10—H10A | 0.9700 |
Cu1—O4 | 1.911 (4) | C10—H10B | 0.9700 |
Cu1—N4 | 1.989 (5) | C11—H11A | 0.9700 |
Cu1—N1 | 1.997 (5) | C11—H11B | 0.9700 |
Cu2—O3 | 1.905 (4) | C12—C13 | 1.435 (8) |
Cu2—O2 | 1.909 (4) | C12—H12 | 0.9300 |
Cu2—N2 | 1.989 (5) | C13—C14 | 1.402 (8) |
Cu2—N3 | 2.016 (5) | C13—C18 | 1.409 (8) |
Br1—C2 | 1.897 (6) | C14—C15 | 1.373 (8) |
Br2—C4 | 1.899 (6) | C14—H14 | 0.9300 |
Br3—C15 | 1.892 (6) | C15—C16 | 1.380 (9) |
Br4—C17 | 1.899 (6) | C16—C17 | 1.363 (8) |
Br5—C20 | 1.887 (6) | C16—H16 | 0.9300 |
Br6—C22 | 1.890 (6) | C17—C18 | 1.417 (8) |
Br7—C33 | 1.901 (6) | C19—C24 | 1.411 (8) |
Br8—C35 | 1.882 (6) | C19—C20 | 1.416 (8) |
O1—C1 | 1.301 (7) | C20—C21 | 1.374 (8) |
O2—C18 | 1.299 (7) | C21—C22 | 1.387 (9) |
O3—C19 | 1.297 (7) | C21—H21 | 0.9300 |
O4—C36 | 1.293 (7) | C22—C23 | 1.356 (8) |
N1—C7 | 1.279 (7) | C23—C24 | 1.406 (8) |
N1—C8 | 1.479 (6) | C23—H23 | 0.9300 |
N2—C12 | 1.286 (7) | C24—C25 | 1.437 (8) |
N2—C11 | 1.469 (7) | C25—H25 | 0.9300 |
N3—C25 | 1.279 (7) | C26—C27 | 1.543 (9) |
N3—C26 | 1.482 (7) | C26—H26A | 0.9700 |
N4—C30 | 1.277 (7) | C26—H26B | 0.9700 |
N4—C29 | 1.479 (7) | C27—C28 | 1.513 (8) |
C1—C2 | 1.411 (8) | C27—H27A | 0.9700 |
C1—C6 | 1.421 (8) | C27—H27B | 0.9700 |
C2—C3 | 1.352 (8) | C28—C29 | 1.506 (9) |
C3—C4 | 1.393 (8) | C28—H28A | 0.9700 |
C3—H3 | 0.9300 | C28—H28B | 0.9700 |
C4—C5 | 1.355 (8) | C29—H29 | 0.9300 |
C5—C6 | 1.383 (7) | C30—C31 | 1.444 (8) |
C5—H5 | 0.9300 | C30—H30 | 0.9300 |
C6—C7 | 1.434 (7) | C31—C32 | 1.401 (8) |
C7—H7 | 0.9300 | C31—C36 | 1.418 (9) |
C8—C9 | 1.514 (8) | C32—C33 | 1.372 (8) |
C8—H8A | 0.9700 | C32—H32 | 0.9300 |
C8—H8B | 0.9700 | C33—C34 | 1.374 (9) |
C9—C10 | 1.503 (8) | C34—C35 | 1.374 (8) |
C9—H9A | 0.9700 | C34—H34 | 0.9300 |
C9—H9B | 0.9700 | C35—C36 | 1.429 (8) |
C10—C11 | 1.528 (8) | ||
O1—Cu1—O4 | 162.17 (19) | C15—C14—C13 | 120.6 (6) |
O1—Cu1—N4 | 88.22 (18) | C15—C14—H14 | 119.7 |
O4—Cu1—N4 | 92.86 (18) | C13—C14—H14 | 119.7 |
O1—Cu1—N1 | 91.66 (18) | C14—C15—C16 | 120.0 (6) |
O4—Cu1—N1 | 92.55 (18) | C14—C15—Br3 | 120.8 (5) |
N4—Cu1—N1 | 162.58 (19) | C16—C15—Br3 | 119.3 (5) |
O3—Cu2—O2 | 170.95 (19) | C17—C16—C15 | 119.7 (6) |
O3—Cu2—N2 | 90.16 (19) | C17—C16—H16 | 120.2 |
O2—Cu2—N2 | 92.04 (18) | C15—C16—H16 | 120.2 |
O3—Cu2—N3 | 90.44 (19) | C16—C17—C18 | 123.3 (6) |
O2—Cu2—N3 | 89.63 (19) | C16—C17—Br4 | 118.4 (5) |
N2—Cu2—N3 | 165.5 (2) | C18—C17—Br4 | 118.3 (5) |
C1—O1—Cu1 | 129.4 (4) | O2—C18—C13 | 124.2 (5) |
C18—O2—Cu2 | 129.9 (4) | O2—C18—C17 | 120.2 (5) |
C19—O3—Cu2 | 131.3 (4) | C13—C18—C17 | 115.6 (6) |
C36—O4—Cu1 | 128.0 (4) | O3—C19—C24 | 122.8 (5) |
C7—N1—C8 | 117.0 (5) | O3—C19—C20 | 121.3 (5) |
C7—N1—Cu1 | 123.2 (4) | C24—C19—C20 | 115.9 (5) |
C8—N1—Cu1 | 119.9 (4) | C21—C20—C19 | 122.4 (6) |
C12—N2—C11 | 116.1 (5) | C21—C20—Br5 | 118.5 (5) |
C12—N2—Cu2 | 123.6 (4) | C19—C20—Br5 | 119.1 (4) |
C11—N2—Cu2 | 120.3 (4) | C20—C21—C22 | 120.4 (6) |
C25—N3—C26 | 115.3 (5) | C20—C21—H21 | 119.8 |
C25—N3—Cu2 | 124.0 (4) | C22—C21—H21 | 119.8 |
C26—N3—Cu2 | 120.6 (4) | C23—C22—C21 | 119.1 (6) |
C30—N4—C29 | 115.9 (5) | C23—C22—Br6 | 119.4 (5) |
C30—N4—Cu1 | 123.5 (4) | C21—C22—Br6 | 121.4 (5) |
C29—N4—Cu1 | 120.6 (4) | C22—C23—C24 | 121.8 (6) |
O1—C1—C2 | 120.2 (5) | C22—C23—H23 | 119.1 |
O1—C1—C6 | 123.8 (5) | C24—C23—H23 | 119.1 |
C2—C1—C6 | 116.0 (5) | C23—C24—C19 | 120.4 (6) |
C3—C2—C1 | 123.2 (6) | C23—C24—C25 | 117.4 (6) |
C3—C2—Br1 | 118.5 (5) | C19—C24—C25 | 122.0 (6) |
C1—C2—Br1 | 118.2 (5) | N3—C25—C24 | 128.1 (6) |
C2—C3—C4 | 119.4 (6) | N3—C25—H25 | 115.9 |
C2—C3—H3 | 120.3 | C24—C25—H25 | 115.9 |
C4—C3—H3 | 120.3 | N3—C26—C27 | 111.1 (5) |
C5—C4—C3 | 119.8 (6) | N3—C26—H26A | 109.4 |
C5—C4—Br2 | 121.2 (4) | C27—C26—H26A | 109.4 |
C3—C4—Br2 | 119.0 (5) | N3—C26—H26B | 109.4 |
C4—C5—C6 | 121.9 (5) | C27—C26—H26B | 109.4 |
C4—C5—H5 | 119.1 | H26A—C26—H26B | 108.0 |
C6—C5—H5 | 119.1 | C28—C27—C26 | 115.6 (5) |
C5—C6—C1 | 119.8 (5) | C28—C27—H27A | 108.4 |
C5—C6—C7 | 119.0 (5) | C26—C27—H27A | 108.4 |
C1—C6—C7 | 120.9 (5) | C28—C27—H27B | 108.4 |
N1—C7—C6 | 128.5 (5) | C26—C27—H27B | 108.4 |
N1—C7—H7 | 115.8 | H27A—C27—H27B | 107.4 |
C6—C7—H7 | 115.8 | C29—C28—C27 | 113.8 (5) |
N1—C8—C9 | 111.8 (5) | C29—C28—H28A | 108.8 |
N1—C8—H8A | 109.3 | C27—C28—H28A | 108.8 |
C9—C8—H8A | 109.3 | C29—C28—H28B | 108.8 |
N1—C8—H8B | 109.3 | C27—C28—H28B | 108.8 |
C9—C8—H8B | 109.3 | H28A—C28—H28B | 107.7 |
H8A—C8—H8B | 107.9 | N4—C29—C28 | 109.7 (5) |
C10—C9—C8 | 113.6 (5) | N4—C29—H29 | 125.1 |
C10—C9—H9A | 108.8 | C28—C29—H29 | 125.1 |
C8—C9—H9A | 108.8 | N4—C30—C31 | 127.5 (6) |
C10—C9—H9B | 108.8 | N4—C30—H30 | 116.2 |
C8—C9—H9B | 108.8 | C31—C30—H30 | 116.2 |
H9A—C9—H9B | 107.7 | C32—C31—C36 | 121.9 (6) |
C9—C10—C11 | 112.9 (5) | C32—C31—C30 | 115.7 (6) |
C9—C10—H10A | 109.0 | C36—C31—C30 | 122.4 (5) |
C11—C10—H10A | 109.0 | C33—C32—C31 | 119.4 (6) |
C9—C10—H10B | 109.0 | C33—C32—H32 | 120.3 |
C11—C10—H10B | 109.0 | C31—C32—H32 | 120.3 |
H10A—C10—H10B | 107.8 | C32—C33—C34 | 121.1 (6) |
N2—C11—C10 | 110.7 (5) | C32—C33—Br7 | 117.8 (5) |
N2—C11—H11A | 109.5 | C34—C33—Br7 | 121.1 (5) |
C10—C11—H11A | 109.5 | C33—C34—C35 | 120.0 (6) |
N2—C11—H11B | 109.5 | C33—C34—H34 | 120.0 |
C10—C11—H11B | 109.5 | C35—C34—H34 | 120.0 |
H11A—C11—H11B | 108.1 | C34—C35—C36 | 122.3 (6) |
N2—C12—C13 | 128.8 (6) | C34—C35—Br8 | 119.6 (5) |
N2—C12—H12 | 115.6 | C36—C35—Br8 | 118.1 (5) |
C13—C12—H12 | 115.6 | O4—C36—C31 | 123.7 (6) |
C14—C13—C18 | 120.8 (6) | O4—C36—C35 | 121.0 (6) |
C14—C13—C12 | 117.7 (6) | C31—C36—C35 | 115.2 (5) |
C18—C13—C12 | 121.4 (6) | ||
O4—Cu1—O1—C1 | 120.3 (6) | C12—C13—C14—C15 | −178.1 (6) |
N4—Cu1—O1—C1 | −145.9 (5) | C13—C14—C15—C16 | 0.3 (11) |
N1—Cu1—O1—C1 | 16.7 (5) | C13—C14—C15—Br3 | 179.9 (5) |
N2—Cu2—O2—C18 | −1.2 (5) | C14—C15—C16—C17 | −1.1 (11) |
N3—Cu2—O2—C18 | −166.7 (5) | Br3—C15—C16—C17 | 179.3 (5) |
N2—Cu2—O3—C19 | −152.3 (5) | C15—C16—C17—C18 | 1.7 (11) |
N3—Cu2—O3—C19 | 13.2 (5) | C15—C16—C17—Br4 | −178.1 (5) |
O1—Cu1—O4—C36 | 108.0 (7) | Cu2—O2—C18—C13 | 2.1 (9) |
N4—Cu1—O4—C36 | 14.9 (5) | Cu2—O2—C18—C17 | −178.7 (4) |
N1—Cu1—O4—C36 | −148.6 (5) | C14—C13—C18—O2 | 179.9 (6) |
O1—Cu1—N1—C7 | −12.7 (5) | C12—C13—C18—O2 | −2.2 (10) |
O4—Cu1—N1—C7 | −175.4 (5) | C14—C13—C18—C17 | 0.6 (9) |
N4—Cu1—N1—C7 | 76.6 (8) | C12—C13—C18—C17 | 178.5 (6) |
O1—Cu1—N1—C8 | 166.4 (4) | C16—C17—C18—O2 | 179.3 (6) |
O4—Cu1—N1—C8 | 3.8 (4) | Br4—C17—C18—O2 | −0.9 (8) |
N4—Cu1—N1—C8 | −104.2 (7) | C16—C17—C18—C13 | −1.4 (10) |
O3—Cu2—N2—C12 | −170.4 (5) | Br4—C17—C18—C13 | 178.3 (5) |
O2—Cu2—N2—C12 | 0.8 (5) | Cu2—O3—C19—C24 | −11.7 (9) |
N3—Cu2—N2—C12 | 97.2 (9) | Cu2—O3—C19—C20 | 170.7 (5) |
O3—Cu2—N2—C11 | 11.8 (4) | O3—C19—C20—C21 | 174.4 (6) |
O2—Cu2—N2—C11 | −177.0 (4) | C24—C19—C20—C21 | −3.4 (9) |
N3—Cu2—N2—C11 | −80.6 (9) | O3—C19—C20—Br5 | −3.6 (8) |
O3—Cu2—N3—C25 | −7.0 (6) | C24—C19—C20—Br5 | 178.7 (5) |
O2—Cu2—N3—C25 | −177.9 (5) | C19—C20—C21—C22 | 1.9 (10) |
N2—Cu2—N3—C25 | 85.3 (10) | Br5—C20—C21—C22 | 179.9 (5) |
O3—Cu2—N3—C26 | 174.2 (5) | C20—C21—C22—C23 | 0.5 (10) |
O2—Cu2—N3—C26 | 3.2 (5) | C20—C21—C22—Br6 | −175.3 (5) |
N2—Cu2—N3—C26 | −93.5 (9) | C21—C22—C23—C24 | −1.2 (10) |
O1—Cu1—N4—C30 | −166.8 (5) | Br6—C22—C23—C24 | 174.7 (5) |
O4—Cu1—N4—C30 | −4.6 (5) | C22—C23—C24—C19 | −0.4 (10) |
N1—Cu1—N4—C30 | 103.3 (8) | C22—C23—C24—C25 | −176.0 (6) |
O1—Cu1—N4—C29 | 16.1 (4) | O3—C19—C24—C23 | −175.1 (6) |
O4—Cu1—N4—C29 | 178.2 (4) | C20—C19—C24—C23 | 2.6 (9) |
N1—Cu1—N4—C29 | −73.8 (8) | O3—C19—C24—C25 | 0.2 (10) |
Cu1—O1—C1—C2 | 169.9 (4) | C20—C19—C24—C25 | 177.9 (6) |
Cu1—O1—C1—C6 | −9.9 (9) | C26—N3—C25—C24 | 178.9 (6) |
O1—C1—C2—C3 | −179.7 (6) | Cu2—N3—C25—C24 | 0.0 (10) |
C6—C1—C2—C3 | 0.1 (10) | C23—C24—C25—N3 | −179.1 (7) |
O1—C1—C2—Br1 | 3.2 (8) | C19—C24—C25—N3 | 5.5 (11) |
C6—C1—C2—Br1 | −177.0 (4) | C25—N3—C26—C27 | −103.0 (6) |
C1—C2—C3—C4 | 0.3 (10) | Cu2—N3—C26—C27 | 76.0 (6) |
Br1—C2—C3—C4 | 177.3 (5) | N3—C26—C27—C28 | 64.1 (7) |
C2—C3—C4—C5 | −0.7 (10) | C26—C27—C28—C29 | −174.7 (5) |
C2—C3—C4—Br2 | −178.7 (5) | C30—N4—C29—C28 | −105.3 (6) |
C3—C4—C5—C6 | 0.8 (10) | Cu1—N4—C29—C28 | 72.0 (6) |
Br2—C4—C5—C6 | 178.8 (5) | C27—C28—C29—N4 | 58.9 (7) |
C4—C5—C6—C1 | −0.5 (10) | C29—N4—C30—C31 | 173.5 (6) |
C4—C5—C6—C7 | −174.6 (6) | Cu1—N4—C30—C31 | −3.7 (9) |
O1—C1—C6—C5 | 179.8 (6) | N4—C30—C31—C32 | −172.6 (6) |
C2—C1—C6—C5 | 0.0 (9) | N4—C30—C31—C36 | 5.8 (11) |
O1—C1—C6—C7 | −6.2 (9) | C36—C31—C32—C33 | −1.8 (10) |
C2—C1—C6—C7 | 174.0 (6) | C30—C31—C32—C33 | 176.6 (6) |
C8—N1—C7—C6 | −176.3 (6) | C31—C32—C33—C34 | −0.4 (11) |
Cu1—N1—C7—C6 | 2.9 (9) | C31—C32—C33—Br7 | 178.2 (5) |
C5—C6—C7—N1 | −176.5 (6) | C32—C33—C34—C35 | 1.0 (11) |
C1—C6—C7—N1 | 9.5 (10) | Br7—C33—C34—C35 | −177.6 (5) |
C7—N1—C8—C9 | −103.6 (6) | C33—C34—C35—C36 | 0.5 (10) |
Cu1—N1—C8—C9 | 77.2 (6) | C33—C34—C35—Br8 | 179.9 (6) |
N1—C8—C9—C10 | 64.5 (7) | Cu1—O4—C36—C31 | −16.8 (9) |
C8—C9—C10—C11 | −173.8 (5) | Cu1—O4—C36—C35 | 163.3 (5) |
C12—N2—C11—C10 | −108.8 (6) | C32—C31—C36—O4 | −176.7 (6) |
Cu2—N2—C11—C10 | 69.2 (6) | C30—C31—C36—O4 | 5.0 (10) |
C9—C10—C11—N2 | 61.0 (7) | C32—C31—C36—C35 | 3.1 (9) |
C11—N2—C12—C13 | 176.4 (6) | C30—C31—C36—C35 | −175.2 (6) |
Cu2—N2—C12—C13 | −1.4 (10) | C34—C35—C36—O4 | 177.4 (6) |
N2—C12—C13—C14 | 180.0 (6) | Br8—C35—C36—O4 | −2.0 (8) |
N2—C12—C13—C18 | 2.0 (11) | C34—C35—C36—C31 | −2.5 (10) |
C18—C13—C14—C15 | −0.1 (10) | Br8—C35—C36—C31 | 178.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O3 | 0.97 | 2.50 | 3.099 (7) | 120 |
C27—H27B···O2 | 0.97 | 2.54 | 3.129 (7) | 119 |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C18H14Br4N2O2)2] |
Mr | 1345.98 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 291 |
a, b, c (Å) | 27.4100 (11), 7.9055 (4), 18.8291 (7) |
V (Å3) | 4080.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 8.92 |
Crystal size (mm) | 0.36 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.142, 0.329 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33878, 8854, 5887 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.642 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.068, 1.00 |
No. of reflections | 8854 |
No. of parameters | 487 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.45 |
Absolute structure | Flack (1983), 4178 Friedel pairs |
Absolute structure parameter | 0.069 (8) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O3 | 0.97 | 2.50 | 3.099 (7) | 120 |
C27—H27B···O2 | 0.97 | 2.54 | 3.129 (7) | 119 |
Acknowledgements
HK and AAA thank PNU for the support of this work. RK thanks the Science and Research Branch, Islamic Azad University. MNT thanks GC University of Sargodha, Pakistan for the research facility.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Hannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024. Web of Science CSD CrossRef Google Scholar
Kargar, H. & Kia, R. (2011a). Acta Cryst. E67, m497–m498. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kargar, H. & Kia, R. (2011b). Acta Cryst. E67, m499–m500. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368. Web of Science CrossRef PubMed CAS Google Scholar
Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667. Web of Science CSD CrossRef Google Scholar
Li, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308–6316. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).
The molecular structure of the title complex (Fig. 1) consists of dinuclear units in which the Schiff base ligands are twisted around copper(II) metal centres in a bis-bidentate coordination mode. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Kargar & Kia, 2011a,b). Both metal atoms show a tetrahedrally distorted square-planar coordination geometry provided by two nitrogen and two oxygen atoms of the Schiff-base ligands. Two C—H···O hydrogen bonds (Table 1) stabilize the conformation of the complex molecule. A fifth coordination site is provided for atom Cu2 by the O4 oxygen atom of a neighbouring complex forming one-dimensional coordination polymeric chains along the b axis (Fig. 2). The length of the Cu2—O4i bond [2.885 (4)Å; symmetry code: (i) x, 1 + y, z] is shorter than the sum of the van der Waals radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964]. The chains are further stabilized π-π stacking interactions [Cg1···Cg2ii = 3.736 (2) Å; symmetry code (ii) x, -1 + y, z; Cg1 and Cg2 are the centroids of the C1–C6 and C19–C24 rings, respectively]. In the crystal structure, short interchain Br···Br contacts are observed [Br(1)···Br(7)iii = 3.6797 (12) Å; Br(2)···Br(4)iv = 3.6142 (12) Å; Br(4)···Br(6)v = 3.6142 (12) Å; Br(6)···Br(8)vi = 3.6401 (12) Å; symmetry codes: (iii) -1/2 + x, 1 - y, z; (iv) 1/2 - x, y, 1/2 + z; (v) 1/2 - x, y, -1/2 + z; (vi) -1/2 + x, 2 - y, z]. A Br(8)···C(12)ii [3.447 (6) Å] interaction is also present in the crystal structure which is shorter than sum of the van der Waals radii of Br [3.70Å] and C [1.70 Å] atoms (Bondi, 1964).