organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butane-1,4-diyl bis­­(pyridine-3-carboxyl­ate)

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 16 May 2012; accepted 17 May 2012; online 13 June 2012)

Mol­ecules of the title compound (alternative name: butane-1,4-diyl dinicotinate), C16H16N2O4, lie on a inversion centre, located at the mid-point of the central C—C bond of the aliphatic chain, giving one half-mol­ecule per asymmetric unit. The butane chain adopts an all-trans conformation. The dihedral angle between the mean plane of the butane-3-carboxyl­ate group [for the non-H atoms, maximum deviation = 0.0871 (15) Å] and the pyridine ring is 10.83 (7)°. In the crystal, mol­ecules lie in planes parallel to (122). The structure features weak ππ inter­actions with a centroid–centroid distance of 3.9281 (11) Å.

Related literature

For the crystal structures of compounds with related ligands, see: Brito et al. (2010a[Brito, I., Vallejos, J., López-Rodríguez, M. & Cárdenas, A. (2010a). Acta Cryst. E66, o114.],b[Brito, I., Vallejos, J., Bolte, M., López-Rodríguez, M. & Cárdenas, A. (2010b). Acta Cryst. E66, o1015.],c[Brito, I., Vallejos, J., Bolte, M. & López-Rodríguez, M. (2010c). Acta Cryst. E66, o792.], 2011[Brito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M. & Bolte, M. (2011). Acta Cryst. E67, o278.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4

  • Mr = 300.31

  • Triclinic, [P \overline 1]

  • a = 6.7186 (10) Å

  • b = 7.6942 (12) Å

  • c = 8.2462 (13) Å

  • α = 65.290 (11)°

  • β = 75.499 (12)°

  • γ = 68.207 (11)°

  • V = 357.28 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.29 × 0.25 × 0.18 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA and X-RED32; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.971, Tmax = 0.982

  • 6958 measured reflections

  • 1347 independent reflections

  • 1171 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.090

  • S = 1.13

  • 1347 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This paper forms part of our continuing study of the synthesis and structural characterization of coordination polymers (Brito et al., 2010a,b,c; 2011). We are particularly interested in the utility of the title compound as a flexible ligand and for its binding modes, in order to synthesis different coordination polymer topologies. Molecules of the title compound, (Fig. 1), lie on an inversion centre, which passes through middle point of the C4—C4A bond of the aliphatic chain, giving one half-molecule per asymmetric unit. The butane chain adopts an all trans conformation. The dihedral angle between the mean plane of the butane-3-carboxylate moiety [non-H atoms; max. deviation for atoms C3/C3A = 0.0871 (15) Å] and the pyridine ring is 10.83 (7)°.

The crystal structure is stabilized by weak ππ interactions with centroid-centroid distances of 3.9281 (11) Å. The molecules lie in planes parallel to (122) [Fig. 2].

Related literature top

For the crystal structures of related ligands, see: Brito et al. (2010a,b,c, 2011).

Experimental top

Isonicotinoyl chloride hydrochloride (354 mg, 2 mmol) was taken in a 50 ml round bottom schlenk flask and fitted with a reflux condenser. Dichloromethane 25 ml, 1,4-Butanediol (0.10 ml, 1.0 mmol) and 1 ml of triethylamine were added. The reaction mixture was heated at 323 K for 3 h. After, the mixture was washed with saturated aqueous sodium bicarbonate solution (50 ml), the organic layer was dried over anhydrous sodium sulfate and filtered. The solvent was evaporated using vacuum and the white product was purified by recrystallization with acetonitrile (Yield: 87%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in dichloromethane at room temperature.

Spectroscopic details are given in the archived CIF.

Refinement top

All H-atoms were positioned geometrically with C—H = 0.95 or 0.99 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

This paper forms part of our continuing study of the synthesis and structural characterization of coordination polymers (Brito et al., 2010a,b,c; 2011). We are particularly interested in the utility of the title compound as a flexible ligand and for its binding modes, in order to synthesis different coordination polymer topologies. Molecules of the title compound, (Fig. 1), lie on an inversion centre, which passes through middle point of the C4—C4A bond of the aliphatic chain, giving one half-molecule per asymmetric unit. The butane chain adopts an all trans conformation. The dihedral angle between the mean plane of the butane-3-carboxylate moiety [non-H atoms; max. deviation for atoms C3/C3A = 0.0871 (15) Å] and the pyridine ring is 10.83 (7)°.

The crystal structure is stabilized by weak ππ interactions with centroid-centroid distances of 3.9281 (11) Å. The molecules lie in planes parallel to (122) [Fig. 2].

For the crystal structures of related ligands, see: Brito et al. (2010a,b,c, 2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (A) = -x+2, -y+2, -z].
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the weak ππ stacking interactions [Cg = centroid of ring N13,C11,C12,C14-C16; symmetry code: (i) = -x+1, -y+1, -z+1; H atoms have been omitted for clarity].
Butane-1,4-diyl bis(pyridine-3-carboxylate) top
Crystal data top
C16H16N2O4Z = 1
Mr = 300.31F(000) = 158
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7186 (10) ÅCell parameters from 9708 reflections
b = 7.6942 (12) Åθ = 3.3–26.0°
c = 8.2462 (13) ŵ = 0.10 mm1
α = 65.290 (11)°T = 173 K
β = 75.499 (12)°Block, colourless
γ = 68.207 (11)°0.29 × 0.25 × 0.18 mm
V = 357.28 (10) Å3
Data collection top
Stoe IPDS II two-circle
diffractometer
1347 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source1171 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.035
ω scansθmax = 25.6°, θmin = 3.3°
Absorption correction: multi-scan
(X-AREA and X-RED32; Stoe & Cie, 2001)
h = 78
Tmin = 0.971, Tmax = 0.982k = 99
6958 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.1244P]
where P = (Fo2 + 2Fc2)/3
1347 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C16H16N2O4γ = 68.207 (11)°
Mr = 300.31V = 357.28 (10) Å3
Triclinic, P1Z = 1
a = 6.7186 (10) ÅMo Kα radiation
b = 7.6942 (12) ŵ = 0.10 mm1
c = 8.2462 (13) ÅT = 173 K
α = 65.290 (11)°0.29 × 0.25 × 0.18 mm
β = 75.499 (12)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1347 independent reflections
Absorption correction: multi-scan
(X-AREA and X-RED32; Stoe & Cie, 2001)
1171 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.982Rint = 0.035
6958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.13Δρmax = 0.19 e Å3
1347 reflectionsΔρmin = 0.14 e Å3
100 parameters
Special details top

Experimental. Spectroscopic details for the title compound:

IR (KBr): 3087 (w), 1713 (s), 1589 (m), 1473 (w), 1294 (s), 1195 (s), 741(m), cm-1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31502 (17)1.03384 (16)0.27815 (14)0.0328 (3)
O20.66529 (16)0.87068 (16)0.31015 (13)0.0279 (3)
C10.4547 (2)0.8987 (2)0.36257 (19)0.0238 (3)
C30.7222 (2)1.0083 (2)0.13405 (19)0.0260 (3)
H3A0.67721.14600.13470.031*
H3B0.64961.01040.04230.031*
C40.9628 (2)0.9344 (2)0.09306 (19)0.0285 (4)
H4A1.00630.79420.09910.034*
H4B1.03340.93600.18420.034*
C110.4134 (2)0.7418 (2)0.53811 (19)0.0242 (3)
C120.5775 (3)0.6012 (2)0.64157 (19)0.0285 (3)
H120.72080.60670.59760.034*
N130.5455 (2)0.4591 (2)0.79911 (17)0.0339 (3)
C140.3422 (3)0.4555 (2)0.8578 (2)0.0325 (4)
H140.31580.35610.97030.039*
C150.1685 (3)0.5879 (2)0.7646 (2)0.0320 (4)
H150.02690.57880.81160.038*
C160.2046 (2)0.7336 (2)0.6017 (2)0.0286 (4)
H160.08830.82680.53420.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (6)0.0321 (6)0.0288 (6)0.0071 (5)0.0041 (5)0.0009 (5)
O20.0222 (5)0.0301 (6)0.0229 (5)0.0088 (4)0.0001 (4)0.0023 (4)
C10.0231 (7)0.0254 (7)0.0224 (7)0.0086 (6)0.0017 (6)0.0075 (6)
C30.0264 (8)0.0274 (7)0.0194 (7)0.0117 (6)0.0004 (6)0.0026 (6)
C40.0246 (8)0.0301 (8)0.0255 (8)0.0097 (6)0.0014 (6)0.0047 (7)
C110.0268 (8)0.0216 (7)0.0230 (7)0.0072 (6)0.0006 (6)0.0090 (6)
C120.0260 (8)0.0298 (8)0.0248 (8)0.0075 (6)0.0000 (6)0.0077 (6)
N130.0331 (7)0.0303 (7)0.0271 (7)0.0057 (6)0.0022 (6)0.0039 (6)
C140.0397 (9)0.0266 (8)0.0226 (8)0.0121 (7)0.0039 (7)0.0032 (6)
C150.0293 (8)0.0314 (8)0.0308 (8)0.0135 (7)0.0054 (6)0.0082 (7)
C160.0261 (8)0.0264 (8)0.0279 (8)0.0065 (6)0.0024 (6)0.0065 (6)
Geometric parameters (Å, º) top
O1—C11.2017 (18)C11—C161.384 (2)
O2—C11.3342 (18)C11—C121.389 (2)
O2—C31.4538 (17)C12—N131.333 (2)
C1—C111.4886 (19)C12—H120.9500
C3—C41.502 (2)N13—C141.337 (2)
C3—H3A0.9900C14—C151.379 (2)
C3—H3B0.9900C14—H140.9500
C4—C4i1.523 (3)C15—C161.378 (2)
C4—H4A0.9900C15—H150.9500
C4—H4B0.9900C16—H160.9500
C1—O2—C3115.98 (12)C16—C11—C12118.20 (14)
O1—C1—O2124.15 (13)C16—C11—C1119.43 (13)
O1—C1—C11123.99 (13)C12—C11—C1122.38 (13)
O2—C1—C11111.87 (12)N13—C12—C11123.74 (14)
O2—C3—C4106.96 (12)N13—C12—H12118.1
O2—C3—H3A110.3C11—C12—H12118.1
C4—C3—H3A110.3C12—N13—C14116.78 (14)
O2—C3—H3B110.3N13—C14—C15123.82 (14)
C4—C3—H3B110.3N13—C14—H14118.1
H3A—C3—H3B108.6C15—C14—H14118.1
C3—C4—C4i110.76 (16)C16—C15—C14118.61 (15)
C3—C4—H4A109.5C16—C15—H15120.7
C4i—C4—H4A109.5C14—C15—H15120.7
C3—C4—H4B109.5C15—C16—C11118.86 (15)
C4i—C4—H4B109.5C15—C16—H16120.6
H4A—C4—H4B108.1C11—C16—H16120.6
C3—O2—C1—O13.9 (2)C16—C11—C12—N130.3 (2)
C3—O2—C1—C11175.89 (12)C1—C11—C12—N13179.97 (15)
C1—O2—C3—C4173.02 (12)C11—C12—N13—C140.2 (2)
O2—C3—C4—C4i177.89 (15)C12—N13—C14—C150.5 (2)
O1—C1—C11—C167.7 (2)N13—C14—C15—C160.4 (3)
O2—C1—C11—C16172.10 (13)C14—C15—C16—C110.1 (2)
O1—C1—C11—C12172.59 (15)C12—C11—C16—C150.4 (2)
O2—C1—C11—C127.61 (19)C1—C11—C16—C15179.89 (14)
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O4
Mr300.31
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.7186 (10), 7.6942 (12), 8.2462 (13)
α, β, γ (°)65.290 (11), 75.499 (12), 68.207 (11)
V3)357.28 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.25 × 0.18
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(X-AREA and X-RED32; Stoe & Cie, 2001)
Tmin, Tmax0.971, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
6958, 1347, 1171
Rint0.035
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.13
No. of reflections1347
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: X-AREA (Stoe & Cie, 2001), X-RED32 (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

We are grateful to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database (CSD). JV thanks the Universidad de Antofagasta for a PhD fellowship.

References

First citationBrito, I., Vallejos, J., Bolte, M. & López-Rodríguez, M. (2010c). Acta Cryst. E66, o792.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., Bolte, M., López-Rodríguez, M. & Cárdenas, A. (2010b). Acta Cryst. E66, o1015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M. & Bolte, M. (2011). Acta Cryst. E67, o278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., López-Rodríguez, M. & Cárdenas, A. (2010a). Acta Cryst. E66, o114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds