organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-{[4-Oxo-3-(2-phenyl­eth­yl)-3,4-di­hydro­quinazolin-2-yl]sulfan­yl}eth­yl)-2,3-di­hydro-1H-iso­indole-1,3-dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 7 June 2012; accepted 7 June 2012; online 13 June 2012)

In the title compound, C26H21N3O3S, the quinazolinyl group is essentially planar [r.m.s. deviation for the 10 non-H atoms = 0.057 Å]. The isoindoline-1,3-dione group is linked by an SCH2CH2 chain to the pyrimidinyl C atom that lies between the two N atoms. Also, the phenyl group is linked by a CH2CH2 chain at the N atom adjacent to the carbonyl group. This results in a conformation with these substituents lying to either side of the central quinazolinyl unit, with the former being approximately parallel [dihedral angle = 4.93 (7)°], and the phenyl group being inclined [dihedral angle = 71.61 (9)°] to the central quinazolinyl fused-ring system. In the crystal, mol­ecules are consolidated into a three-dimensional architecture by C—H⋯O inter­actions, involving all three carbonyl-O atoms, and ππ inter­actions occurring between the pyrimidinyl and isoindole-benzene rings [inter-centroid distance = 3.5330 (13) Å].

Related literature

For the synthesis and drug discovery trials of quinazoline-4(3H)-one derivatives, see: El-Azab & ElTahir (2012[El-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 1879-1885.]); El-Azab et al. (2011[El-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837-848.]). For the synthesis and anti­microbial activity of the title compound, see: El-Azab (2007[El-Azab, A. S. (2007). Phosphorus, Sulfur, and Silicon, 182, 333-348.]). For a related structure, see: El-Emam et al. (2012[El-Emam, A. A., Al-Deeb, O. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2055-o2056.]).

[Scheme 1]

Experimental

Crystal data
  • C26H21N3O3S

  • Mr = 455.52

  • Triclinic, [P \overline 1]

  • a = 8.7346 (4) Å

  • b = 9.4464 (6) Å

  • c = 13.7373 (8) Å

  • α = 94.258 (5)°

  • β = 103.505 (5)°

  • γ = 105.227 (5)°

  • V = 1052.27 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.66 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.511, Tmax = 1.000

  • 7763 measured reflections

  • 4329 independent reflections

  • 3482 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.03

  • 4329 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.95 2.56 3.218 (3) 127
C17—H17B⋯O3ii 0.99 2.42 3.120 (2) 128
C21—H21⋯O2iii 0.95 2.45 3.346 (3) 157
Symmetry codes: (i) -x+3, -y+2, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 2-(2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)ethyl)isoindoline-1,3-dione (I), was originally synthesized for evaluation of its anti-microbial activity (El-Azab, 2007) owing to the known biological activity of related quinazoline-4(3H)one derivatives (El-Azab & ElTahir, 2012; El-Azab et al., 2011). Herein, we describe the crystal structure determination of (I).

In (I), Fig. 1, the quinazolinyl group is planar with the r.m.s. deviation for the 10 non-hydrogen atoms = 0.057 Å and maximum deviations of 0.062 (2) for the C5 atom and -0.068 (2) for the C7 atom. The isoindole (r.m.s. deviation for the nine non-hydrogen atoms = 0.018 Å), being linked by a SCH2CH2 chain at the C16 atom, and phenyl, linked by a CH2CH2 chain at the N2 atom, groups lie to either side of the molecule with the former being approximately parallel, dihedral angle = 4.93 (7)°, and the phenyl group being inclined, dihedral angle = 71.61 (9)°, with respect to the central quinazolinyl group.

Molecules are consolidated into a three-dimensional architecture by C—H···O interactions involving all three carbonyl-O atoms, Table 1, and ππ interactions occurring between the pyrimidinyl and isoindole-benzene rings [intercentroid distance = 3.5330 (13) Å, angle of inclination = 6.19 (10)° for symmetry operation: 1 - x, 2 - y, 1 - z], Fig. 2.

Related literature top

For the synthesis and drug discovery trials of quinazoline-4(3H)-one derivatives, see: El-Azab & ElTahir (2012); El-Azab et al. (2011). For the synthesis and antimicrobial activity of the title compound, see: El-Azab (2007). For a related structure, see: El-Azab et al. (2012).

Experimental top

A mixture of 2-mercapto-3-phenethylquinazolin-4(3H)-one (564 mg, 2 mmol) and 2-(2-chloroethyl)isoindoline-1,3-dione (418 mg, 2.0 mmol) in acetone (10 ml) containing anhydrous K2CO3 (300 mg) was stirred at room temperature for 12 h. The reaction mixture was filtered, the solvent removed under reduced pressure and the solid obtained was dried and recrystallized from ethanol. Yield 89%; 1H NMR (CDCl3): δ = 8.10 (d, 1H, J = 7.5 Hz), 7.72 (dd, 2H, J = 3.0 Hz), 7.62–7.56 (m, 4H), 7.29 (t, 1H, J = 6.5, 7.0 Hz), 7.21–7.15 (m, 5H), 4.17 (t, 2H, J = 8.0, 8.5 Hz), 4.10 (t, 2H, J = 6.0, 6.5 Hz), 3.54 (t, 2H, J = 6.5 Hz), 2.94 (t, 2H, J = 8.0, 8.5 Hz) p.p.m.. MS (70 eV): m/z = 455.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

The title compound, 2-(2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)ethyl)isoindoline-1,3-dione (I), was originally synthesized for evaluation of its anti-microbial activity (El-Azab, 2007) owing to the known biological activity of related quinazoline-4(3H)one derivatives (El-Azab & ElTahir, 2012; El-Azab et al., 2011). Herein, we describe the crystal structure determination of (I).

In (I), Fig. 1, the quinazolinyl group is planar with the r.m.s. deviation for the 10 non-hydrogen atoms = 0.057 Å and maximum deviations of 0.062 (2) for the C5 atom and -0.068 (2) for the C7 atom. The isoindole (r.m.s. deviation for the nine non-hydrogen atoms = 0.018 Å), being linked by a SCH2CH2 chain at the C16 atom, and phenyl, linked by a CH2CH2 chain at the N2 atom, groups lie to either side of the molecule with the former being approximately parallel, dihedral angle = 4.93 (7)°, and the phenyl group being inclined, dihedral angle = 71.61 (9)°, with respect to the central quinazolinyl group.

Molecules are consolidated into a three-dimensional architecture by C—H···O interactions involving all three carbonyl-O atoms, Table 1, and ππ interactions occurring between the pyrimidinyl and isoindole-benzene rings [intercentroid distance = 3.5330 (13) Å, angle of inclination = 6.19 (10)° for symmetry operation: 1 - x, 2 - y, 1 - z], Fig. 2.

For the synthesis and drug discovery trials of quinazoline-4(3H)-one derivatives, see: El-Azab & ElTahir (2012); El-Azab et al. (2011). For the synthesis and antimicrobial activity of the title compound, see: El-Azab (2007). For a related structure, see: El-Azab et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The C—H···O and ππ contacts are shown as orange and purple dashed lines respectively.
2-(2-{[4-Oxo-3-(2-phenylethyl)-3,4-dihydroquinazolin-2-yl]sulfanyl}ethyl)-2,3- dihydro-1H-isoindole-1,3-dione top
Crystal data top
C26H21N3O3SZ = 2
Mr = 455.52F(000) = 476
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 8.7346 (4) ÅCell parameters from 2392 reflections
b = 9.4464 (6) Åθ = 3.3–76.4°
c = 13.7373 (8) ŵ = 1.66 mm1
α = 94.258 (5)°T = 100 K
β = 103.505 (5)°Prism, colourless
γ = 105.227 (5)°0.25 × 0.15 × 0.02 mm
V = 1052.27 (10) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4329 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3482 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 3.3°
ω scanh = 810
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1011
Tmin = 0.511, Tmax = 1.000l = 1714
7763 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.0527P]
where P = (Fo2 + 2Fc2)/3
4329 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C26H21N3O3Sγ = 105.227 (5)°
Mr = 455.52V = 1052.27 (10) Å3
Triclinic, P1Z = 2
a = 8.7346 (4) ÅCu Kα radiation
b = 9.4464 (6) ŵ = 1.66 mm1
c = 13.7373 (8) ÅT = 100 K
α = 94.258 (5)°0.25 × 0.15 × 0.02 mm
β = 103.505 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4329 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3482 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 1.000Rint = 0.042
7763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
4329 reflectionsΔρmin = 0.36 e Å3
298 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78761 (6)0.81994 (5)0.66367 (4)0.02236 (15)
N30.2950 (2)0.71976 (19)0.53513 (14)0.0199 (4)
O11.09076 (18)1.22980 (17)0.94479 (12)0.0258 (3)
O20.23072 (19)0.93889 (16)0.56428 (13)0.0268 (4)
O30.27774 (18)0.47861 (16)0.47700 (12)0.0238 (3)
N10.7076 (2)1.06895 (19)0.69243 (13)0.0191 (4)
N20.9393 (2)1.04543 (19)0.81447 (13)0.0193 (4)
C10.7348 (2)1.2099 (2)0.74263 (16)0.0187 (4)
C20.6228 (3)1.2899 (2)0.70762 (17)0.0220 (4)
H20.52761.24530.65350.026*
C30.6521 (3)1.4336 (2)0.75257 (17)0.0231 (4)
H30.57621.48730.72910.028*
C40.7927 (3)1.5015 (2)0.83247 (17)0.0240 (4)
H40.81301.60120.86170.029*
C50.9006 (3)1.4224 (2)0.86799 (17)0.0225 (4)
H50.99561.46750.92220.027*
C60.8709 (2)1.2757 (2)0.82464 (16)0.0199 (4)
C70.9776 (2)1.1879 (2)0.86754 (16)0.0210 (4)
C81.0395 (2)0.9495 (2)0.85786 (16)0.0210 (4)
H8A0.97430.84430.83600.025*
H8B1.06580.96870.93260.025*
C91.1989 (3)0.9758 (2)0.82556 (17)0.0216 (4)
H9A1.17190.95050.75110.026*
H9B1.26011.08250.84330.026*
C101.3087 (2)0.8866 (2)0.87393 (15)0.0193 (4)
C111.4700 (3)0.9199 (2)0.86494 (17)0.0239 (4)
H111.50780.99810.82890.029*
C121.5760 (3)0.8415 (3)0.90749 (17)0.0264 (5)
H121.68520.86650.90050.032*
C131.5237 (3)0.7268 (2)0.96019 (17)0.0253 (4)
H131.59600.67230.98890.030*
C141.3643 (3)0.6925 (3)0.97044 (18)0.0265 (5)
H141.32730.61421.00660.032*
C151.2582 (3)0.7718 (2)0.92815 (17)0.0240 (4)
H151.14970.74740.93630.029*
C160.8090 (2)0.9957 (2)0.72786 (16)0.0190 (4)
C170.5972 (2)0.7934 (2)0.56824 (16)0.0208 (4)
H17A0.59990.88560.53790.025*
H17B0.58540.71340.51380.025*
C180.4493 (2)0.7530 (2)0.61288 (16)0.0223 (4)
H18A0.45200.66570.64820.027*
H18B0.45650.83660.66330.027*
C190.1975 (2)0.8162 (2)0.51785 (16)0.0199 (4)
C200.0496 (2)0.7337 (2)0.43459 (16)0.0194 (4)
C210.0828 (3)0.7789 (3)0.38598 (18)0.0249 (5)
H210.09210.87450.40470.030*
C220.2021 (3)0.6779 (3)0.30825 (18)0.0275 (5)
H220.29410.70580.27240.033*
C230.1893 (3)0.5362 (3)0.28182 (17)0.0256 (5)
H230.27310.46930.22900.031*
C240.0544 (3)0.4919 (2)0.33240 (17)0.0227 (4)
H240.04450.39600.31520.027*
C250.0634 (2)0.5941 (2)0.40831 (16)0.0199 (4)
C260.2207 (2)0.5824 (2)0.47360 (16)0.0196 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0155 (3)0.0206 (2)0.0278 (3)0.00622 (19)0.00023 (19)0.00159 (19)
N30.0141 (8)0.0202 (8)0.0234 (9)0.0042 (7)0.0026 (7)0.0012 (7)
O10.0174 (7)0.0328 (8)0.0219 (8)0.0062 (6)0.0023 (6)0.0011 (6)
O20.0250 (8)0.0216 (7)0.0323 (9)0.0062 (6)0.0072 (7)0.0019 (6)
O30.0202 (7)0.0214 (7)0.0307 (8)0.0087 (6)0.0060 (6)0.0026 (6)
N10.0127 (8)0.0203 (8)0.0227 (9)0.0034 (6)0.0036 (7)0.0021 (7)
N20.0143 (8)0.0223 (8)0.0208 (9)0.0058 (7)0.0030 (7)0.0032 (7)
C10.0137 (9)0.0221 (9)0.0204 (10)0.0040 (7)0.0060 (8)0.0035 (8)
C20.0153 (10)0.0258 (10)0.0246 (11)0.0060 (8)0.0046 (8)0.0024 (8)
C30.0195 (10)0.0233 (10)0.0296 (11)0.0074 (8)0.0100 (9)0.0058 (8)
C40.0217 (10)0.0193 (9)0.0299 (11)0.0028 (8)0.0094 (9)0.0006 (8)
C50.0187 (10)0.0246 (10)0.0225 (10)0.0031 (8)0.0061 (8)0.0018 (8)
C60.0152 (9)0.0235 (10)0.0211 (10)0.0047 (8)0.0063 (8)0.0032 (8)
C70.0137 (9)0.0256 (10)0.0220 (10)0.0029 (8)0.0051 (8)0.0015 (8)
C80.0143 (9)0.0256 (10)0.0232 (10)0.0079 (8)0.0018 (8)0.0048 (8)
C90.0172 (10)0.0257 (10)0.0223 (10)0.0075 (8)0.0042 (8)0.0048 (8)
C100.0150 (9)0.0228 (9)0.0179 (10)0.0049 (7)0.0018 (7)0.0000 (8)
C110.0181 (10)0.0303 (11)0.0229 (11)0.0053 (8)0.0063 (8)0.0038 (8)
C120.0152 (10)0.0356 (12)0.0285 (12)0.0078 (9)0.0061 (8)0.0019 (9)
C130.0191 (10)0.0288 (10)0.0263 (11)0.0096 (8)0.0011 (8)0.0007 (9)
C140.0220 (11)0.0288 (11)0.0300 (12)0.0086 (9)0.0071 (9)0.0067 (9)
C150.0153 (10)0.0284 (10)0.0290 (11)0.0060 (8)0.0073 (8)0.0052 (9)
C160.0141 (9)0.0221 (9)0.0191 (10)0.0038 (7)0.0037 (8)0.0015 (8)
C170.0147 (9)0.0202 (9)0.0237 (10)0.0038 (8)0.0004 (8)0.0005 (8)
C180.0154 (10)0.0253 (10)0.0234 (11)0.0043 (8)0.0011 (8)0.0036 (8)
C190.0179 (10)0.0212 (9)0.0221 (10)0.0058 (8)0.0078 (8)0.0029 (8)
C200.0137 (9)0.0222 (9)0.0221 (10)0.0036 (7)0.0060 (8)0.0036 (8)
C210.0210 (11)0.0286 (10)0.0300 (12)0.0114 (9)0.0101 (9)0.0080 (9)
C220.0170 (10)0.0390 (12)0.0286 (12)0.0103 (9)0.0056 (9)0.0112 (10)
C230.0139 (10)0.0371 (12)0.0217 (11)0.0026 (9)0.0030 (8)0.0028 (9)
C240.0176 (10)0.0255 (10)0.0240 (11)0.0035 (8)0.0072 (8)0.0014 (8)
C250.0148 (9)0.0239 (10)0.0236 (10)0.0069 (8)0.0077 (8)0.0057 (8)
C260.0148 (10)0.0216 (9)0.0222 (10)0.0037 (8)0.0064 (8)0.0019 (8)
Geometric parameters (Å, º) top
S1—C161.764 (2)C9—H9B0.9900
S1—C171.806 (2)C10—C151.396 (3)
N3—C191.399 (3)C10—C111.398 (3)
N3—C261.399 (3)C11—C121.386 (3)
N3—C181.453 (3)C11—H110.9500
O1—C71.226 (3)C12—C131.385 (3)
O2—C191.209 (3)C12—H120.9500
O3—C261.210 (3)C13—C141.388 (3)
N1—C161.293 (3)C13—H130.9500
N1—C11.388 (3)C14—C151.391 (3)
N2—C161.391 (3)C14—H140.9500
N2—C71.400 (3)C15—H150.9500
N2—C81.481 (3)C17—C181.528 (3)
C1—C61.397 (3)C17—H17A0.9900
C1—C21.408 (3)C17—H17B0.9900
C2—C31.381 (3)C18—H18A0.9900
C2—H20.9500C18—H18B0.9900
C3—C41.406 (3)C19—C201.494 (3)
C3—H30.9500C20—C211.380 (3)
C4—C51.376 (3)C20—C251.385 (3)
C4—H40.9500C21—C221.394 (3)
C5—C61.399 (3)C21—H210.9500
C5—H50.9500C22—C231.401 (3)
C6—C71.458 (3)C22—H220.9500
C8—C91.524 (3)C23—C241.402 (3)
C8—H8A0.9900C23—H230.9500
C8—H8B0.9900C24—C251.381 (3)
C9—C101.510 (3)C24—H240.9500
C9—H9A0.9900C25—C261.491 (3)
C16—S1—C17100.25 (10)C11—C12—H12119.8
C19—N3—C26112.02 (17)C12—C13—C14119.1 (2)
C19—N3—C18124.36 (17)C12—C13—H13120.5
C26—N3—C18123.46 (18)C14—C13—H13120.5
C16—N1—C1117.35 (18)C13—C14—C15120.5 (2)
C16—N2—C7121.09 (18)C13—C14—H14119.7
C16—N2—C8122.24 (17)C15—C14—H14119.7
C7—N2—C8116.61 (17)C14—C15—C10121.03 (19)
N1—C1—C6122.29 (19)C14—C15—H15119.5
N1—C1—C2118.41 (18)C10—C15—H15119.5
C6—C1—C2119.28 (19)N1—C16—N2124.87 (18)
C3—C2—C1119.5 (2)N1—C16—S1119.56 (16)
C3—C2—H2120.2N2—C16—S1115.56 (15)
C1—C2—H2120.2C18—C17—S1111.35 (15)
C2—C3—C4121.0 (2)C18—C17—H17A109.4
C2—C3—H3119.5S1—C17—H17A109.4
C4—C3—H3119.5C18—C17—H17B109.4
C5—C4—C3119.5 (2)S1—C17—H17B109.4
C5—C4—H4120.3H17A—C17—H17B108.0
C3—C4—H4120.3N3—C18—C17111.64 (17)
C4—C5—C6120.3 (2)N3—C18—H18A109.3
C4—C5—H5119.9C17—C18—H18A109.3
C6—C5—H5119.9N3—C18—H18B109.3
C1—C6—C5120.4 (2)C17—C18—H18B109.3
C1—C6—C7119.29 (19)H18A—C18—H18B108.0
C5—C6—C7120.27 (19)O2—C19—N3124.9 (2)
O1—C7—N2120.6 (2)O2—C19—C20129.5 (2)
O1—C7—C6124.7 (2)N3—C19—C20105.56 (17)
N2—C7—C6114.63 (18)C21—C20—C25121.8 (2)
N2—C8—C9112.36 (17)C21—C20—C19129.78 (19)
N2—C8—H8A109.1C25—C20—C19108.38 (18)
C9—C8—H8A109.1C20—C21—C22117.0 (2)
N2—C8—H8B109.1C20—C21—H21121.5
C9—C8—H8B109.1C22—C21—H21121.5
H8A—C8—H8B107.9C21—C22—C23121.4 (2)
C10—C9—C8113.56 (17)C21—C22—H22119.3
C10—C9—H9A108.9C23—C22—H22119.3
C8—C9—H9A108.9C22—C23—C24120.8 (2)
C10—C9—H9B108.9C22—C23—H23119.6
C8—C9—H9B108.9C24—C23—H23119.6
H9A—C9—H9B107.7C25—C24—C23116.9 (2)
C15—C10—C11117.5 (2)C25—C24—H24121.6
C15—C10—C9123.52 (18)C23—C24—H24121.6
C11—C10—C9118.96 (19)C24—C25—C20122.1 (2)
C12—C11—C10121.5 (2)C24—C25—C26129.8 (2)
C12—C11—H11119.3C20—C25—C26108.15 (18)
C10—C11—H11119.3O3—C26—N3124.6 (2)
C13—C12—C11120.4 (2)O3—C26—C25129.6 (2)
C13—C12—H12119.8N3—C26—C25105.84 (17)
C16—N1—C1—C63.7 (3)C8—N2—C16—N1172.78 (19)
C16—N1—C1—C2177.81 (18)C7—N2—C16—S1174.78 (14)
N1—C1—C2—C3176.32 (18)C8—N2—C16—S18.0 (2)
C6—C1—C2—C32.2 (3)C17—S1—C16—N16.58 (19)
C1—C2—C3—C40.3 (3)C17—S1—C16—N2174.18 (15)
C2—C3—C4—C51.6 (3)C16—S1—C17—C1875.70 (16)
C3—C4—C5—C60.3 (3)C19—N3—C18—C17103.6 (2)
N1—C1—C6—C5174.95 (18)C26—N3—C18—C1781.3 (2)
C2—C1—C6—C53.5 (3)S1—C17—C18—N3175.35 (14)
N1—C1—C6—C77.8 (3)C26—N3—C19—O2176.6 (2)
C2—C1—C6—C7173.73 (18)C18—N3—C19—O21.1 (3)
C4—C5—C6—C12.3 (3)C26—N3—C19—C202.2 (2)
C4—C5—C6—C7174.93 (19)C18—N3—C19—C20177.75 (17)
C16—N2—C7—O1178.66 (18)O2—C19—C20—C213.7 (4)
C8—N2—C7—O11.3 (3)N3—C19—C20—C21177.6 (2)
C16—N2—C7—C60.1 (3)O2—C19—C20—C25177.4 (2)
C8—N2—C7—C6177.24 (16)N3—C19—C20—C251.3 (2)
C1—C6—C7—O1172.93 (19)C25—C20—C21—C220.5 (3)
C5—C6—C7—O14.3 (3)C19—C20—C21—C22178.3 (2)
C1—C6—C7—N25.6 (3)C20—C21—C22—C230.9 (3)
C5—C6—C7—N2177.19 (18)C21—C22—C23—C240.6 (3)
C16—N2—C8—C997.7 (2)C22—C23—C24—C250.1 (3)
C7—N2—C8—C985.0 (2)C23—C24—C25—C200.6 (3)
N2—C8—C9—C10176.31 (17)C23—C24—C25—C26178.4 (2)
C8—C9—C10—C1511.0 (3)C21—C20—C25—C240.3 (3)
C8—C9—C10—C11168.71 (19)C19—C20—C25—C24179.33 (18)
C15—C10—C11—C120.5 (3)C21—C20—C25—C26178.95 (18)
C9—C10—C11—C12179.8 (2)C19—C20—C25—C260.1 (2)
C10—C11—C12—C130.2 (3)C19—N3—C26—O3177.16 (19)
C11—C12—C13—C140.5 (3)C18—N3—C26—O31.5 (3)
C12—C13—C14—C150.2 (3)C19—N3—C26—C252.1 (2)
C13—C14—C15—C100.5 (3)C18—N3—C26—C25177.73 (17)
C11—C10—C15—C140.8 (3)C24—C25—C26—O32.8 (4)
C9—C10—C15—C14179.5 (2)C20—C25—C26—O3178.1 (2)
C1—N1—C16—N22.5 (3)C24—C25—C26—N3178.0 (2)
C1—N1—C16—S1176.67 (14)C20—C25—C26—N31.2 (2)
C7—N2—C16—N14.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.563.218 (3)127
C17—H17B···O3ii0.992.423.120 (2)128
C21—H21···O2iii0.952.453.346 (3)157
Symmetry codes: (i) x+3, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC26H21N3O3S
Mr455.52
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7346 (4), 9.4464 (6), 13.7373 (8)
α, β, γ (°)94.258 (5), 103.505 (5), 105.227 (5)
V3)1052.27 (10)
Z2
Radiation typeCu Kα
µ (mm1)1.66
Crystal size (mm)0.25 × 0.15 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.511, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7763, 4329, 3482
Rint0.042
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.03
No. of reflections4329
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.563.218 (3)127
C17—H17B···O3ii0.992.423.120 (2)128
C21—H21···O2iii0.952.453.346 (3)157
Symmetry codes: (i) x+3, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1.
 

Footnotes

Additional correspondence author, e-mail: adelazaba@yahoo.com.

Acknowledgements

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Azab, A. S. (2007). Phosphorus, Sulfur, and Silicon, 182, 333–348.  Google Scholar
First citationEl-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 1879–1885.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–848.  CAS Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2055–o2056.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds