metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-azido-κ4N:N-bis­­({2-[(3-amino-2,2-di­methyl­prop­yl)imino­meth­yl]-6-meth­­oxy­phenolato-1κ3N,N′,O1}copper(II))

aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, K. N. Toosi University of Technology, PO Box 16315-1618, Tehran, Iran, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 June 2012; accepted 26 June 2012; online 30 June 2012)

The complete mol­ecule of the title complex, [Cu2(C13H19N2O2)2(N3)2], is generated by the application of a centre of inversion. The central Cu2N2 core is a rhombus as the μ2-azide ligands bridge in an asymmetric fashion. Each CuII atom is also coordinated by a monoanionic tridentate Schiff base ligand via the anti­cipated oxide O, imine N and amine N atoms. The resulting N4O coordination geometry is based on a square pyramid. No specific inter­molecular inter­actions are noted in the crystal packing, but the amine H atoms form intra­molecular N—H⋯O(oxide)/N(azide) hydrogen bonds.

Related literature

For background to azido derivatives of tridentate Schiff base copper(II) structures, see: Adhikary & Koner (2010[Adhikary, C. & Koner, S. (2010). Coord. Chem. Rev. 254, 2933-2958.]). For a related structure, see: Ghaemi et al. (2012[Ghaemi, A., Rayati, S., Fayyazi, K., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m1027-m1028.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H19N2O2)2(N3)2]

  • Mr = 681.76

  • Monoclinic, P 21 /c

  • a = 9.1733 (5) Å

  • b = 12.2369 (5) Å

  • c = 13.0988 (6) Å

  • β = 98.203 (5)°

  • V = 1455.33 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.674, Tmax = 1.000

  • 5747 measured reflections

  • 3314 independent reflections

  • 2628 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.06

  • 3314 reflections

  • 198 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O2 1.9047 (18)
Cu—N1 1.960 (2)
Cu—N2 2.001 (2)
Cu—N3 2.023 (2)
Cu—N3i 2.641 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O2i 0.87 (1) 2.35 (2) 2.956 (3) 127 (2)
N2—H2N⋯N3 0.88 (1) 2.36 (3) 2.752 (3) 107 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Azido-bridged copper(II) complexes continue to attract attention in relation to investigations of small molecule activation of copper-containing proteins and for new magnetic materials (Adhikary & Koner, 2010). Recently, the crystal structure of a related NiII complex was described in which the Schiff base ligand was shown to coordinate in two distinct modes, i.e. a tridentate mode towards one NiII atom and in a pentadentate mode, bridging two NiII atoms (Ghaemi et al., 2012).

In the centrosymmetric binuclear complex (I), Fig. 1, the CuII atoms are bridged by one end of each of two µ2-azido ligands to generate an Ni2N2 core with the shape of a rhombus as the bridge is asymmetric, Table 1. The coordination geometry for the CuII atom is completed by the oxido-O, imine-O and amino-N donor atoms derived from a tridentate uninegative Schiff base ligand. The N4O donor set defines a coordination geometry close to square pyramidal. This is quantified by the value of τ = 0.12 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The configuration is stabilized by an intramolecular N—H···O(oxido) and NH···N(azido) hydrogen bonds, Table 2. Globally, molecules stack in columns aligned along the a axis, Fig. 2, without specific intermolecular interactions between them.

Related literature top

For background to azido derivatives of tridentate Schiff base copper(II) structures, see: Adhikary & Koner (2010). For a related structure, see: Ghaemi et al. (2012). For additional structural analysis, see: Addison et al. (1984).

Experimental top

A mixture of 2,2-dimethylpropylenediamine (0.234 g, 2.3 mmol) was added to a clear solution of Cu(NO3)2.3H2O (0.50 g, 2.07 mmol) dissolved in methanol (25 ml), which immediately produced an intense-blue solution. The solution was then heated to boiling and a methanolic solution of 2-hydroxy-3-methoxybenzaldehyde (0.273 g, 1.8 mmol) was added drop-wise over 2 h under refluxing conditions. Reflux was continued for another 45 min. Then an excess sodium azide (0.5 g, 7.7 mmol) dissolved in water (2 ml) was added. The precipitate was filtered and dissolved in methanol. Brown crystals were formed within a few days from the methanolic solution. Anal. Calc. for C26H38Cu2N10O4: C, 45.81; H, 5.62; N, 20.55. Found: C, 45.77; H, 5.57; N, 20.66%. IR (KBr) [ν, cm-1]: νas(N3) 2035 versus, ν(CN) 1621 s, ν(CC) 1540 s, ν(C—O) 1224 m. M.pt: 476–478. Yield: 60%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located from a difference map and refined with N—H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N).

Structure description top

Azido-bridged copper(II) complexes continue to attract attention in relation to investigations of small molecule activation of copper-containing proteins and for new magnetic materials (Adhikary & Koner, 2010). Recently, the crystal structure of a related NiII complex was described in which the Schiff base ligand was shown to coordinate in two distinct modes, i.e. a tridentate mode towards one NiII atom and in a pentadentate mode, bridging two NiII atoms (Ghaemi et al., 2012).

In the centrosymmetric binuclear complex (I), Fig. 1, the CuII atoms are bridged by one end of each of two µ2-azido ligands to generate an Ni2N2 core with the shape of a rhombus as the bridge is asymmetric, Table 1. The coordination geometry for the CuII atom is completed by the oxido-O, imine-O and amino-N donor atoms derived from a tridentate uninegative Schiff base ligand. The N4O donor set defines a coordination geometry close to square pyramidal. This is quantified by the value of τ = 0.12 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The configuration is stabilized by an intramolecular N—H···O(oxido) and NH···N(azido) hydrogen bonds, Table 2. Globally, molecules stack in columns aligned along the a axis, Fig. 2, without specific intermolecular interactions between them.

For background to azido derivatives of tridentate Schiff base copper(II) structures, see: Adhikary & Koner (2010). For a related structure, see: Ghaemi et al. (2012). For additional structural analysis, see: Addison et al. (1984).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I).
Di-µ-azido-κ4N:N-bis({2-[(3-amino-2,2- dimethylpropyl)iminomethyl]-6-methoxyphenolato- 1κ3N,N',O1}copper(II)) top
Crystal data top
[Cu2(C13H19N2O2)2(N3)2]F(000) = 708
Mr = 681.76Dx = 1.556 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2122 reflections
a = 9.1733 (5) Åθ = 2.5–27.5°
b = 12.2369 (5) ŵ = 1.51 mm1
c = 13.0988 (6) ÅT = 100 K
β = 98.203 (5)°Prism, brown
V = 1455.33 (12) Å30.20 × 0.15 × 0.10 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3314 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2628 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.8°
ω scanh = 811
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1510
Tmin = 0.674, Tmax = 1.000l = 1417
5747 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.1866P]
where P = (Fo2 + 2Fc2)/3
3314 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu2(C13H19N2O2)2(N3)2]V = 1455.33 (12) Å3
Mr = 681.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.1733 (5) ŵ = 1.51 mm1
b = 12.2369 (5) ÅT = 100 K
c = 13.0988 (6) Å0.20 × 0.15 × 0.10 mm
β = 98.203 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3314 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2628 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 1.000Rint = 0.034
5747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.54 e Å3
3314 reflectionsΔρmin = 0.52 e Å3
198 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.35165 (3)0.49481 (2)0.56108 (2)0.01599 (12)
O10.1585 (2)0.52540 (15)0.22861 (14)0.0225 (4)
O20.2389 (2)0.50500 (12)0.42756 (14)0.0172 (4)
N10.2087 (2)0.57697 (16)0.62846 (16)0.0171 (4)
N20.5049 (3)0.48980 (18)0.68604 (18)0.0185 (5)
H1N0.572 (2)0.5342 (18)0.670 (2)0.016 (7)*
H2N0.539 (4)0.4236 (13)0.679 (3)0.056 (11)*
N30.4612 (2)0.36868 (17)0.50727 (15)0.0191 (5)
N40.3900 (2)0.29635 (18)0.46239 (16)0.0202 (5)
N50.3257 (3)0.2250 (2)0.4194 (2)0.0331 (6)
C10.1093 (3)0.5311 (3)0.1204 (2)0.0287 (6)
H1A0.16700.48050.08420.043*
H1B0.12220.60580.09600.043*
H1C0.00490.51110.10660.043*
C20.0871 (3)0.5912 (2)0.29121 (19)0.0184 (5)
C30.0234 (3)0.6633 (2)0.2566 (2)0.0217 (6)
H30.05170.67280.18450.026*
C40.0950 (3)0.7229 (2)0.3256 (2)0.0264 (6)
H40.17170.77230.30060.032*
C50.0539 (3)0.7096 (2)0.4296 (2)0.0237 (6)
H50.10350.74920.47670.028*
C60.0620 (3)0.6374 (2)0.4675 (2)0.0184 (5)
C70.1344 (3)0.5761 (2)0.39860 (19)0.0168 (5)
C80.0970 (3)0.6270 (2)0.5777 (2)0.0186 (5)
H80.03070.66060.61760.022*
C90.2165 (3)0.5744 (2)0.74125 (19)0.0190 (5)
H9A0.18900.50030.76210.023*
H9B0.14270.62610.76150.023*
C100.3675 (3)0.6033 (2)0.80083 (19)0.0183 (5)
C110.4764 (3)0.5101 (2)0.7928 (2)0.0205 (6)
H11A0.57070.52770.83640.025*
H11B0.43720.44250.82020.025*
C120.3474 (3)0.6122 (2)0.9145 (2)0.0287 (6)
H12A0.31240.54210.93800.043*
H12B0.27500.66930.92260.043*
H12C0.44180.63080.95580.043*
C130.4229 (3)0.7114 (2)0.7623 (2)0.0248 (6)
H13A0.52060.72770.80000.037*
H13B0.35440.77010.77370.037*
H13C0.42940.70560.68840.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01581 (19)0.01867 (19)0.01328 (18)0.00302 (11)0.00137 (14)0.00186 (11)
O10.0205 (9)0.0314 (10)0.0153 (9)0.0031 (8)0.0016 (8)0.0004 (8)
O20.0148 (9)0.0211 (9)0.0148 (9)0.0036 (7)0.0008 (7)0.0003 (7)
N10.0155 (10)0.0178 (10)0.0185 (10)0.0036 (8)0.0042 (9)0.0038 (9)
N20.0188 (12)0.0232 (12)0.0135 (11)0.0058 (9)0.0018 (9)0.0015 (9)
N30.0215 (11)0.0181 (10)0.0179 (11)0.0026 (9)0.0035 (9)0.0026 (9)
N40.0222 (11)0.0223 (11)0.0165 (10)0.0073 (9)0.0041 (9)0.0012 (10)
N50.0269 (13)0.0330 (13)0.0390 (15)0.0034 (11)0.0035 (12)0.0176 (12)
C10.0240 (14)0.0469 (17)0.0138 (13)0.0002 (13)0.0018 (11)0.0008 (13)
C20.0137 (12)0.0193 (12)0.0220 (13)0.0041 (10)0.0023 (10)0.0013 (11)
C30.0202 (13)0.0198 (12)0.0237 (13)0.0041 (10)0.0019 (11)0.0063 (11)
C40.0195 (13)0.0213 (13)0.0360 (16)0.0019 (11)0.0048 (12)0.0053 (12)
C50.0188 (13)0.0197 (12)0.0319 (15)0.0014 (10)0.0017 (12)0.0015 (12)
C60.0157 (12)0.0164 (11)0.0228 (13)0.0020 (10)0.0019 (11)0.0025 (11)
C70.0127 (11)0.0148 (11)0.0227 (13)0.0040 (9)0.0015 (10)0.0000 (10)
C80.0176 (12)0.0160 (12)0.0226 (13)0.0023 (10)0.0046 (11)0.0057 (11)
C90.0186 (12)0.0241 (13)0.0149 (12)0.0015 (11)0.0046 (10)0.0028 (11)
C100.0204 (13)0.0192 (12)0.0155 (12)0.0023 (10)0.0032 (10)0.0022 (10)
C110.0214 (14)0.0264 (14)0.0136 (13)0.0009 (10)0.0021 (11)0.0006 (10)
C120.0289 (15)0.0392 (16)0.0190 (13)0.0011 (13)0.0071 (12)0.0093 (13)
C130.0234 (14)0.0208 (13)0.0303 (15)0.0049 (11)0.0039 (12)0.0052 (12)
Geometric parameters (Å, º) top
Cu—O21.9047 (18)C4—C51.370 (4)
Cu—N11.960 (2)C4—H40.9500
Cu—N22.001 (2)C5—C61.417 (4)
Cu—N32.023 (2)C5—H50.9500
Cu—N3i2.641 (2)C6—C71.410 (3)
O1—C21.380 (3)C6—C81.440 (3)
O1—C11.427 (3)C8—H80.9500
O2—C71.310 (3)C9—C101.532 (3)
N1—C81.293 (3)C9—H9A0.9900
N1—C91.469 (3)C9—H9B0.9900
N2—C111.480 (3)C10—C131.528 (3)
N2—H1N0.869 (10)C10—C111.529 (4)
N2—H2N0.877 (10)C10—C121.530 (3)
N3—N41.203 (3)C11—H11A0.9900
N4—N51.154 (3)C11—H11B0.9900
C1—H1A0.9800C12—H12A0.9800
C1—H1B0.9800C12—H12B0.9800
C1—H1C0.9800C12—H12C0.9800
C2—C31.371 (3)C13—H13A0.9800
C2—C71.424 (3)C13—H13B0.9800
C3—C41.397 (4)C13—H13C0.9800
C3—H30.9500
O2—Cu—N193.97 (8)C6—C5—H5119.7
O2—Cu—N2168.34 (9)C7—C6—C5120.4 (2)
N1—Cu—N294.85 (9)C7—C6—C8122.5 (2)
O2—Cu—N387.81 (8)C5—C6—C8117.1 (2)
N1—Cu—N3161.12 (9)O2—C7—C6124.0 (2)
N2—Cu—N386.30 (9)O2—C7—C2118.7 (2)
O2—Cu—N3i86.64 (7)C6—C7—C2117.3 (2)
N1—Cu—N3i109.71 (7)N1—C8—C6127.2 (2)
N2—Cu—N3i83.22 (8)N1—C8—H8116.4
N3—Cu—N3i89.15 (8)C6—C8—H8116.4
C2—O1—C1116.9 (2)N1—C9—C10114.7 (2)
C7—O2—Cu126.05 (16)N1—C9—H9A108.6
C8—N1—C9116.6 (2)C10—C9—H9A108.6
C8—N1—Cu122.94 (17)N1—C9—H9B108.6
C9—N1—Cu120.14 (16)C10—C9—H9B108.6
C11—N2—Cu124.71 (18)H9A—C9—H9B107.6
C11—N2—H1N110.5 (18)C13—C10—C11111.8 (2)
Cu—N2—H1N102.8 (18)C13—C10—C12110.6 (2)
C11—N2—H2N111 (2)C11—C10—C12106.9 (2)
Cu—N2—H2N99 (2)C13—C10—C9110.5 (2)
H1N—N2—H2N106 (3)C11—C10—C9110.2 (2)
N4—N3—Cu117.98 (17)C12—C10—C9106.6 (2)
N5—N4—N3177.8 (3)N2—C11—C10113.3 (2)
O1—C1—H1A109.5N2—C11—H11A108.9
O1—C1—H1B109.5C10—C11—H11A108.9
H1A—C1—H1B109.5N2—C11—H11B108.9
O1—C1—H1C109.5C10—C11—H11B108.9
H1A—C1—H1C109.5H11A—C11—H11B107.7
H1B—C1—H1C109.5C10—C12—H12A109.5
C3—C2—O1124.8 (2)C10—C12—H12B109.5
C3—C2—C7121.1 (2)H12A—C12—H12B109.5
O1—C2—C7114.1 (2)C10—C12—H12C109.5
C2—C3—C4121.1 (2)H12A—C12—H12C109.5
C2—C3—H3119.5H12B—C12—H12C109.5
C4—C3—H3119.5C10—C13—H13A109.5
C5—C4—C3119.5 (2)C10—C13—H13B109.5
C5—C4—H4120.2H13A—C13—H13B109.5
C3—C4—H4120.2C10—C13—H13C109.5
C4—C5—C6120.6 (3)H13A—C13—H13C109.5
C4—C5—H5119.7H13B—C13—H13C109.5
N1—Cu—O2—C719.51 (19)C4—C5—C6—C71.5 (4)
N2—Cu—O2—C7119.6 (4)C4—C5—C6—C8179.2 (2)
N3—Cu—O2—C7179.31 (19)Cu—O2—C7—C617.6 (3)
N3i—Cu—O2—C790.04 (19)Cu—O2—C7—C2164.15 (17)
O2—Cu—N1—C88.9 (2)C5—C6—C7—O2177.6 (2)
N2—Cu—N1—C8163.5 (2)C8—C6—C7—O20.1 (4)
N3—Cu—N1—C8103.8 (3)C5—C6—C7—C20.7 (3)
N3i—Cu—N1—C878.9 (2)C8—C6—C7—C2178.2 (2)
O2—Cu—N1—C9164.68 (17)C3—C2—C7—O2179.0 (2)
N2—Cu—N1—C922.95 (18)O1—C2—C7—O20.9 (3)
N3—Cu—N1—C969.8 (3)C3—C2—C7—C60.6 (3)
N3i—Cu—N1—C9107.47 (17)O1—C2—C7—C6177.5 (2)
O2—Cu—N2—C11156.8 (3)C9—N1—C8—C6177.6 (2)
N1—Cu—N2—C1117.8 (2)Cu—N1—C8—C63.8 (4)
N3—Cu—N2—C11143.3 (2)C7—C6—C8—N111.6 (4)
N3i—Cu—N2—C11127.1 (2)C5—C6—C8—N1170.8 (2)
O2—Cu—N3—N449.87 (19)C8—N1—C9—C10133.4 (2)
N1—Cu—N3—N446.0 (4)Cu—N1—C9—C1052.6 (3)
N2—Cu—N3—N4140.2 (2)N1—C9—C10—C1351.7 (3)
N3i—Cu—N3—N4136.5 (2)N1—C9—C10—C1172.3 (3)
C1—O1—C2—C32.2 (4)N1—C9—C10—C12172.0 (2)
C1—O1—C2—C7175.8 (2)Cu—N2—C11—C1039.6 (3)
O1—C2—C3—C4176.8 (2)C13—C10—C11—N260.1 (3)
C7—C2—C3—C41.1 (4)C12—C10—C11—N2178.8 (2)
C2—C3—C4—C50.3 (4)C9—C10—C11—N263.3 (3)
C3—C4—C5—C61.0 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.87 (1)2.35 (2)2.956 (3)127 (2)
N2—H2N···N30.88 (1)2.36 (3)2.752 (3)107 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C13H19N2O2)2(N3)2]
Mr681.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.1733 (5), 12.2369 (5), 13.0988 (6)
β (°) 98.203 (5)
V3)1455.33 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.674, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5747, 3314, 2628
Rint0.034
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.06
No. of reflections3314
No. of parameters198
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.52

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu—O21.9047 (18)Cu—N32.023 (2)
Cu—N11.960 (2)Cu—N3i2.641 (2)
Cu—N22.001 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O2i0.869 (10)2.35 (2)2.956 (3)127 (2)
N2—H2N···N30.877 (10)2.36 (3)2.752 (3)107 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Acknowledgements

The authors gratefully acknowledge practical support of this study by the Islamic Azad University, Saveh Branch, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAdhikary, C. & Koner, S. (2010). Coord. Chem. Rev. 254, 2933–2958.  Web of Science CrossRef CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhaemi, A., Rayati, S., Fayyazi, K., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m1027–m1028.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds