organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-4-(Di­methyl­amino)­benz­yl­idene]-2-(5-meth­­oxy-2-methyl-1H-indol-3-yl)acetohydrazide

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bSchool of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, England, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 6 June 2012; accepted 8 June 2012; online 13 June 2012)

In the title compound, C21H24N4O2, inversion-related mol­ecules are linked into dimers through pairs of N—H⋯O hydrogen bonds, which generate R22(8) motifs. As well as dimer formation, an additional N—H⋯O hydrogen bond and two C—H⋯π contacts, involving H atoms from the phenyl ring and the pyrrole and benzene rings of the indole system, generate a three-dimensional network.

Related literature

For the biological activity of indole acetic acid derivatives and indomethacin, see: Klassen (2001[Klassen, L. J. (2001). CJHP, 54, 37-39.]); Kirnura & Doi (1998[Kirnura, T. & Doi, K. (1998). Histol. Histopathol. 13, 29-36.]); Rossiter et al. (2002[Rossiter, S., Folkes, L. K. & Wardman, P. (2002). Bioorg. Med. Chem. Lett. 12, 2523-2526.]); Shahab et al. (2009[Shahab, S., Ahmed, N. & Khan, N. S. (2009). Afr. J. Agric. Res. 4, 1312-1316.]). For related structures, see: Trask et al. (2004[Trask, A. V., Shan, N., Jones, W. & Motherwell, W. D. S. (2004). Acta Cryst. E60, o508-o509.]); Gelbrich et al. (2007[Gelbrich, T., Haddow, M. F. & Griesser, U. J. (2007). Acta Cryst. C63, o451-o453.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N4O2

  • Mr = 364.44

  • Monoclinic, P 21 /c

  • a = 9.600 (5) Å

  • b = 7.548 (4) Å

  • c = 25.802 (14) Å

  • β = 95.10 (1)°

  • V = 1862.2 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.10 × 0.01 × 0.01 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001[Rigaku (2001). CrystalClear, The Woodlands, Texas, USA.]) Tmin = 0.992, Tmax = 0.999

  • 10458 measured reflections

  • 3280 independent reflections

  • 2386 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.159

  • S = 1.15

  • 3280 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C3/C8 and C3–C8 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.21 2.984 (3) 147
N2—H2⋯O1ii 0.88 1.97 2.854 (3) 179
C18—H18⋯Cg2iii 0.95 2.84 3.692 (4) 151
C19—H19⋯Cg1iii 0.95 2.72 3.508 (4) 141
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z; (iii) -x, -y, -z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear, The Woodlands, Texas, USA.]); cell refinement: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear, The Woodlands, Texas, USA.]); data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole-3-acetic acid (IAA) is the main auxin in plants, controlling many important physiological processes including cell enlargement and division, tissue differentiation, and responses to light and gravity (Shahab et al., 2009). In addition, derivatives of substituted indole-acetic acid are active oxidative pro-drugs with potential of cancer therapy (Rossiter et al., 2002). Indomethacin is an example of IAA derivatives exhibits anti-inflammatory, analgesic, and antipyretic properties and is therefore used to treat acute and chronic pain (Klassen, 2001; Kirnura & Doi, 1998). As part of our interest in production of potential pharmaceutical active compounds based on well known pharmacophores e.g indomethacin, we are herein reporting the synthesis and crystal structure of the title compound.

In the title molecule (I), Fig. 1, the 1H-indole system (N1\C1—C8) is essentially planar [maximum deviation -0.025 (3) Å for atom C1] and makes a dihedral angle of 73.65 (12) ° with the (C14–C19) benzene ring. The bond lengths and angles are normal and comparable to those observed in the related structures (Trask et al., 2004; Gelbrich et al., 2007).

In the crystal structure, molecules form a dimer, in which a pair of N1—H1···O2 hydrogen bonds generate an intermolecular R22(8) ring (Bernstein, et al., 1995; Table 1, Fig. 2). These dimers are further linked by the N2—H2···O1 hydrogen bonds. Two additional C—H···π interactions also contribute to an extensive three dimensional network (Table 1).

Related literature top

For the biological activity of indole acetic acid derivatives and indomethacin, see: Klassen (2001); Kirnura & Doi (1998); Rossiter et al. (2002); Shahab et al. (2009). For related structures, see: Trask et al. (2004); Gelbrich et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 341 mg (1 mmol) 2-{1-[(4-chlorophenyl)carbonyl]-2-methyl-1H-indol-3-yl}acetohydrazide in 30 ml ethanol was added to a solution of 149 mg (1 mmol) 4-(dimethylamino)benzaldehyde in 20 ml ethanol in presence of few drops of catalytic glacial acetic acid and refluxed at 350 K for 6 h. On evaporating the excess solvent, a mass solid product was collected, washed with cold ethanol and dried. The crude product was recrystallized from ethanol to afford the title compound in a good yield (77%). Pure crystals suitable for X-ray diffraction were grown by slow evaporation of ethanol solution of the product at room temperature (m.p. 381 K).

Refinement top

All H-atoms were placed in calculated positions [N—H = 0.88 Å, C—H (aromatic) = 0.95 Å, C—H (methyl) = 0.98 Å and C—H (methylene) = 0.99 Å] and were refined by using a riding model approximation, with Uiso(H) = 1.2 or 1.5 Ueq(C,N).

Structure description top

Indole-3-acetic acid (IAA) is the main auxin in plants, controlling many important physiological processes including cell enlargement and division, tissue differentiation, and responses to light and gravity (Shahab et al., 2009). In addition, derivatives of substituted indole-acetic acid are active oxidative pro-drugs with potential of cancer therapy (Rossiter et al., 2002). Indomethacin is an example of IAA derivatives exhibits anti-inflammatory, analgesic, and antipyretic properties and is therefore used to treat acute and chronic pain (Klassen, 2001; Kirnura & Doi, 1998). As part of our interest in production of potential pharmaceutical active compounds based on well known pharmacophores e.g indomethacin, we are herein reporting the synthesis and crystal structure of the title compound.

In the title molecule (I), Fig. 1, the 1H-indole system (N1\C1—C8) is essentially planar [maximum deviation -0.025 (3) Å for atom C1] and makes a dihedral angle of 73.65 (12) ° with the (C14–C19) benzene ring. The bond lengths and angles are normal and comparable to those observed in the related structures (Trask et al., 2004; Gelbrich et al., 2007).

In the crystal structure, molecules form a dimer, in which a pair of N1—H1···O2 hydrogen bonds generate an intermolecular R22(8) ring (Bernstein, et al., 1995; Table 1, Fig. 2). These dimers are further linked by the N2—H2···O1 hydrogen bonds. Two additional C—H···π interactions also contribute to an extensive three dimensional network (Table 1).

For the biological activity of indole acetic acid derivatives and indomethacin, see: Klassen (2001); Kirnura & Doi (1998); Rossiter et al. (2002); Shahab et al. (2009). For related structures, see: Trask et al. (2004); Gelbrich et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the molecular packing and the dimers formed through N—H···O hydrogen bonds of viewed along the b axis. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
N'-[(E)-4-(Dimethylamino)benzylidene]-2-(5-methoxy-2- methyl-1H-indol-3-yl)acetohydrazide top
Crystal data top
C21H24N4O2F(000) = 776
Mr = 364.44Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 5554 reflections
a = 9.600 (5) Åθ = 2.5–31.2°
b = 7.548 (4) ŵ = 0.09 mm1
c = 25.802 (14) ÅT = 100 K
β = 95.10 (1)°Needle, colourless
V = 1862.2 (17) Å30.10 × 0.01 × 0.01 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
3280 independent reflections
Radiation source: Rotating Anode2386 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.048
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 3.1°
profile data from ω–scansh = 1110
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
k = 88
Tmin = 0.992, Tmax = 0.999l = 3030
10458 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.6401P]
where P = (Fo2 + 2Fc2)/3
3280 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H24N4O2V = 1862.2 (17) Å3
Mr = 364.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.600 (5) ŵ = 0.09 mm1
b = 7.548 (4) ÅT = 100 K
c = 25.802 (14) Å0.10 × 0.01 × 0.01 mm
β = 95.10 (1)°
Data collection top
Rigaku Saturn724+
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
2386 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 0.999Rint = 0.048
10458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.15Δρmax = 0.21 e Å3
3280 reflectionsΔρmin = 0.27 e Å3
248 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1627 (2)0.5758 (2)0.03536 (8)0.0319 (7)
O20.3022 (2)0.7669 (2)0.21269 (8)0.0334 (7)
N10.3847 (2)0.0787 (3)0.15126 (9)0.0291 (8)
N20.1218 (2)0.3244 (3)0.00973 (9)0.0294 (8)
N30.1684 (2)0.1639 (3)0.02855 (9)0.0283 (8)
N40.1656 (2)0.5960 (3)0.14532 (10)0.0326 (9)
C10.3807 (3)0.1057 (4)0.09794 (11)0.0270 (9)
C20.3661 (3)0.2837 (3)0.08759 (11)0.0239 (8)
C30.3558 (3)0.3719 (4)0.13661 (11)0.0250 (9)
C40.3339 (3)0.5484 (4)0.15053 (11)0.0250 (9)
C50.3263 (3)0.5893 (4)0.20232 (12)0.0272 (9)
C60.3425 (3)0.4582 (4)0.24098 (11)0.0300 (10)
C70.3625 (3)0.2838 (4)0.22774 (12)0.0305 (10)
C80.3676 (3)0.2404 (4)0.17560 (12)0.0271 (9)
C90.3920 (3)0.0469 (4)0.06217 (12)0.0319 (10)
C100.2608 (3)0.8097 (4)0.26328 (12)0.0358 (10)
C110.3555 (3)0.3737 (4)0.03525 (11)0.0274 (9)
C120.2068 (3)0.4328 (4)0.01983 (11)0.0262 (9)
C130.0743 (3)0.0759 (4)0.05616 (12)0.0312 (10)
C140.1025 (3)0.0925 (4)0.08031 (11)0.0277 (9)
C150.2347 (3)0.1724 (4)0.07641 (12)0.0301 (10)
C160.2558 (3)0.3363 (4)0.09783 (11)0.0293 (10)
C170.1459 (3)0.4293 (4)0.12538 (11)0.0273 (9)
C180.0138 (3)0.3465 (4)0.13131 (12)0.0314 (10)
C190.0058 (3)0.1828 (4)0.10940 (12)0.0316 (10)
C200.2987 (3)0.6849 (4)0.13441 (12)0.0331 (10)
C210.0517 (3)0.6876 (4)0.17479 (13)0.0372 (10)
H10.396200.024200.167100.0350*
H20.034100.355700.017400.0350*
H40.324400.638500.124700.0300*
H60.339800.489900.276500.0360*
H70.372600.194700.253800.0370*
H9A0.308000.120600.062200.0480*
H9B0.474500.117700.073800.0480*
H9C0.401000.003200.026900.0480*
H10A0.184900.730700.271600.0540*
H10B0.228400.932800.263500.0540*
H10C0.340800.794900.289300.0540*
H11A0.385900.290800.008700.0330*
H11B0.418400.477800.036600.0330*
H130.017600.123100.061000.0370*
H150.311600.112100.058600.0360*
H160.346500.387500.093900.0350*
H180.062200.403900.150500.0380*
H190.095600.129400.114100.0380*
H20A0.370500.623300.152300.0500*
H20B0.290800.807600.146700.0500*
H20C0.324900.684000.096800.0500*
H21A0.026600.701500.153200.0560*
H21B0.083600.804700.185200.0560*
H21C0.021100.618700.205900.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0352 (12)0.0256 (11)0.0337 (12)0.0026 (9)0.0034 (10)0.0007 (9)
O20.0435 (13)0.0253 (11)0.0317 (12)0.0023 (10)0.0048 (10)0.0037 (9)
N10.0331 (14)0.0228 (13)0.0304 (15)0.0052 (11)0.0033 (11)0.0032 (11)
N20.0279 (13)0.0251 (14)0.0338 (15)0.0055 (11)0.0052 (11)0.0033 (11)
N30.0326 (14)0.0221 (13)0.0301 (14)0.0016 (11)0.0026 (11)0.0005 (11)
N40.0258 (13)0.0269 (14)0.0439 (17)0.0008 (11)0.0031 (12)0.0045 (12)
C10.0215 (14)0.0291 (16)0.0300 (17)0.0024 (13)0.0003 (12)0.0029 (14)
C20.0187 (13)0.0247 (15)0.0277 (16)0.0015 (12)0.0014 (12)0.0004 (13)
C30.0172 (13)0.0268 (16)0.0304 (17)0.0008 (12)0.0012 (12)0.0006 (13)
C40.0257 (15)0.0219 (15)0.0267 (16)0.0021 (12)0.0021 (12)0.0048 (13)
C50.0264 (15)0.0220 (15)0.0323 (17)0.0008 (13)0.0015 (13)0.0017 (13)
C60.0357 (17)0.0310 (17)0.0230 (16)0.0004 (14)0.0018 (13)0.0004 (14)
C70.0355 (17)0.0294 (17)0.0258 (17)0.0002 (14)0.0017 (13)0.0062 (14)
C80.0240 (15)0.0245 (15)0.0317 (17)0.0023 (13)0.0032 (12)0.0015 (14)
C90.0319 (16)0.0271 (16)0.0362 (18)0.0017 (13)0.0011 (14)0.0028 (14)
C100.0412 (18)0.0318 (17)0.0348 (19)0.0010 (15)0.0065 (15)0.0076 (15)
C110.0292 (15)0.0269 (16)0.0255 (16)0.0034 (13)0.0000 (13)0.0005 (13)
C120.0310 (16)0.0252 (16)0.0224 (16)0.0015 (13)0.0019 (13)0.0040 (13)
C130.0286 (16)0.0291 (17)0.0355 (18)0.0004 (13)0.0008 (14)0.0009 (14)
C140.0265 (15)0.0263 (16)0.0306 (17)0.0014 (13)0.0047 (13)0.0007 (13)
C150.0252 (15)0.0313 (17)0.0333 (18)0.0030 (13)0.0001 (13)0.0028 (14)
C160.0239 (15)0.0302 (17)0.0337 (18)0.0011 (13)0.0016 (13)0.0002 (14)
C170.0282 (15)0.0235 (16)0.0300 (17)0.0011 (13)0.0018 (13)0.0019 (13)
C180.0242 (15)0.0295 (17)0.0397 (19)0.0042 (13)0.0010 (13)0.0015 (15)
C190.0247 (15)0.0300 (17)0.0396 (19)0.0020 (13)0.0009 (13)0.0009 (14)
C200.0322 (17)0.0320 (18)0.0346 (19)0.0042 (14)0.0008 (14)0.0015 (14)
C210.0340 (17)0.0291 (17)0.047 (2)0.0033 (14)0.0047 (15)0.0053 (15)
Geometric parameters (Å, º) top
O1—C121.239 (3)C15—C161.377 (4)
O2—C51.390 (3)C16—C171.406 (4)
O2—C101.435 (4)C17—C181.410 (4)
N1—C11.388 (4)C18—C191.379 (4)
N1—C81.389 (4)C4—H40.9500
N2—N31.394 (3)C6—H60.9500
N2—C121.344 (4)C7—H70.9500
N3—C131.285 (4)C9—H9A0.9800
N4—C171.379 (4)C9—H9B0.9800
N4—C201.449 (4)C9—H9C0.9800
N4—C211.451 (4)C10—H10A0.9800
N1—H10.8800C10—H10B0.9800
N2—H20.8800C10—H10C0.9800
C1—C21.375 (4)C11—H11A0.9900
C1—C91.486 (4)C11—H11B0.9900
C2—C31.441 (4)C13—H130.9500
C2—C111.507 (4)C15—H150.9500
C3—C41.401 (4)C16—H160.9500
C3—C81.411 (4)C18—H180.9500
C4—C51.380 (4)C19—H190.9500
C5—C61.404 (4)C20—H20A0.9800
C6—C71.378 (4)C20—H20B0.9800
C7—C81.390 (4)C20—H20C0.9800
C11—C121.515 (4)C21—H21A0.9800
C13—C141.452 (4)C21—H21B0.9800
C14—C191.404 (4)C21—H21C0.9800
C14—C151.401 (4)
C5—O2—C10117.2 (2)C5—C4—H4121.00
C1—N1—C8109.0 (2)C5—C6—H6120.00
N3—N2—C12122.0 (2)C7—C6—H6120.00
N2—N3—C13114.3 (2)C6—C7—H7121.00
C17—N4—C20119.9 (2)C8—C7—H7121.00
C17—N4—C21120.6 (2)C1—C9—H9A110.00
C20—N4—C21119.5 (2)C1—C9—H9B110.00
C8—N1—H1125.00C1—C9—H9C109.00
C1—N1—H1126.00H9A—C9—H9B109.00
N3—N2—H2119.00H9A—C9—H9C109.00
C12—N2—H2119.00H9B—C9—H9C109.00
N1—C1—C2109.2 (2)O2—C10—H10A109.00
N1—C1—C9120.3 (3)O2—C10—H10B109.00
C2—C1—C9130.5 (3)O2—C10—H10C110.00
C3—C2—C11125.0 (2)H10A—C10—H10B109.00
C1—C2—C11127.8 (3)H10A—C10—H10C109.00
C1—C2—C3107.2 (2)H10B—C10—H10C109.00
C2—C3—C8107.1 (2)C2—C11—H11A110.00
C4—C3—C8119.4 (3)C2—C11—H11B110.00
C2—C3—C4133.5 (3)C12—C11—H11A109.00
C3—C4—C5118.9 (3)C12—C11—H11B109.00
O2—C5—C4115.2 (3)H11A—C11—H11B108.00
O2—C5—C6123.6 (3)N3—C13—H13119.00
C4—C5—C6121.2 (3)C14—C13—H13119.00
C5—C6—C7120.4 (3)C14—C15—H15119.00
C6—C7—C8118.9 (3)C16—C15—H15119.00
N1—C8—C7131.3 (3)C15—C16—H16119.00
C3—C8—C7121.1 (3)C17—C16—H16119.00
N1—C8—C3107.5 (3)C17—C18—H18120.00
C2—C11—C12110.8 (2)C19—C18—H18120.00
N2—C12—C11118.7 (3)C14—C19—H19119.00
O1—C12—N2120.4 (3)C18—C19—H19119.00
O1—C12—C11120.9 (3)N4—C20—H20A109.00
N3—C13—C14122.8 (3)N4—C20—H20B109.00
C13—C14—C19119.8 (3)N4—C20—H20C109.00
C15—C14—C19116.9 (3)H20A—C20—H20B109.00
C13—C14—C15123.3 (3)H20A—C20—H20C109.00
C14—C15—C16121.5 (3)H20B—C20—H20C109.00
C15—C16—C17121.4 (3)N4—C21—H21A109.00
N4—C17—C16121.5 (3)N4—C21—H21B110.00
C16—C17—C18117.4 (3)N4—C21—H21C109.00
N4—C17—C18121.1 (3)H21A—C21—H21B109.00
C17—C18—C19120.5 (3)H21A—C21—H21C109.00
C14—C19—C18122.2 (3)H21B—C21—H21C109.00
C3—C4—H4121.00
C10—O2—C5—C614.5 (4)C4—C3—C8—C72.2 (4)
C10—O2—C5—C4165.7 (2)C2—C3—C4—C5178.5 (3)
C8—N1—C1—C22.1 (3)C4—C3—C8—N1178.4 (2)
C8—N1—C1—C9178.1 (2)C2—C3—C8—C7179.6 (3)
C1—N1—C8—C7179.3 (3)C3—C4—C5—C61.1 (4)
C1—N1—C8—C31.3 (3)C3—C4—C5—O2179.0 (2)
C12—N2—N3—C13180.0 (3)C4—C5—C6—C71.9 (4)
N3—N2—C12—C113.1 (4)O2—C5—C6—C7178.3 (3)
N3—N2—C12—O1179.0 (2)C5—C6—C7—C80.6 (4)
N2—N3—C13—C14178.6 (3)C6—C7—C8—C31.4 (4)
C20—N4—C17—C18174.1 (3)C6—C7—C8—N1179.2 (3)
C21—N4—C17—C182.5 (4)C2—C11—C12—O184.2 (3)
C21—N4—C17—C16178.4 (3)C2—C11—C12—N293.7 (3)
C20—N4—C17—C165.1 (4)N3—C13—C14—C151.1 (5)
C9—C1—C2—C3178.2 (3)N3—C13—C14—C19179.1 (3)
N1—C1—C2—C11179.3 (3)C13—C14—C15—C16176.9 (3)
C9—C1—C2—C110.9 (5)C19—C14—C15—C163.3 (4)
N1—C1—C2—C32.0 (3)C13—C14—C19—C18177.2 (3)
C11—C2—C3—C8178.5 (3)C15—C14—C19—C183.0 (4)
C11—C2—C3—C40.7 (5)C14—C15—C16—C171.1 (5)
C1—C2—C3—C4176.8 (3)C15—C16—C17—N4177.7 (3)
C1—C2—C11—C12105.6 (3)C15—C16—C17—C181.5 (4)
C3—C2—C11—C1271.3 (4)N4—C17—C18—C19177.4 (3)
C1—C2—C3—C81.1 (3)C16—C17—C18—C191.8 (4)
C8—C3—C4—C50.9 (4)C17—C18—C19—C140.5 (5)
C2—C3—C8—N10.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C3/C8 and C3–C8 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.212.984 (3)147
N2—H2···O1ii0.881.972.854 (3)179
C11—H11A···N30.992.422.814 (4)103
C18—H18···Cg2iii0.952.843.692 (4)151
C19—H19···Cg1iii0.952.723.508 (4)141
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC21H24N4O2
Mr364.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.600 (5), 7.548 (4), 25.802 (14)
β (°) 95.10 (1)
V3)1862.2 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.01 × 0.01
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2001)
Tmin, Tmax0.992, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
10458, 3280, 2386
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.159, 1.15
No. of reflections3280
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: CrystalClear (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C3/C8 and C3–C8 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.212.984 (3)147
N2—H2···O1ii0.881.972.854 (3)179
C18—H18···Cg2iii0.952.843.692 (4)151
C19—H19···Cg1iii0.952.723.508 (4)141
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y, z.
 

Acknowledgements

The authors are grateful to the Higher Education Ministry of Iraq for financial support. They also thank Manchester Metropolitan University and the UK National Crystallography Service, University of Southampton, for supporting this study.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGelbrich, T., Haddow, M. F. & Griesser, U. J. (2007). Acta Cryst. C63, o451–o453.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKirnura, T. & Doi, K. (1998). Histol. Histopathol. 13, 29–36.  Web of Science PubMed Google Scholar
First citationKlassen, L. J. (2001). CJHP, 54, 37-39.  Google Scholar
First citationRigaku (2001). CrystalClear, The Woodlands, Texas, USA.  Google Scholar
First citationRossiter, S., Folkes, L. K. & Wardman, P. (2002). Bioorg. Med. Chem. Lett. 12, 2523–2526.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShahab, S., Ahmed, N. & Khan, N. S. (2009). Afr. J. Agric. Res. 4, 1312–1316.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrask, A. V., Shan, N., Jones, W. & Motherwell, W. D. S. (2004). Acta Cryst. E60, o508–o509.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds