metal-organic compounds
Di-μ-azido-κ4N:N-bis({2-[(3-amino-2,2-dimethylpropyl)iminomethyl]-6-methoxyphenolato-1κ3N,N′,O1}copper(II))
aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, K. N. Toosi University of Technology, PO Box 16315-1618, Tehran, Iran, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
The complete molecule of the title complex, [Cu2(C13H19N2O2)2(N3)2], is generated by the application of a centre of inversion. The central Cu2N2 core is a rhombus as the μ2-azide ligands bridge in an asymmetric fashion. Each CuII atom is also coordinated by a monoanionic tridentate Schiff base ligand via the anticipated oxide O, imine N and amine N atoms. The resulting N4O coordination geometry is based on a square pyramid. No specific intermolecular interactions are noted in the crystal packing, but the amine H atoms form intramolecular N—H⋯O(oxide)/N(azide) hydrogen bonds.
Related literature
For background to azido derivatives of tridentate Schiff base copper(II) structures, see: Adhikary & Koner (2010). For a related structure, see: Ghaemi et al. (2012). For additional structural analysis, see: Addison et al. (1984).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812028954/sj5249sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812028954/sj5249Isup2.hkl
A mixture of 2,2-dimethylpropylenediamine (0.234 g, 2.3 mmol) was added to a clear solution of Cu(NO3)2.3H2O (0.50 g, 2.07 mmol) dissolved in methanol (25 ml), which immediately produced an intense-blue solution. The solution was then heated to boiling and a methanolic solution of 2-hydroxy-3-methoxybenzaldehyde (0.273 g, 1.8 mmol) was added drop-wise over 2 h under refluxing conditions. Reflux was continued for another 45 min. Then an excess sodium azide (0.5 g, 7.7 mmol) dissolved in water (2 ml) was added. The precipitate was filtered and dissolved in methanol. Brown crystals were formed within a few days from the methanolic solution. Anal. Calc. for C26H38Cu2N10O4: C, 45.81; H, 5.62; N, 20.55. Found: C, 45.77; H, 5.57; N, 20.66%. IR (KBr) [ν, cm-1]: νas(N3) 2035 versus, ν(C═N) 1621 s, ν(C═C) 1540 s, ν(C—O) 1224 m. M.pt: 476–478. Yield: 60%.
Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the
in the riding model approximation. The amino H-atoms were located from a difference map and refined with N—H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N).Azido-bridged copper(II) complexes continue to attract attention in relation to investigations of small molecule activation of copper-containing proteins and for new magnetic materials (Adhikary & Koner, 2010). Recently, the
of a related NiII complex was described in which the Schiff base ligand was shown to coordinate in two distinct modes, i.e. a tridentate mode towards one NiII atom and in a pentadentate mode, bridging two NiII atoms (Ghaemi et al., 2012).In the centrosymmetric binuclear complex (I), Fig. 1, the CuII atoms are bridged by one end of each of two µ2-azido ligands to generate an Ni2N2 core with the shape of a rhombus as the bridge is asymmetric, Table 1. The coordination geometry for the CuII atom is completed by the oxido-O, imine-O and amino-N donor atoms derived from a tridentate uninegative Schiff base ligand. The N4O donor set defines a coordination geometry close to square pyramidal. This is quantified by the value of τ = 0.12 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The configuration is stabilized by an intramolecular N—H···O(oxido) and N—H···N(azido) hydrogen bonds, Table 2. Globally, molecules stack in columns aligned along the a axis, Fig. 2, without specific intermolecular interactions between them.
For background to azido derivatives of tridentate Schiff base copper(II) structures, see: Adhikary & Koner (2010). For a related structure, see: Ghaemi et al. (2012). For additional structural analysis, see: Addison et al. (1984).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu2(C13H19N2O2)2(N3)2] | F(000) = 708 |
Mr = 681.76 | Dx = 1.556 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2122 reflections |
a = 9.1733 (5) Å | θ = 2.5–27.5° |
b = 12.2369 (5) Å | µ = 1.51 mm−1 |
c = 13.0988 (6) Å | T = 100 K |
β = 98.203 (5)° | Prism, brown |
V = 1455.33 (12) Å3 | 0.20 × 0.15 × 0.10 mm |
Z = 2 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 3314 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2628 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 27.6°, θmin = 2.8° |
ω scan | h = −8→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −15→10 |
Tmin = 0.674, Tmax = 1.000 | l = −14→17 |
5747 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0429P)2 + 0.1866P] where P = (Fo2 + 2Fc2)/3 |
3314 reflections | (Δ/σ)max = 0.001 |
198 parameters | Δρmax = 0.54 e Å−3 |
2 restraints | Δρmin = −0.52 e Å−3 |
[Cu2(C13H19N2O2)2(N3)2] | V = 1455.33 (12) Å3 |
Mr = 681.76 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.1733 (5) Å | µ = 1.51 mm−1 |
b = 12.2369 (5) Å | T = 100 K |
c = 13.0988 (6) Å | 0.20 × 0.15 × 0.10 mm |
β = 98.203 (5)° |
Agilent SuperNova Dual diffractometer with an Atlas detector | 3314 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 2628 reflections with I > 2σ(I) |
Tmin = 0.674, Tmax = 1.000 | Rint = 0.034 |
5747 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 2 restraints |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.54 e Å−3 |
3314 reflections | Δρmin = −0.52 e Å−3 |
198 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.35165 (3) | 0.49481 (2) | 0.56108 (2) | 0.01599 (12) | |
O1 | 0.1585 (2) | 0.52540 (15) | 0.22861 (14) | 0.0225 (4) | |
O2 | 0.2389 (2) | 0.50500 (12) | 0.42756 (14) | 0.0172 (4) | |
N1 | 0.2087 (2) | 0.57697 (16) | 0.62846 (16) | 0.0171 (4) | |
N2 | 0.5049 (3) | 0.48980 (18) | 0.68604 (18) | 0.0185 (5) | |
H1N | 0.572 (2) | 0.5342 (18) | 0.670 (2) | 0.016 (7)* | |
H2N | 0.539 (4) | 0.4236 (13) | 0.679 (3) | 0.056 (11)* | |
N3 | 0.4612 (2) | 0.36868 (17) | 0.50727 (15) | 0.0191 (5) | |
N4 | 0.3900 (2) | 0.29635 (18) | 0.46239 (16) | 0.0202 (5) | |
N5 | 0.3257 (3) | 0.2250 (2) | 0.4194 (2) | 0.0331 (6) | |
C1 | 0.1093 (3) | 0.5311 (3) | 0.1204 (2) | 0.0287 (6) | |
H1A | 0.1670 | 0.4805 | 0.0842 | 0.043* | |
H1B | 0.1222 | 0.6058 | 0.0960 | 0.043* | |
H1C | 0.0049 | 0.5111 | 0.1066 | 0.043* | |
C2 | 0.0871 (3) | 0.5912 (2) | 0.29121 (19) | 0.0184 (5) | |
C3 | −0.0234 (3) | 0.6633 (2) | 0.2566 (2) | 0.0217 (6) | |
H3 | −0.0517 | 0.6728 | 0.1845 | 0.026* | |
C4 | −0.0950 (3) | 0.7229 (2) | 0.3256 (2) | 0.0264 (6) | |
H4 | −0.1717 | 0.7723 | 0.3006 | 0.032* | |
C5 | −0.0539 (3) | 0.7096 (2) | 0.4296 (2) | 0.0237 (6) | |
H5 | −0.1035 | 0.7492 | 0.4767 | 0.028* | |
C6 | 0.0620 (3) | 0.6374 (2) | 0.4675 (2) | 0.0184 (5) | |
C7 | 0.1344 (3) | 0.5761 (2) | 0.39860 (19) | 0.0168 (5) | |
C8 | 0.0970 (3) | 0.6270 (2) | 0.5777 (2) | 0.0186 (5) | |
H8 | 0.0307 | 0.6606 | 0.6176 | 0.022* | |
C9 | 0.2165 (3) | 0.5744 (2) | 0.74125 (19) | 0.0190 (5) | |
H9A | 0.1890 | 0.5003 | 0.7621 | 0.023* | |
H9B | 0.1427 | 0.6261 | 0.7615 | 0.023* | |
C10 | 0.3675 (3) | 0.6033 (2) | 0.80083 (19) | 0.0183 (5) | |
C11 | 0.4764 (3) | 0.5101 (2) | 0.7928 (2) | 0.0205 (6) | |
H11A | 0.5707 | 0.5277 | 0.8364 | 0.025* | |
H11B | 0.4372 | 0.4425 | 0.8202 | 0.025* | |
C12 | 0.3474 (3) | 0.6122 (2) | 0.9145 (2) | 0.0287 (6) | |
H12A | 0.3124 | 0.5421 | 0.9380 | 0.043* | |
H12B | 0.2750 | 0.6693 | 0.9226 | 0.043* | |
H12C | 0.4418 | 0.6308 | 0.9558 | 0.043* | |
C13 | 0.4229 (3) | 0.7114 (2) | 0.7623 (2) | 0.0248 (6) | |
H13A | 0.5206 | 0.7277 | 0.8000 | 0.037* | |
H13B | 0.3544 | 0.7701 | 0.7737 | 0.037* | |
H13C | 0.4294 | 0.7056 | 0.6884 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.01581 (19) | 0.01867 (19) | 0.01328 (18) | 0.00302 (11) | 0.00137 (14) | −0.00186 (11) |
O1 | 0.0205 (9) | 0.0314 (10) | 0.0153 (9) | 0.0031 (8) | 0.0016 (8) | 0.0004 (8) |
O2 | 0.0148 (9) | 0.0211 (9) | 0.0148 (9) | 0.0036 (7) | −0.0008 (7) | −0.0003 (7) |
N1 | 0.0155 (10) | 0.0178 (10) | 0.0185 (10) | −0.0036 (8) | 0.0042 (9) | −0.0038 (9) |
N2 | 0.0188 (12) | 0.0232 (12) | 0.0135 (11) | 0.0058 (9) | 0.0018 (9) | −0.0015 (9) |
N3 | 0.0215 (11) | 0.0181 (10) | 0.0179 (11) | 0.0026 (9) | 0.0035 (9) | −0.0026 (9) |
N4 | 0.0222 (11) | 0.0223 (11) | 0.0165 (10) | 0.0073 (9) | 0.0041 (9) | −0.0012 (10) |
N5 | 0.0269 (13) | 0.0330 (13) | 0.0390 (15) | −0.0034 (11) | 0.0035 (12) | −0.0176 (12) |
C1 | 0.0240 (14) | 0.0469 (17) | 0.0138 (13) | −0.0002 (13) | −0.0018 (11) | 0.0008 (13) |
C2 | 0.0137 (12) | 0.0193 (12) | 0.0220 (13) | −0.0041 (10) | 0.0023 (10) | 0.0013 (11) |
C3 | 0.0202 (13) | 0.0198 (12) | 0.0237 (13) | −0.0041 (10) | −0.0019 (11) | 0.0063 (11) |
C4 | 0.0195 (13) | 0.0213 (13) | 0.0360 (16) | 0.0019 (11) | −0.0048 (12) | 0.0053 (12) |
C5 | 0.0188 (13) | 0.0197 (12) | 0.0319 (15) | 0.0014 (10) | 0.0017 (12) | −0.0015 (12) |
C6 | 0.0157 (12) | 0.0164 (11) | 0.0228 (13) | −0.0020 (10) | 0.0019 (11) | −0.0025 (11) |
C7 | 0.0127 (11) | 0.0148 (11) | 0.0227 (13) | −0.0040 (9) | 0.0015 (10) | 0.0000 (10) |
C8 | 0.0176 (12) | 0.0160 (12) | 0.0226 (13) | −0.0023 (10) | 0.0046 (11) | −0.0057 (11) |
C9 | 0.0186 (12) | 0.0241 (13) | 0.0149 (12) | −0.0015 (11) | 0.0046 (10) | −0.0028 (11) |
C10 | 0.0204 (13) | 0.0192 (12) | 0.0155 (12) | −0.0023 (10) | 0.0032 (10) | −0.0022 (10) |
C11 | 0.0214 (14) | 0.0264 (14) | 0.0136 (13) | 0.0009 (10) | 0.0021 (11) | 0.0006 (10) |
C12 | 0.0289 (15) | 0.0392 (16) | 0.0190 (13) | −0.0011 (13) | 0.0071 (12) | −0.0093 (13) |
C13 | 0.0234 (14) | 0.0208 (13) | 0.0303 (15) | −0.0049 (11) | 0.0039 (12) | −0.0052 (12) |
Cu—O2 | 1.9047 (18) | C4—C5 | 1.370 (4) |
Cu—N1 | 1.960 (2) | C4—H4 | 0.9500 |
Cu—N2 | 2.001 (2) | C5—C6 | 1.417 (4) |
Cu—N3 | 2.023 (2) | C5—H5 | 0.9500 |
Cu—N3i | 2.641 (2) | C6—C7 | 1.410 (3) |
O1—C2 | 1.380 (3) | C6—C8 | 1.440 (3) |
O1—C1 | 1.427 (3) | C8—H8 | 0.9500 |
O2—C7 | 1.310 (3) | C9—C10 | 1.532 (3) |
N1—C8 | 1.293 (3) | C9—H9A | 0.9900 |
N1—C9 | 1.469 (3) | C9—H9B | 0.9900 |
N2—C11 | 1.480 (3) | C10—C13 | 1.528 (3) |
N2—H1N | 0.869 (10) | C10—C11 | 1.529 (4) |
N2—H2N | 0.877 (10) | C10—C12 | 1.530 (3) |
N3—N4 | 1.203 (3) | C11—H11A | 0.9900 |
N4—N5 | 1.154 (3) | C11—H11B | 0.9900 |
C1—H1A | 0.9800 | C12—H12A | 0.9800 |
C1—H1B | 0.9800 | C12—H12B | 0.9800 |
C1—H1C | 0.9800 | C12—H12C | 0.9800 |
C2—C3 | 1.371 (3) | C13—H13A | 0.9800 |
C2—C7 | 1.424 (3) | C13—H13B | 0.9800 |
C3—C4 | 1.397 (4) | C13—H13C | 0.9800 |
C3—H3 | 0.9500 | ||
O2—Cu—N1 | 93.97 (8) | C6—C5—H5 | 119.7 |
O2—Cu—N2 | 168.34 (9) | C7—C6—C5 | 120.4 (2) |
N1—Cu—N2 | 94.85 (9) | C7—C6—C8 | 122.5 (2) |
O2—Cu—N3 | 87.81 (8) | C5—C6—C8 | 117.1 (2) |
N1—Cu—N3 | 161.12 (9) | O2—C7—C6 | 124.0 (2) |
N2—Cu—N3 | 86.30 (9) | O2—C7—C2 | 118.7 (2) |
O2—Cu—N3i | 86.64 (7) | C6—C7—C2 | 117.3 (2) |
N1—Cu—N3i | 109.71 (7) | N1—C8—C6 | 127.2 (2) |
N2—Cu—N3i | 83.22 (8) | N1—C8—H8 | 116.4 |
N3—Cu—N3i | 89.15 (8) | C6—C8—H8 | 116.4 |
C2—O1—C1 | 116.9 (2) | N1—C9—C10 | 114.7 (2) |
C7—O2—Cu | 126.05 (16) | N1—C9—H9A | 108.6 |
C8—N1—C9 | 116.6 (2) | C10—C9—H9A | 108.6 |
C8—N1—Cu | 122.94 (17) | N1—C9—H9B | 108.6 |
C9—N1—Cu | 120.14 (16) | C10—C9—H9B | 108.6 |
C11—N2—Cu | 124.71 (18) | H9A—C9—H9B | 107.6 |
C11—N2—H1N | 110.5 (18) | C13—C10—C11 | 111.8 (2) |
Cu—N2—H1N | 102.8 (18) | C13—C10—C12 | 110.6 (2) |
C11—N2—H2N | 111 (2) | C11—C10—C12 | 106.9 (2) |
Cu—N2—H2N | 99 (2) | C13—C10—C9 | 110.5 (2) |
H1N—N2—H2N | 106 (3) | C11—C10—C9 | 110.2 (2) |
N4—N3—Cu | 117.98 (17) | C12—C10—C9 | 106.6 (2) |
N5—N4—N3 | 177.8 (3) | N2—C11—C10 | 113.3 (2) |
O1—C1—H1A | 109.5 | N2—C11—H11A | 108.9 |
O1—C1—H1B | 109.5 | C10—C11—H11A | 108.9 |
H1A—C1—H1B | 109.5 | N2—C11—H11B | 108.9 |
O1—C1—H1C | 109.5 | C10—C11—H11B | 108.9 |
H1A—C1—H1C | 109.5 | H11A—C11—H11B | 107.7 |
H1B—C1—H1C | 109.5 | C10—C12—H12A | 109.5 |
C3—C2—O1 | 124.8 (2) | C10—C12—H12B | 109.5 |
C3—C2—C7 | 121.1 (2) | H12A—C12—H12B | 109.5 |
O1—C2—C7 | 114.1 (2) | C10—C12—H12C | 109.5 |
C2—C3—C4 | 121.1 (2) | H12A—C12—H12C | 109.5 |
C2—C3—H3 | 119.5 | H12B—C12—H12C | 109.5 |
C4—C3—H3 | 119.5 | C10—C13—H13A | 109.5 |
C5—C4—C3 | 119.5 (2) | C10—C13—H13B | 109.5 |
C5—C4—H4 | 120.2 | H13A—C13—H13B | 109.5 |
C3—C4—H4 | 120.2 | C10—C13—H13C | 109.5 |
C4—C5—C6 | 120.6 (3) | H13A—C13—H13C | 109.5 |
C4—C5—H5 | 119.7 | H13B—C13—H13C | 109.5 |
N1—Cu—O2—C7 | 19.51 (19) | C4—C5—C6—C7 | −1.5 (4) |
N2—Cu—O2—C7 | −119.6 (4) | C4—C5—C6—C8 | −179.2 (2) |
N3—Cu—O2—C7 | −179.31 (19) | Cu—O2—C7—C6 | −17.6 (3) |
N3i—Cu—O2—C7 | −90.04 (19) | Cu—O2—C7—C2 | 164.15 (17) |
O2—Cu—N1—C8 | −8.9 (2) | C5—C6—C7—O2 | −177.6 (2) |
N2—Cu—N1—C8 | 163.5 (2) | C8—C6—C7—O2 | −0.1 (4) |
N3—Cu—N1—C8 | −103.8 (3) | C5—C6—C7—C2 | 0.7 (3) |
N3i—Cu—N1—C8 | 78.9 (2) | C8—C6—C7—C2 | 178.2 (2) |
O2—Cu—N1—C9 | 164.68 (17) | C3—C2—C7—O2 | 179.0 (2) |
N2—Cu—N1—C9 | −22.95 (18) | O1—C2—C7—O2 | 0.9 (3) |
N3—Cu—N1—C9 | 69.8 (3) | C3—C2—C7—C6 | 0.6 (3) |
N3i—Cu—N1—C9 | −107.47 (17) | O1—C2—C7—C6 | −177.5 (2) |
O2—Cu—N2—C11 | 156.8 (3) | C9—N1—C8—C6 | −177.6 (2) |
N1—Cu—N2—C11 | 17.8 (2) | Cu—N1—C8—C6 | −3.8 (4) |
N3—Cu—N2—C11 | −143.3 (2) | C7—C6—C8—N1 | 11.6 (4) |
N3i—Cu—N2—C11 | 127.1 (2) | C5—C6—C8—N1 | −170.8 (2) |
O2—Cu—N3—N4 | −49.87 (19) | C8—N1—C9—C10 | −133.4 (2) |
N1—Cu—N3—N4 | 46.0 (4) | Cu—N1—C9—C10 | 52.6 (3) |
N2—Cu—N3—N4 | 140.2 (2) | N1—C9—C10—C13 | 51.7 (3) |
N3i—Cu—N3—N4 | −136.5 (2) | N1—C9—C10—C11 | −72.3 (3) |
C1—O1—C2—C3 | −2.2 (4) | N1—C9—C10—C12 | 172.0 (2) |
C1—O1—C2—C7 | 175.8 (2) | Cu—N2—C11—C10 | −39.6 (3) |
O1—C2—C3—C4 | 176.8 (2) | C13—C10—C11—N2 | −60.1 (3) |
C7—C2—C3—C4 | −1.1 (4) | C12—C10—C11—N2 | 178.8 (2) |
C2—C3—C4—C5 | 0.3 (4) | C9—C10—C11—N2 | 63.3 (3) |
C3—C4—C5—C6 | 1.0 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···O2i | 0.87 (1) | 2.35 (2) | 2.956 (3) | 127 (2) |
N2—H2N···N3 | 0.88 (1) | 2.36 (3) | 2.752 (3) | 107 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C13H19N2O2)2(N3)2] |
Mr | 681.76 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 9.1733 (5), 12.2369 (5), 13.0988 (6) |
β (°) | 98.203 (5) |
V (Å3) | 1455.33 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.51 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.674, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5747, 3314, 2628 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.105, 1.06 |
No. of reflections | 3314 |
No. of parameters | 198 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.54, −0.52 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cu—O2 | 1.9047 (18) | Cu—N3 | 2.023 (2) |
Cu—N1 | 1.960 (2) | Cu—N3i | 2.641 (2) |
Cu—N2 | 2.001 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···O2i | 0.869 (10) | 2.35 (2) | 2.956 (3) | 127 (2) |
N2—H2N···N3 | 0.877 (10) | 2.36 (3) | 2.752 (3) | 107 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Footnotes
‡Additional correspondence author, e-mail: akbarghaemi@yahoo.com.
Acknowledgements
The authors gratefully acknowledge practical support of this study by the Islamic Azad University, Saveh Branch, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Adhikary, C. & Koner, S. (2010). Coord. Chem. Rev. 254, 2933–2958. Web of Science CrossRef CAS Google Scholar
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ghaemi, A., Rayati, S., Fayyazi, K., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m1027–m1028. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Azido-bridged copper(II) complexes continue to attract attention in relation to investigations of small molecule activation of copper-containing proteins and for new magnetic materials (Adhikary & Koner, 2010). Recently, the crystal structure of a related NiII complex was described in which the Schiff base ligand was shown to coordinate in two distinct modes, i.e. a tridentate mode towards one NiII atom and in a pentadentate mode, bridging two NiII atoms (Ghaemi et al., 2012).
In the centrosymmetric binuclear complex (I), Fig. 1, the CuII atoms are bridged by one end of each of two µ2-azido ligands to generate an Ni2N2 core with the shape of a rhombus as the bridge is asymmetric, Table 1. The coordination geometry for the CuII atom is completed by the oxido-O, imine-O and amino-N donor atoms derived from a tridentate uninegative Schiff base ligand. The N4O donor set defines a coordination geometry close to square pyramidal. This is quantified by the value of τ = 0.12 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). The configuration is stabilized by an intramolecular N—H···O(oxido) and N—H···N(azido) hydrogen bonds, Table 2. Globally, molecules stack in columns aligned along the a axis, Fig. 2, without specific intermolecular interactions between them.