organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(4-chloro­phen­yl)-2-(di­pentyl­amino)-4-oxo-5-phenyl-4,5-di­hydro-3H-pyrrolo­[3,2-d]pyrimidine-7-carboxyl­ate

aResearch Center for Materials Science & Engineering, Hubei University of Arts and Science, Xiangyang 441053, People's Republic of China, and bCollege of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, People's Republic of China
*Correspondence e-mail: pinghe129@yahoo.com.cn

(Received 21 May 2012; accepted 30 May 2012; online 2 June 2012)

In the title compound, C31H37ClN4O3, the fused rings of the pyrrolo­[3,2-d]pyrimidine system form a dihedral angle of 5.80 (11)°. The phenyl and benzene rings are twisted with respect to the mean plane of the pyrrolo­[3,2-d]pyrimidine system [maximum deviation = 0.077 (2) Å], making dihedral angles of 61.05 (12) and 75.39 (10)°, respectively. The eth­oxy group is disordered over two positions with the site-occupancy ratio fixed at 0.54:0.46. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to the ab plane. There are also ππ [centroid–centroid distances = 3.5954 (17) and 3.965 (2) Å] and C—H⋯π inter­actions present.

Related literature

The title compound may be used as a precursor for obtaining bioactive mol­ecules, see: Otmar et al. (2004[Otmar, M., Masojidkova, M., Votruba, I. & Holy, A. (2004). Bioorg. Med. Chem. 12, 3187-3195.]). For the biological activity of pyrrolo­pyrimidine derivatives, see: Pudziuvelyte et al. (2009[Pudziuvelyte, E., Rios-Luci, C., Leon, L. G., Cikotiene, I. & Padron, J. M. (2009). Bioorg. Med. Chem. 17, 4955-4960.]); Kamath et al. (2009[Kamath, V. P., Juarez-Brambila, J. J., Morris, C. B., Winslow, C. D. & Morris, P. E. (2009). Org. Process Res. Dev. 13, 928-932.]). For related structures, see: He et al. (2007a[He, P., Peng, X.-M. & Li, G.-H. (2007a). Acta Cryst. E63, o4884.],b[He, P., Zheng, A., Cai, C.-Q. & Fang, C.-L. (2007b). Acta Cryst. E63, o3185.]).

[Scheme 1]

Experimental

Crystal data
  • C31H37ClN4O3

  • Mr = 549.10

  • Triclinic, [P \overline 1]

  • a = 9.661 (3) Å

  • b = 12.422 (4) Å

  • c = 14.007 (4) Å

  • α = 72.110 (5)°

  • β = 82.697 (6)°

  • γ = 70.184 (5)°

  • V = 1504.4 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.984

  • 9954 measured reflections

  • 5241 independent reflections

  • 3801 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.182

  • S = 1.09

  • 5241 reflections

  • 386 parameters

  • 42 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroid of the N1,N2,C7–C10 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.57 3.469 (3) 162
C21—H21⋯O3ii 0.93 2.52 3.375 (3) 153
C24—H24⋯O1iii 0.93 2.58 3.262 (4) 131
C12—H12ACg3 0.97 2.77 3.478 (4) 131
C15—H15ACg2iv 0.96 2.86 3.683 (4) 144
Symmetry codes: (i) -x, -y, -z+1; (ii) -x-1, -y, -z+1; (iii) -x, -y-1, -z+1; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound may be used as a precursor for obtaining bioactive molecules (Otmar et al., 2004). The biological activity of pyrrolopyrimidine derivatives, such as anticancer activity and potent purine nucleoside phosphorylase inhibitors, have been described by (Pudziuvelyte et al., 2009 and Kamath et al., 2009). As a part of our ongoing work on the preparation of derivatives of heterocyclic compounds, such as carbonitrile substituted pyrrolo[3,2-d]pyrimidine derivatives (He et al., 2007a,b), we have synthesized the title compound, and report herein on its crystal structure.

In the title molecule, Fig. 1, the two rings (N3,C8,C9,C31,C21 and N1,N2,C7-C10) of the pyrrolo[3,2-d]pyrimidine moiety are nearly coplanar, with a dihedral angle of 5.80 (11)°. The phenyl ring (C22-C27) and the benzene ring (C1-C6) are inclined to the mean plane of the pyrrolo[3,2-d]pyrimidine moiety [maximum deviation 0.077 (2) Å for atom C9] by 61.05 (12) and 75.39 (10)°, respectively.

In the crystal, molecules are linked by weak intramolecular C—H···O hydrogen bonds forming a two-dimensional network lying parallel to the ab plane (Table 1 and Fig. 2). There are also C-H···π interactions (Table 1) and ππ interactions present. The latter involve inversion related pyrrolo[3,2-d]pyrimidine moieties [Cg1···Cg2i 3.5954 (17) Å; Cg1 centroid of the N3,C8,C9,C21,C31 ring; Cg2 centroid of the N1,N2,C7-C10 ring; symmetry code: (i) -x, -y, -z+1], and inversion related phenyl rings [Cg4···Cg4ii 3.965 (2) Å; perpendicular separation 3.5830 (13) Å, slippage 1.699 Å; Cg4 is the centroid of the C22-C27 ring; symmetry code: (ii) -x, -y-1, -z+1].

Related literature top

The title compound may be used as a precursor for obtaining bioactive molecules, see: Otmar et al. (2004). For the biological activity of pyrrolopyrimidine derivatives, see: Pudziuvelyte et al. (2009); Kamath et al. (2009). For related structures, see: He et al. (2007a,b).

Experimental top

To a solution of diethyl 1-phenyl-3- ((triphenylphosphoranylidene)amino)-1H-pyrrole-2,4-dicarboxylate (1.69 g, 3 mmol) in dry methylene dichloride (15 mL) was added 4-chlorophenyl isocyanate (0.46 g, 3 mmol) under nitrogen at room temperature. After the reaction mixture was left to stand for 6 h at 273-278 K, the solvent was removed under reduced pressure and ether/petroleum ether (1:2, 12 mL) was added to precipitate triphenylphosphine oxide. After filtration, dipentylamine (0.47 g, 3 mmol) and anhydrous ethanol (15 mL) were added to the solution. The reaction mixture was allowed to stand for 3 h, then the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 1 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound. It was recrystallized from ethanol/methylene dichloride (1:1; v:v) at room temperature to give colourless block-like crystals suitable for X-ray diffraction analysis.

Refinement top

C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and = 1.2 for all other H-atoms. The ethoxy group (atoms O2,C29,C30 & O2',C29',C30') is disordered over two positions; the site occupancies were finally fixed at 0.54 and 0.46.

Structure description top

The title compound may be used as a precursor for obtaining bioactive molecules (Otmar et al., 2004). The biological activity of pyrrolopyrimidine derivatives, such as anticancer activity and potent purine nucleoside phosphorylase inhibitors, have been described by (Pudziuvelyte et al., 2009 and Kamath et al., 2009). As a part of our ongoing work on the preparation of derivatives of heterocyclic compounds, such as carbonitrile substituted pyrrolo[3,2-d]pyrimidine derivatives (He et al., 2007a,b), we have synthesized the title compound, and report herein on its crystal structure.

In the title molecule, Fig. 1, the two rings (N3,C8,C9,C31,C21 and N1,N2,C7-C10) of the pyrrolo[3,2-d]pyrimidine moiety are nearly coplanar, with a dihedral angle of 5.80 (11)°. The phenyl ring (C22-C27) and the benzene ring (C1-C6) are inclined to the mean plane of the pyrrolo[3,2-d]pyrimidine moiety [maximum deviation 0.077 (2) Å for atom C9] by 61.05 (12) and 75.39 (10)°, respectively.

In the crystal, molecules are linked by weak intramolecular C—H···O hydrogen bonds forming a two-dimensional network lying parallel to the ab plane (Table 1 and Fig. 2). There are also C-H···π interactions (Table 1) and ππ interactions present. The latter involve inversion related pyrrolo[3,2-d]pyrimidine moieties [Cg1···Cg2i 3.5954 (17) Å; Cg1 centroid of the N3,C8,C9,C21,C31 ring; Cg2 centroid of the N1,N2,C7-C10 ring; symmetry code: (i) -x, -y, -z+1], and inversion related phenyl rings [Cg4···Cg4ii 3.965 (2) Å; perpendicular separation 3.5830 (13) Å, slippage 1.699 Å; Cg4 is the centroid of the C22-C27 ring; symmetry code: (ii) -x, -y-1, -z+1].

The title compound may be used as a precursor for obtaining bioactive molecules, see: Otmar et al. (2004). For the biological activity of pyrrolopyrimidine derivatives, see: Pudziuvelyte et al. (2009); Kamath et al. (2009). For related structures, see: He et al. (2007a,b).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling. The displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered ethoxy group (atoms O2,C29,C30) are shown.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing in the title compound. The C-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
Ethyl 3-(4-chlorophenyl)-2-(dipentylamino)-4-oxo-5-phenyl-4,5-dihydro- 3H-pyrrolo[3,2-d]pyrimidine-7-carboxylate top
Crystal data top
C31H37ClN4O3Z = 2
Mr = 549.10F(000) = 584
Triclinic, P1Dx = 1.212 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.661 (3) ÅCell parameters from 3181 reflections
b = 12.422 (4) Åθ = 2.4–26.4°
c = 14.007 (4) ŵ = 0.16 mm1
α = 72.110 (5)°T = 298 K
β = 82.697 (6)°Block, colourless
γ = 70.184 (5)°0.30 × 0.10 × 0.10 mm
V = 1504.4 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5241 independent reflections
Radiation source: fine-focus sealed tube3801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1110
Tmin = 0.943, Tmax = 0.984k = 1414
9954 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.1048P)2 + 0.1603P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5241 reflectionsΔρmax = 0.35 e Å3
386 parametersΔρmin = 0.26 e Å3
42 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (4)
Crystal data top
C31H37ClN4O3γ = 70.184 (5)°
Mr = 549.10V = 1504.4 (8) Å3
Triclinic, P1Z = 2
a = 9.661 (3) ÅMo Kα radiation
b = 12.422 (4) ŵ = 0.16 mm1
c = 14.007 (4) ÅT = 298 K
α = 72.110 (5)°0.30 × 0.10 × 0.10 mm
β = 82.697 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
5241 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3801 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.984Rint = 0.033
9954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05442 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.09Δρmax = 0.35 e Å3
5241 reflectionsΔρmin = 0.26 e Å3
386 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5649 (3)0.2757 (2)0.17362 (19)0.0605 (7)
C20.5823 (3)0.2786 (2)0.27016 (19)0.0621 (7)
H20.67270.31940.30080.075*
C30.4628 (3)0.2197 (2)0.32125 (18)0.0535 (6)
H30.47210.22160.38710.064*
C40.3302 (2)0.15846 (19)0.27457 (16)0.0427 (5)
C50.3144 (3)0.1581 (2)0.17863 (18)0.0562 (6)
H50.22400.11780.14790.067*
C60.4326 (3)0.2176 (3)0.1273 (2)0.0647 (7)
H60.42230.21810.06230.078*
C70.1369 (2)0.02435 (19)0.29938 (16)0.0423 (5)
C80.0692 (2)0.00511 (18)0.39051 (15)0.0381 (5)
C90.0072 (2)0.11672 (18)0.42804 (15)0.0390 (5)
C100.1361 (2)0.17963 (19)0.39785 (16)0.0433 (5)
C110.3656 (3)0.0775 (2)0.25637 (19)0.0551 (6)
H11A0.39910.00720.31280.066*
H11B0.36200.14630.27680.066*
C120.4759 (3)0.0666 (3)0.1695 (2)0.0673 (7)
H12A0.46290.01040.13900.081*
H12B0.45500.14350.11920.081*
C130.6346 (3)0.0259 (3)0.1994 (2)0.0791 (9)
H13A0.64890.04050.26000.095*
H13B0.65290.09050.21540.095*
C140.7479 (3)0.0127 (4)0.1196 (3)0.0934 (11)
H14A0.71580.06270.09200.112*
H14B0.74970.05780.06550.112*
C150.8970 (4)0.0774 (4)0.1548 (3)0.1099 (13)
H15A0.92670.03260.18860.165*
H15B0.96270.08860.09860.165*
H15C0.90000.15370.20040.165*
C160.1306 (3)0.2113 (2)0.1768 (2)0.0593 (7)
H16A0.19810.25420.14200.071*
H16B0.07330.25190.22490.071*
C170.0288 (4)0.2168 (3)0.1022 (2)0.0765 (8)
H17A0.03490.17010.13640.092*
H17B0.08680.17990.05200.092*
C180.0650 (4)0.3403 (3)0.0502 (3)0.0929 (11)
H18A0.00110.38630.01490.111*
H18B0.12110.37760.10060.111*
C190.1715 (7)0.3471 (4)0.0243 (4)0.157 (2)
H19A0.11430.30890.07400.189*
H19B0.23400.30000.01150.189*
C200.2658 (8)0.4638 (5)0.0773 (5)0.187 (3)
H20A0.33240.49940.03030.281*
H20B0.32090.45580.12570.281*
H20C0.20670.51340.11100.281*
C210.2389 (2)0.07124 (19)0.48391 (16)0.0441 (5)
H210.32700.07860.51600.053*
C220.0964 (2)0.28502 (19)0.53985 (16)0.0436 (5)
C230.1896 (3)0.3390 (2)0.5213 (2)0.0607 (7)
H230.26140.29640.47320.073*
C240.1771 (4)0.4547 (3)0.5732 (3)0.0774 (9)
H240.23850.49170.55980.093*
C250.0728 (4)0.5153 (3)0.6453 (3)0.0847 (11)
H250.06380.59390.68130.102*
C260.0186 (4)0.4612 (3)0.6650 (2)0.0757 (8)
H260.08820.50310.71460.091*
C270.0080 (3)0.3454 (2)0.61195 (18)0.0564 (6)
H270.07050.30890.62470.068*
C280.3371 (3)0.1472 (2)0.41352 (18)0.0513 (6)
O20.3074 (8)0.2389 (6)0.3374 (4)0.0579 (16)0.54
C290.4238 (12)0.3582 (9)0.3102 (8)0.106 (3)0.54
H29A0.51800.34800.30660.127*0.54
H29B0.40040.40540.24480.127*0.54
C300.4335 (10)0.4226 (8)0.3879 (7)0.128 (3)0.54
H30A0.47410.38360.44970.193*0.54
H30B0.49570.50380.36430.193*0.54
H30C0.33690.42130.39910.193*0.54
O2'0.2896 (9)0.2395 (7)0.3724 (5)0.0584 (18)0.46
C29'0.4027 (9)0.3551 (6)0.3531 (7)0.070 (2)0.46
H29C0.35790.41500.35060.084*0.46
H29D0.47380.35400.40870.084*0.46
C30'0.4826 (14)0.3907 (12)0.2571 (9)0.147 (5)0.46
H30D0.41270.38690.20210.220*0.46
H30E0.54920.47070.24610.220*0.46
H30F0.53710.33730.26200.220*0.46
C310.2180 (2)0.03478 (19)0.42781 (16)0.0411 (5)
Cl10.71506 (9)0.34780 (9)0.10790 (6)0.1034 (4)
N10.20328 (18)0.09956 (15)0.32853 (13)0.0417 (4)
N20.00551 (19)0.07781 (15)0.32903 (13)0.0431 (4)
N30.11308 (19)0.16311 (15)0.48561 (13)0.0413 (4)
N40.2161 (2)0.09019 (17)0.23112 (15)0.0512 (5)
O10.19808 (19)0.28622 (14)0.41939 (15)0.0648 (5)
O30.45802 (18)0.15757 (16)0.45300 (16)0.0703 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0476 (14)0.0637 (15)0.0541 (15)0.0005 (12)0.0113 (12)0.0183 (12)
C20.0411 (13)0.0717 (17)0.0558 (15)0.0019 (12)0.0012 (11)0.0154 (13)
C30.0415 (13)0.0670 (15)0.0436 (13)0.0068 (11)0.0010 (10)0.0163 (11)
C40.0345 (11)0.0458 (12)0.0445 (12)0.0110 (9)0.0078 (9)0.0135 (9)
C50.0399 (13)0.0698 (16)0.0522 (14)0.0059 (12)0.0021 (11)0.0203 (12)
C60.0595 (16)0.0802 (18)0.0487 (14)0.0088 (14)0.0040 (12)0.0276 (13)
C70.0392 (12)0.0435 (12)0.0435 (12)0.0148 (10)0.0068 (9)0.0126 (10)
C80.0326 (11)0.0432 (11)0.0381 (11)0.0124 (9)0.0029 (9)0.0120 (9)
C90.0357 (11)0.0428 (11)0.0403 (11)0.0149 (9)0.0054 (9)0.0141 (9)
C100.0375 (12)0.0421 (12)0.0500 (13)0.0132 (10)0.0081 (10)0.0158 (10)
C110.0529 (14)0.0643 (15)0.0544 (14)0.0298 (12)0.0105 (11)0.0178 (12)
C120.0478 (15)0.098 (2)0.0561 (15)0.0347 (15)0.0102 (12)0.0143 (14)
C130.0550 (17)0.114 (3)0.0741 (19)0.0374 (17)0.0087 (14)0.0274 (18)
C140.0560 (19)0.139 (3)0.086 (2)0.035 (2)0.0066 (16)0.032 (2)
C150.067 (2)0.131 (3)0.130 (3)0.013 (2)0.009 (2)0.052 (3)
C160.0582 (15)0.0456 (13)0.0661 (16)0.0190 (11)0.0189 (13)0.0103 (12)
C170.093 (2)0.0589 (16)0.0670 (18)0.0211 (16)0.0017 (16)0.0077 (14)
C180.084 (2)0.076 (2)0.089 (2)0.0084 (18)0.0040 (19)0.0038 (18)
C190.205 (6)0.094 (3)0.153 (4)0.018 (3)0.092 (5)0.007 (3)
C200.201 (7)0.140 (5)0.179 (6)0.001 (5)0.075 (5)0.021 (4)
C210.0331 (11)0.0511 (13)0.0473 (12)0.0131 (10)0.0070 (9)0.0164 (10)
C220.0409 (12)0.0422 (12)0.0459 (12)0.0146 (10)0.0126 (10)0.0137 (10)
C230.0484 (14)0.0561 (15)0.0821 (18)0.0209 (12)0.0093 (13)0.0254 (14)
C240.0684 (19)0.0572 (17)0.113 (3)0.0324 (15)0.0261 (19)0.0305 (18)
C250.095 (3)0.0448 (15)0.098 (2)0.0232 (17)0.041 (2)0.0140 (16)
C260.077 (2)0.0582 (16)0.0685 (18)0.0071 (15)0.0071 (15)0.0047 (14)
C270.0552 (15)0.0511 (14)0.0564 (15)0.0133 (12)0.0000 (12)0.0108 (12)
C280.0393 (13)0.0509 (13)0.0595 (14)0.0110 (10)0.0029 (11)0.0154 (11)
O20.048 (2)0.045 (2)0.057 (3)0.0009 (17)0.004 (2)0.000 (2)
C290.099 (5)0.114 (5)0.090 (5)0.017 (4)0.005 (4)0.032 (4)
C300.113 (5)0.118 (4)0.155 (5)0.047 (4)0.000 (4)0.030 (4)
O2'0.050 (3)0.047 (3)0.067 (4)0.009 (2)0.001 (3)0.009 (3)
C29'0.070 (4)0.045 (3)0.083 (4)0.003 (3)0.004 (3)0.020 (3)
C30'0.136 (6)0.146 (6)0.138 (6)0.034 (4)0.012 (4)0.020 (4)
C310.0333 (11)0.0461 (12)0.0425 (12)0.0104 (9)0.0030 (9)0.0145 (10)
Cl10.0746 (6)0.1193 (7)0.0770 (6)0.0211 (5)0.0203 (4)0.0398 (5)
N10.0322 (9)0.0423 (10)0.0477 (10)0.0110 (8)0.0104 (8)0.0143 (8)
N20.0383 (10)0.0431 (10)0.0475 (10)0.0141 (8)0.0073 (8)0.0144 (8)
N30.0349 (10)0.0448 (10)0.0446 (10)0.0155 (8)0.0069 (8)0.0130 (8)
N40.0424 (11)0.0473 (11)0.0584 (12)0.0172 (9)0.0126 (9)0.0096 (9)
O10.0516 (10)0.0408 (9)0.0872 (13)0.0099 (8)0.0225 (9)0.0123 (8)
O30.0378 (10)0.0626 (11)0.0981 (14)0.0077 (8)0.0183 (9)0.0224 (10)
Geometric parameters (Å, º) top
C1—C61.369 (4)C17—H17B0.9700
C1—C21.372 (4)C18—C191.520 (6)
C1—Cl11.743 (2)C18—H18A0.9700
C2—C31.386 (3)C18—H18B0.9700
C2—H20.9300C19—C201.448 (6)
C3—C41.376 (3)C19—H19A0.9700
C3—H30.9300C19—H19B0.9700
C4—C51.370 (3)C20—H20A0.9600
C4—N11.451 (3)C20—H20B0.9600
C5—C61.382 (3)C20—H20C0.9600
C5—H50.9300C21—N31.353 (3)
C6—H60.9300C21—C311.377 (3)
C7—N21.300 (3)C21—H210.9300
C7—N41.388 (3)C22—C271.372 (3)
C7—N11.399 (3)C22—C231.380 (3)
C8—N21.373 (3)C22—N31.434 (3)
C8—C91.379 (3)C23—C241.368 (4)
C8—C311.429 (3)C23—H230.9300
C9—N31.390 (3)C24—C251.371 (5)
C9—C101.423 (3)C24—H240.9300
C10—O11.211 (3)C25—C261.374 (5)
C10—N11.428 (3)C25—H250.9300
C11—N41.476 (3)C26—C271.376 (4)
C11—C121.519 (3)C26—H260.9300
C11—H11A0.9700C27—H270.9300
C11—H11B0.9700C28—O31.210 (3)
C12—C131.513 (4)C28—O2'1.319 (9)
C12—H12A0.9700C28—O21.383 (7)
C12—H12B0.9700C28—C311.453 (3)
C13—C141.531 (4)O2—C291.496 (10)
C13—H13A0.9700C29—C301.514 (8)
C13—H13B0.9700C29—H29A0.9700
C14—C151.454 (5)C29—H29B0.9700
C14—H14A0.9700C30—H30A0.9600
C14—H14B0.9700C30—H30B0.9600
C15—H15A0.9600C30—H30C0.9600
C15—H15B0.9600O2'—C29'1.450 (9)
C15—H15C0.9600C29'—C30'1.505 (9)
C16—N41.463 (3)C29'—H29C0.9700
C16—C171.495 (4)C29'—H29D0.9700
C16—H16A0.9700C30'—H30D0.9600
C16—H16B0.9700C30'—H30E0.9600
C17—C181.499 (4)C30'—H30F0.9600
C17—H17A0.9700
C6—C1—C2121.7 (2)C17—C18—H18B108.5
C6—C1—Cl1119.0 (2)C19—C18—H18B108.5
C2—C1—Cl1119.3 (2)H18A—C18—H18B107.5
C1—C2—C3118.8 (2)C20—C19—C18118.1 (4)
C1—C2—H2120.6C20—C19—H19A107.8
C3—C2—H2120.6C18—C19—H19A107.8
C4—C3—C2120.0 (2)C20—C19—H19B107.8
C4—C3—H3120.0C18—C19—H19B107.8
C2—C3—H3120.0H19A—C19—H19B107.1
C5—C4—C3120.3 (2)C19—C20—H20A109.5
C5—C4—N1119.3 (2)C19—C20—H20B109.5
C3—C4—N1120.31 (19)H20A—C20—H20B109.5
C4—C5—C6120.2 (2)C19—C20—H20C109.5
C4—C5—H5119.9H20A—C20—H20C109.5
C6—C5—H5119.9H20B—C20—H20C109.5
C1—C6—C5119.0 (2)N3—C21—C31110.33 (19)
C1—C6—H6120.5N3—C21—H21124.8
C5—C6—H6120.5C31—C21—H21124.8
N2—C7—N4119.96 (19)C27—C22—C23120.7 (2)
N2—C7—N1123.54 (19)C27—C22—N3119.9 (2)
N4—C7—N1116.42 (18)C23—C22—N3119.4 (2)
N2—C8—C9123.51 (18)C24—C23—C22120.4 (3)
N2—C8—C31129.65 (19)C24—C23—H23119.8
C9—C8—C31106.85 (18)C22—C23—H23119.8
C8—C9—N3108.75 (18)C23—C24—C25119.1 (3)
C8—C9—C10122.38 (19)C23—C24—H24120.5
N3—C9—C10128.34 (19)C25—C24—H24120.5
O1—C10—C9128.7 (2)C24—C25—C26120.6 (3)
O1—C10—N1120.30 (19)C24—C25—H25119.7
C9—C10—N1110.90 (18)C26—C25—H25119.7
N4—C11—C12113.0 (2)C25—C26—C27120.5 (3)
N4—C11—H11A109.0C25—C26—H26119.7
C12—C11—H11A109.0C27—C26—H26119.7
N4—C11—H11B109.0C22—C27—C26118.7 (3)
C12—C11—H11B109.0C22—C27—H27120.7
H11A—C11—H11B107.8C26—C27—H27120.7
C13—C12—C11113.8 (2)O3—C28—O2'122.2 (4)
C13—C12—H12A108.8O3—C28—O2122.0 (3)
C11—C12—H12A108.8O2'—C28—O223.0 (4)
C13—C12—H12B108.8O3—C28—C31124.2 (2)
C11—C12—H12B108.8O2'—C28—C31111.8 (4)
H12A—C12—H12B107.7O2—C28—C31113.0 (3)
C12—C13—C14114.7 (3)C28—O2—C29118.9 (7)
C12—C13—H13A108.6O2—C29—C30110.0 (8)
C14—C13—H13A108.6O2—C29—H29A109.7
C12—C13—H13B108.6C30—C29—H29A109.7
C14—C13—H13B108.6O2—C29—H29B109.7
H13A—C13—H13B107.6C30—C29—H29B109.7
C15—C14—C13115.1 (3)H29A—C29—H29B108.2
C15—C14—H14A108.5C28—O2'—C29'115.2 (7)
C13—C14—H14A108.5O2'—C29'—C30'114.0 (8)
C15—C14—H14B108.5O2'—C29'—H29C108.8
C13—C14—H14B108.5C30'—C29'—H29C108.8
H14A—C14—H14B107.5O2'—C29'—H29D108.8
C14—C15—H15A109.5C30'—C29'—H29D108.8
C14—C15—H15B109.5H29C—C29'—H29D107.6
H15A—C15—H15B109.5C29'—C30'—H30D109.5
C14—C15—H15C109.5C29'—C30'—H30E109.5
H15A—C15—H15C109.5H30D—C30'—H30E109.5
H15B—C15—H15C109.5C29'—C30'—H30F109.5
N4—C16—C17114.1 (2)H30D—C30'—H30F109.5
N4—C16—H16A108.7H30E—C30'—H30F109.5
C17—C16—H16A108.7C21—C31—C8106.30 (18)
N4—C16—H16B108.7C21—C31—C28121.2 (2)
C17—C16—H16B108.7C8—C31—C28132.4 (2)
H16A—C16—H16B107.6C7—N1—C10123.25 (17)
C16—C17—C18114.5 (3)C7—N1—C4121.88 (17)
C16—C17—H17A108.6C10—N1—C4113.57 (16)
C18—C17—H17A108.6C7—N2—C8116.07 (18)
C16—C17—H17B108.6C21—N3—C9107.75 (17)
C18—C17—H17B108.6C21—N3—C22124.40 (17)
H17A—C17—H17B107.6C9—N3—C22127.83 (17)
C17—C18—C19115.1 (3)C7—N4—C16115.76 (19)
C17—C18—H18A108.5C7—N4—C11118.94 (19)
C19—C18—H18A108.5C16—N4—C11114.48 (19)
C6—C1—C2—C30.8 (4)C9—C8—C31—C211.4 (2)
Cl1—C1—C2—C3179.2 (2)N2—C8—C31—C280.6 (4)
C1—C2—C3—C40.8 (4)C9—C8—C31—C28179.2 (2)
C2—C3—C4—C51.9 (4)O3—C28—C31—C214.3 (4)
C2—C3—C4—N1178.1 (2)O2'—C28—C31—C21169.4 (3)
C3—C4—C5—C61.2 (4)O2—C28—C31—C21165.7 (3)
N1—C4—C5—C6177.5 (2)O3—C28—C31—C8178.3 (2)
C2—C1—C6—C51.5 (4)O2'—C28—C31—C813.1 (5)
Cl1—C1—C6—C5178.5 (2)O2—C28—C31—C811.8 (4)
C4—C5—C6—C10.4 (4)N2—C7—N1—C103.2 (3)
N2—C8—C9—N3178.86 (18)N4—C7—N1—C10179.81 (19)
C31—C8—C9—N31.0 (2)N2—C7—N1—C4162.9 (2)
N2—C8—C9—C106.6 (3)N4—C7—N1—C413.7 (3)
C31—C8—C9—C10173.22 (19)O1—C10—N1—C7179.2 (2)
C8—C9—C10—O1174.2 (2)C9—C10—N1—C72.8 (3)
N3—C9—C10—O13.5 (4)O1—C10—N1—C412.0 (3)
C8—C9—C10—N11.8 (3)C9—C10—N1—C4164.37 (17)
N3—C9—C10—N1172.48 (19)C5—C4—N1—C767.3 (3)
N4—C11—C12—C13166.9 (2)C3—C4—N1—C7116.4 (2)
C11—C12—C13—C14166.9 (3)C5—C4—N1—C10100.1 (2)
C12—C13—C14—C15166.3 (3)C3—C4—N1—C1076.2 (3)
N4—C16—C17—C18176.9 (2)N4—C7—N2—C8175.16 (18)
C16—C17—C18—C19178.8 (4)N1—C7—N2—C81.4 (3)
C17—C18—C19—C20179.9 (5)C9—C8—N2—C76.2 (3)
C27—C22—C23—C241.4 (4)C31—C8—N2—C7173.6 (2)
N3—C22—C23—C24179.0 (2)C31—C21—N3—C90.9 (2)
C22—C23—C24—C251.3 (4)C31—C21—N3—C22178.10 (19)
C23—C24—C25—C260.3 (5)C8—C9—N3—C210.1 (2)
C24—C25—C26—C270.7 (5)C10—C9—N3—C21171.8 (2)
C23—C22—C27—C260.4 (4)C8—C9—N3—C22179.00 (19)
N3—C22—C27—C26178.0 (2)C10—C9—N3—C229.3 (3)
C25—C26—C27—C220.7 (4)C27—C22—N3—C21121.0 (2)
O3—C28—O2—C296.3 (8)C23—C22—N3—C2156.6 (3)
O2'—C28—O2—C2991.7 (15)C27—C22—N3—C957.7 (3)
C31—C28—O2—C29176.5 (6)C23—C22—N3—C9124.6 (2)
C28—O2—C29—C3076.2 (10)N2—C7—N4—C1616.0 (3)
O3—C28—O2'—C29'16.2 (8)N1—C7—N4—C16160.8 (2)
O2—C28—O2'—C29'80.6 (15)N2—C7—N4—C11126.5 (2)
C31—C28—O2'—C29'178.3 (5)N1—C7—N4—C1156.8 (3)
C28—O2'—C29'—C30'82.2 (10)C17—C16—N4—C769.9 (3)
N3—C21—C31—C81.4 (2)C17—C16—N4—C11146.0 (2)
N3—C21—C31—C28179.49 (19)C12—C11—N4—C7135.7 (2)
N2—C8—C31—C21178.4 (2)C12—C11—N4—C1681.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroid of the N1,N2,C7–C10 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.573.469 (3)162
C21—H21···O3ii0.932.523.375 (3)153
C24—H24···O1iii0.932.583.262 (4)131
C12—H12A···Cg30.972.773.478 (4)131
C15—H15A···Cg2iv0.962.863.683 (4)144
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x, y1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC31H37ClN4O3
Mr549.10
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.661 (3), 12.422 (4), 14.007 (4)
α, β, γ (°)72.110 (5), 82.697 (6), 70.184 (5)
V3)1504.4 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.943, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9954, 5241, 3801
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.182, 1.09
No. of reflections5241
No. of parameters386
No. of restraints42
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.26

Computer programs: APEX2 (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroid of the N1,N2,C7–C10 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.573.469 (3)162
C21—H21···O3ii0.932.523.375 (3)153
C24—H24···O1iii0.932.583.262 (4)131
C12—H12A···Cg30.972.773.478 (4)131
C15—H15A···Cg2iv0.962.863.683 (4)144
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z+1; (iii) x, y1, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors are grateful to Dr X. G. Meng (Key Laboratory of Pesticides & Chemical Biology of the Ministry of Education, Central China Normal University, Wuhan, Hubei, China) for the data collection and analysis. This work was supported by the Educational Commission of Hubei Province of China (No. Q20122509) and the Doctoral Start-up Foundation of Hubei University of Arts and Science.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, P., Peng, X.-M. & Li, G.-H. (2007a). Acta Cryst. E63, o4884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, P., Zheng, A., Cai, C.-Q. & Fang, C.-L. (2007b). Acta Cryst. E63, o3185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamath, V. P., Juarez-Brambila, J. J., Morris, C. B., Winslow, C. D. & Morris, P. E. (2009). Org. Process Res. Dev. 13, 928–932.  Web of Science CrossRef CAS Google Scholar
First citationOtmar, M., Masojidkova, M., Votruba, I. & Holy, A. (2004). Bioorg. Med. Chem. 12, 3187–3195.  CrossRef PubMed CAS Google Scholar
First citationPudziuvelyte, E., Rios-Luci, C., Leon, L. G., Cikotiene, I. & Padron, J. M. (2009). Bioorg. Med. Chem. 17, 4955–4960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds