organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)acetohydrazide

aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, bDepartment of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan, and cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 14 May 2012; accepted 14 June 2012; online 30 June 2012)

In the title compound, C8H9BrN2O, the 1-bromo-4-methyl­benzene group and the formic hydrazide moiety [r.m.s. deviations of 0.0129 and 0.0038 Å] are oriented at a dihedral angle of 80.66 (11)°. In the crystal, mol­ecules are linked via strong N—H⋯O hydrogen bonds, leading to the formation of chains in the [010] direction. These chains are linked via weaker N—H⋯N and N—H⋯O hydrogen bonds, with R22(7) and R32(7) ring motifs, forming a two-dimensional network parallel to (001).

Related literature

For background literature and the crystal structure of 2-chloro­benzohydrazide, see: Ahmad et al. (2012[Ahmad, S., Jabbar, A., Hussain, M. T. & Tahir, M. N. (2012). Acta Cryst. E68, o1254.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9BrN2O

  • Mr = 229.07

  • Monoclinic, P 21

  • a = 6.0798 (2) Å

  • b = 4.8565 (1) Å

  • c = 15.1126 (5) Å

  • β = 98.003 (2)°

  • V = 441.88 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 296 K

  • 0.36 × 0.23 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.298, Tmax = 0.366

  • 4331 measured reflections

  • 1814 independent reflections

  • 1677 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.059

  • S = 1.06

  • 1814 reflections

  • 115 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 583 Friedel pairs

  • Flack parameter: 0.007 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.02 2.863 (3) 165
N2—H2A⋯N2ii 0.84 (4) 2.37 (4) 3.192 (4) 167 (3)
N2—H2B⋯O1iii 0.73 (3) 2.59 (4) 3.230 (3) 147 (4)
Symmetry codes: (i) x, y+1, z; (ii) [-x-1, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Recently, we have reported the crystal structure of 2-chlorobenzohydrazide (Ahmad et al., 2012). In continuation of this work we have synthesized the title compound, a hydrazide derivative, and report herein on its crystal structure.

In the title molecule, Fig. 1, the 1-bromo-4-methylbenzene group A (C1–C7/Br1) and the formic hydrazide moiety B (O1/C8/N1/N2) are planar with r. m. s. deviations of 0.0129 Å and 0.0038 Å, respectively. The dihedral angle between these mean planes, A/B, is 80.66 (11)°.

In the crystal, molecules are linked via N—H···O hydrogen bonds to form one-dimensional polymeric chains along [010]. These chains are linked via N-H···N and N-H..O hydrogen bonds to form a two-dimensional polymeric network in (001). The hydrogen bonds give rise to R22(7) and R32(7) ring motifs (Bernstein et al., 1995; Table 1 and Fig. 2).

Related literature top

For background literature and the crystal structure of 2-chlorobenzohydrazide, see: Ahmad et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

2-(4-Bromophenyl)acetic acid (4.42 g, 0.022 mol) was converted to methyl 2-(4-bromophenyl)acetate by refluxing in methanol (25 ml) in the presence of catalytic amount of sulfuric acid. This ester was then converted into the title compound by refluxing with hydrazine hydrate (80%, 10 ml) in dry methanol. The title compound was purified by recrystallization from dry methanol, giving colourless rod-like crystals [M.p. 438–439 K].

Refinement top

The coordinates of the H-atoms of the NH2 group were refined with Uiso(H) = 1.2Ueq(N). The remainder of the H-atoms were included in calculated positions and treated as riding atoms: N–H = 0.86 Å, C–H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(N,C).

Structure description top

Recently, we have reported the crystal structure of 2-chlorobenzohydrazide (Ahmad et al., 2012). In continuation of this work we have synthesized the title compound, a hydrazide derivative, and report herein on its crystal structure.

In the title molecule, Fig. 1, the 1-bromo-4-methylbenzene group A (C1–C7/Br1) and the formic hydrazide moiety B (O1/C8/N1/N2) are planar with r. m. s. deviations of 0.0129 Å and 0.0038 Å, respectively. The dihedral angle between these mean planes, A/B, is 80.66 (11)°.

In the crystal, molecules are linked via N—H···O hydrogen bonds to form one-dimensional polymeric chains along [010]. These chains are linked via N-H···N and N-H..O hydrogen bonds to form a two-dimensional polymeric network in (001). The hydrogen bonds give rise to R22(7) and R32(7) ring motifs (Bernstein et al., 1995; Table 1 and Fig. 2).

For background literature and the crystal structure of 2-chlorobenzohydrazide, see: Ahmad et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The two-dimensional hydrogen bonded network extends in the plane (001). Hydrogen bonds are shown as dashed lines - see Table 1 for details.
2-(4-Bromophenyl)acetohydrazide top
Crystal data top
C8H9BrN2OF(000) = 228
Mr = 229.07Dx = 1.722 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1677 reflections
a = 6.0798 (2) Åθ = 2.7–28.3°
b = 4.8565 (1) ŵ = 4.60 mm1
c = 15.1126 (5) ÅT = 296 K
β = 98.003 (2)°Rod, colourless
V = 441.88 (2) Å30.36 × 0.23 × 0.22 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1814 independent reflections
Radiation source: fine-focus sealed tube1677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 2.7°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 64
Tmin = 0.298, Tmax = 0.366l = 2020
4331 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.024P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1814 reflectionsΔρmax = 0.44 e Å3
115 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 583 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (11)
Crystal data top
C8H9BrN2OV = 441.88 (2) Å3
Mr = 229.07Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0798 (2) ŵ = 4.60 mm1
b = 4.8565 (1) ÅT = 296 K
c = 15.1126 (5) Å0.36 × 0.23 × 0.22 mm
β = 98.003 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1677 reflections with I > 2σ(I)
Tmin = 0.298, Tmax = 0.366Rint = 0.023
4331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059Δρmax = 0.44 e Å3
S = 1.06Δρmin = 0.47 e Å3
1814 reflectionsAbsolute structure: Flack (1983), 583 Friedel pairs
115 parametersAbsolute structure parameter: 0.007 (11)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42290 (4)0.23371 (7)0.07962 (1)0.0435 (1)
O10.1520 (3)0.7065 (5)0.38909 (13)0.0457 (6)
N10.2370 (4)1.1385 (4)0.42196 (15)0.0364 (7)
N20.3296 (5)1.0741 (6)0.49999 (17)0.0420 (8)
C10.2739 (4)0.4860 (5)0.14603 (16)0.0315 (8)
C20.0587 (5)0.5632 (6)0.11262 (19)0.0395 (9)
C30.0499 (4)0.7519 (8)0.16041 (16)0.0407 (8)
C40.0518 (5)0.8638 (5)0.23979 (17)0.0362 (8)
C50.2669 (5)0.7798 (7)0.27159 (17)0.0416 (12)
C60.3788 (5)0.5900 (6)0.22578 (17)0.0381 (8)
C70.0693 (6)1.0694 (6)0.2896 (2)0.0494 (10)
C80.1528 (4)0.9529 (5)0.37211 (16)0.0289 (7)
H10.235231.308260.405870.0437*
H20.011560.490070.059180.0474*
H2A0.416 (5)0.940 (8)0.491 (2)0.0503*
H2B0.230 (6)1.040 (8)0.531 (2)0.0503*
H30.194420.804100.138480.0488*
H50.337520.852710.324990.0500*
H60.521910.534070.248420.0457*
H7A0.194871.140630.249520.0591*
H7B0.029411.222500.307490.0591*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0503 (2)0.0403 (2)0.0433 (1)0.0101 (2)0.0184 (1)0.0001 (2)
O10.0663 (11)0.0214 (11)0.0547 (10)0.0035 (12)0.0269 (9)0.0049 (11)
N10.0533 (14)0.0226 (11)0.0367 (11)0.0007 (9)0.0184 (10)0.0019 (8)
N20.0511 (16)0.0378 (14)0.0407 (14)0.0000 (12)0.0193 (12)0.0020 (11)
C10.0367 (13)0.0284 (14)0.0315 (12)0.0012 (10)0.0123 (10)0.0007 (10)
C20.0393 (14)0.0426 (17)0.0356 (13)0.0034 (12)0.0021 (12)0.0016 (12)
C30.0373 (11)0.0407 (16)0.0442 (12)0.0084 (16)0.0063 (10)0.0062 (17)
C40.0523 (16)0.0247 (13)0.0352 (13)0.0029 (11)0.0185 (12)0.0034 (10)
C50.0488 (14)0.044 (3)0.0321 (11)0.0038 (14)0.0061 (11)0.0051 (12)
C60.0344 (14)0.0440 (16)0.0355 (13)0.0028 (12)0.0040 (12)0.0009 (12)
C70.077 (2)0.0298 (16)0.0479 (17)0.0083 (15)0.0319 (16)0.0057 (13)
C80.0312 (12)0.0221 (13)0.0338 (12)0.0001 (10)0.0064 (10)0.0008 (9)
Geometric parameters (Å, º) top
Br1—C11.893 (2)C4—C51.390 (4)
O1—C81.224 (3)C4—C71.503 (4)
N1—N21.411 (4)C5—C61.387 (4)
N1—C81.323 (3)C7—C81.520 (4)
N1—H10.8600C2—H20.9300
N2—H2B0.73 (3)C3—H30.9300
N2—H2A0.84 (4)C5—H50.9300
C1—C21.387 (4)C6—H60.9300
C1—C61.379 (4)C7—H7A0.9700
C2—C31.389 (4)C7—H7B0.9700
C3—C41.382 (4)
N2—N1—C8123.8 (2)O1—C8—C7123.0 (2)
C8—N1—H1118.00N1—C8—C7114.4 (2)
N2—N1—H1118.00O1—C8—N1122.5 (2)
N1—N2—H2B101 (3)C1—C2—H2121.00
H2A—N2—H2B112 (4)C3—C2—H2121.00
N1—N2—H2A111 (2)C2—C3—H3119.00
Br1—C1—C2118.61 (19)C4—C3—H3119.00
Br1—C1—C6120.2 (2)C4—C5—H5119.00
C2—C1—C6121.2 (2)C6—C5—H5119.00
C1—C2—C3118.8 (2)C1—C6—H6121.00
C2—C3—C4121.5 (3)C5—C6—H6121.00
C3—C4—C7120.3 (3)C4—C7—H7A109.00
C3—C4—C5118.1 (3)C4—C7—H7B109.00
C5—C4—C7121.6 (3)C8—C7—H7A109.00
C4—C5—C6121.7 (3)C8—C7—H7B109.00
C1—C6—C5118.7 (3)H7A—C7—H7B108.00
C4—C7—C8114.0 (2)
N2—N1—C8—O11.3 (4)C2—C3—C4—C7179.5 (3)
N2—N1—C8—C7178.1 (3)C3—C4—C5—C60.1 (4)
Br1—C1—C2—C3178.9 (2)C7—C4—C5—C6179.9 (3)
C6—C1—C2—C31.0 (4)C3—C4—C7—C8104.7 (3)
Br1—C1—C6—C5178.4 (2)C5—C4—C7—C875.1 (4)
C2—C1—C6—C51.5 (4)C4—C5—C6—C11.0 (4)
C1—C2—C3—C40.2 (5)C4—C7—C8—O110.6 (4)
C2—C3—C4—C50.7 (4)C4—C7—C8—N1172.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.863 (3)165
N2—H2A···N2ii0.84 (4)2.37 (4)3.192 (4)167 (3)
N2—H2B···O1iii0.73 (3)2.59 (4)3.230 (3)147 (4)
Symmetry codes: (i) x, y+1, z; (ii) x1, y1/2, z+1; (iii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H9BrN2O
Mr229.07
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.0798 (2), 4.8565 (1), 15.1126 (5)
β (°) 98.003 (2)
V3)441.88 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.36 × 0.23 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.298, 0.366
No. of measured, independent and
observed [I > 2σ(I)] reflections
4331, 1814, 1677
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.06
No. of reflections1814
No. of parameters115
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.47
Absolute structureFlack (1983), 583 Friedel pairs
Absolute structure parameter0.007 (11)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.863 (3)165
N2—H2A···N2ii0.84 (4)2.37 (4)3.192 (4)167 (3)
N2—H2B···O1iii0.73 (3)2.59 (4)3.230 (3)147 (4)
Symmetry codes: (i) x, y+1, z; (ii) x1, y1/2, z+1; (iii) x, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationAhmad, S., Jabbar, A., Hussain, M. T. & Tahir, M. N. (2012). Acta Cryst. E68, o1254.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds