metal-organic compounds
Aqua[1-(pyrazin-2-yl)ethanone oximato-κ2N,N′][1-(pyrazin-2-yl)ethanone oxime-κ2N,N′](thiocyanato-κN)nickel(II)
aKey Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jcliu8@163.com
In the title complex, [Ni(C6H6N3O)(NCS)(C6H7N3O)(H2O)] or [Ni(mpko)(SCN)(mpkoH)(H2O)] [where mpkoH = 1-(pyrazin-2-yl)ethanone oxime], the NiII cation is in a slightly distorted octahedral geometry, being coordinated in the equatorial plane by four N atoms from two different mpkoH ligands, one of which is deprotonated, and by one N atom from a thiocyanate anion and one O atom from a water molecule in the axial positions. There is an intramolecular O—H⋯O hydrogen bond involving the oxime units of the two ligands. In the crystal, a three-dimensional supramolecular architecture is formed by O—H⋯O and O—H⋯N hydrogen bonds.
Related literature
For magnetic properties of related oxime complexes, see: Escuer et al. (2010); Radek et al. (1999, 2001); Spini (1973).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812024622/su2441sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812024622/su2441Isup2.hkl
The title complex was prepared by the addition of nickel chloride hexahydrate (23.9 mg, 0.1 mmol) to a CH3OH solution of methyl pyrazine-2-yl ketoxime (28 mg, 0.2 mmol); the pH was adjusted to 8 with 1M KSCN. Slow evaporation of the solvent gave red block-like crystals of the title compound, suitable for X-ray analysis, after several days at room temperature [Yield 31 mg, 77%]. Anal. Calc. for C13H15N7NiO3S: C, 38.26; H, 3.71; N, 24.03. Found: C, 36.93; H, 3.4; N, 25.1%.
The OH and water H atoms were located in a difference Fourier map. All except one of the water H atoms [H1W; constrained to be 0.82 Å with Uiso(H) = 1.5Ueq(O)], were freely refined. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 and 0.96Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.
In the past decades, much attention has been paid to the design and synthesis of
complexes. can be feasibly synthesized by the Schiff base condensation of an aldehyde or ketone with hydroxylamine. To date, various oximate ligands as bridging ligands have been extensively explored for their great ability to form homo- and heterometallic polynuclear complexes, which can transmit magnetic exchange efficiently (Radek et al. 1999, 2001). Among oximate bridging ligands, R-substituted-pyridyloximes, (py)C(R)NOH, salycylaldoximes and R-saoH2 play an outstanding role to generate a great variety of polynuclear complexes which not only have aesthetically pleasing structures, but also possess interesting magnetic properties of single molecule magnet (SMM) and single chain magnet (SCM) behavior (Escuer et al., 2010; Spini, 1973).The title compound, Fig. 1, is a new nickel complex obtained by the reaction of nickel chloride hexahydrate with mpkoH (methyl pyrazine-2-yl ketoxime) in CH3OH solution. The NiII cation is in a slightly distorted octahedral geometry. The equatorial plane is defined by four N atoms from two mpkoH ligands - one of which is deprotonated, while the axial positions are occupied by one N atom from a SCN- anion and one water O atom. There is an intramolecular O-H···O hydrogen bond (Table 1) involving the the oxime moieties of the two ligands.
In the crystal a three-dimensional supramolecular architecture is formed by O—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 1).
For magnetic properties of related oxime complexes, see: Escuer et al. (2010); Radek et al. (1999, 2001); Spini (1973).
Data collection: APEX2 (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C6H6N3O)(NCS)(C6H7N3O)(H2O)] | F(000) = 840 |
Mr = 408.09 | Dx = 1.629 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 4663 reflections |
a = 11.917 (8) Å | θ = 2.5–28.9° |
b = 11.899 (8) Å | µ = 1.32 mm−1 |
c = 12.354 (8) Å | T = 296 K |
β = 108.220 (5)° | Block, red |
V = 1664.1 (19) Å3 | 0.36 × 0.32 × 0.29 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2809 independent reflections |
Radiation source: fine-focus sealed tube | 2700 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
φ and ω scans | θmax = 25.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −13→14 |
Tmin = 0.648, Tmax = 0.701 | k = −14→14 |
5816 measured reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0195P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.045 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.22 e Å−3 |
2809 reflections | Δρmin = −0.16 e Å−3 |
238 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
5 restraints | Extinction coefficient: 0.0035 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1258 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.079 (9) |
[Ni(C6H6N3O)(NCS)(C6H7N3O)(H2O)] | V = 1664.1 (19) Å3 |
Mr = 408.09 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 11.917 (8) Å | µ = 1.32 mm−1 |
b = 11.899 (8) Å | T = 296 K |
c = 12.354 (8) Å | 0.36 × 0.32 × 0.29 mm |
β = 108.220 (5)° |
Bruker APEXII CCD diffractometer | 2809 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2700 reflections with I > 2σ(I) |
Tmin = 0.648, Tmax = 0.701 | Rint = 0.017 |
5816 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.045 | Δρmax = 0.22 e Å−3 |
S = 1.05 | Δρmin = −0.16 e Å−3 |
2809 reflections | Absolute structure: Flack (1983), 1258 Friedel pairs |
238 parameters | Absolute structure parameter: 0.079 (9) |
5 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.06769 (2) | 0.04643 (2) | 0.79647 (2) | 0.0232 (1) | |
S1 | −0.29404 (7) | 0.01219 (7) | 0.48705 (6) | 0.0505 (3) | |
O1 | 0.22258 (19) | 0.04631 (13) | 0.93718 (17) | 0.0297 (6) | |
O2 | 0.1754 (2) | 0.19519 (17) | 0.65847 (17) | 0.0455 (7) | |
O3 | 0.21552 (17) | −0.01069 (15) | 0.64998 (15) | 0.0416 (6) | |
N1 | −0.00488 (18) | 0.17283 (15) | 0.87702 (17) | 0.0243 (6) | |
N2 | −0.12050 (19) | 0.35594 (17) | 0.93569 (18) | 0.0389 (7) | |
N3 | 0.11228 (18) | 0.19306 (17) | 0.73314 (18) | 0.0291 (7) | |
N4 | 0.02311 (18) | −0.11543 (16) | 0.83966 (17) | 0.0308 (7) | |
N5 | −0.0404 (2) | −0.33939 (18) | 0.8492 (3) | 0.0609 (10) | |
N6 | 0.14984 (18) | −0.05268 (16) | 0.71043 (16) | 0.0294 (6) | |
N7 | −0.0897 (2) | 0.04323 (17) | 0.6682 (2) | 0.0364 (9) | |
C1 | −0.0646 (2) | 0.1639 (2) | 0.9510 (2) | 0.0324 (8) | |
C2 | −0.1229 (2) | 0.2544 (2) | 0.9789 (2) | 0.0376 (8) | |
C3 | −0.0582 (2) | 0.36562 (18) | 0.8631 (2) | 0.0338 (8) | |
C4 | −0.0003 (2) | 0.27569 (18) | 0.83197 (19) | 0.0262 (7) | |
C5 | 0.0660 (2) | 0.28514 (19) | 0.7509 (2) | 0.0309 (7) | |
C6 | 0.0749 (3) | 0.3925 (2) | 0.6917 (2) | 0.0552 (12) | |
C7 | −0.0488 (3) | −0.1484 (2) | 0.8961 (2) | 0.0452 (10) | |
C8 | −0.0807 (3) | −0.2595 (3) | 0.8998 (3) | 0.0552 (11) | |
C9 | 0.0317 (3) | −0.3073 (2) | 0.7932 (3) | 0.0508 (10) | |
C10 | 0.0655 (3) | −0.19532 (16) | 0.7858 (3) | 0.0332 (7) | |
C11 | 0.1399 (2) | −0.1601 (2) | 0.7182 (2) | 0.0321 (8) | |
C12 | 0.1990 (3) | −0.2437 (2) | 0.6627 (3) | 0.0485 (10) | |
C13 | −0.1750 (2) | 0.03029 (18) | 0.5946 (2) | 0.0290 (8) | |
H1 | −0.06730 | 0.09470 | 0.98520 | 0.0390* | |
H1O | 0.200 (4) | 0.125 (3) | 0.654 (3) | 0.092 (14)* | |
H1W | 0.26870 | −0.00070 | 0.92730 | 0.0450* | |
H2 | −0.16540 | 0.24360 | 1.02960 | 0.0450* | |
H2W | 0.207 (2) | 0.0450 (19) | 1.0028 (13) | 0.053 (9)* | |
H3 | −0.05340 | 0.43590 | 0.83190 | 0.0410* | |
H6A | 0.13750 | 0.43750 | 0.74000 | 0.0830* | |
H6B | 0.00160 | 0.43270 | 0.67490 | 0.0830* | |
H6C | 0.09130 | 0.37630 | 0.62200 | 0.0830* | |
H7 | −0.07890 | −0.09500 | 0.93470 | 0.0540* | |
H8 | −0.13260 | −0.27820 | 0.93960 | 0.0660* | |
H9 | 0.06190 | −0.36210 | 0.75640 | 0.0610* | |
H12A | 0.14020 | −0.28170 | 0.60260 | 0.0730* | |
H12B | 0.24150 | −0.29750 | 0.71840 | 0.0730* | |
H12C | 0.25290 | −0.20530 | 0.63180 | 0.0730* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0290 (2) | 0.0193 (1) | 0.0225 (1) | 0.0021 (2) | 0.0098 (1) | −0.0009 (2) |
S1 | 0.0319 (4) | 0.0722 (5) | 0.0404 (4) | 0.0037 (3) | 0.0012 (3) | −0.0099 (3) |
O1 | 0.0305 (11) | 0.0341 (11) | 0.0258 (11) | 0.0046 (7) | 0.0106 (9) | −0.0009 (7) |
O2 | 0.0666 (14) | 0.0386 (11) | 0.0455 (12) | 0.0003 (10) | 0.0382 (11) | 0.0025 (9) |
O3 | 0.0520 (11) | 0.0481 (10) | 0.0342 (10) | 0.0031 (9) | 0.0270 (9) | −0.0049 (8) |
N1 | 0.0280 (11) | 0.0209 (10) | 0.0245 (10) | 0.0003 (8) | 0.0089 (9) | 0.0004 (8) |
N2 | 0.0336 (12) | 0.0374 (11) | 0.0453 (13) | 0.0056 (9) | 0.0119 (10) | −0.0114 (10) |
N3 | 0.0369 (13) | 0.0269 (11) | 0.0259 (10) | 0.0019 (9) | 0.0135 (9) | 0.0008 (8) |
N4 | 0.0342 (12) | 0.0252 (11) | 0.0340 (11) | −0.0011 (9) | 0.0122 (9) | −0.0011 (9) |
N5 | 0.0601 (17) | 0.0271 (12) | 0.088 (2) | −0.0061 (12) | 0.0124 (16) | 0.0101 (13) |
N6 | 0.0315 (11) | 0.0319 (10) | 0.0236 (10) | 0.0050 (9) | 0.0071 (9) | −0.0050 (8) |
N7 | 0.0376 (18) | 0.0334 (14) | 0.0363 (16) | 0.0025 (9) | 0.0087 (13) | −0.0069 (9) |
C1 | 0.0346 (14) | 0.0312 (13) | 0.0341 (14) | −0.0014 (11) | 0.0145 (12) | 0.0001 (11) |
C2 | 0.0380 (15) | 0.0403 (14) | 0.0385 (14) | 0.0008 (11) | 0.0178 (12) | −0.0066 (11) |
C3 | 0.0327 (14) | 0.0237 (12) | 0.0423 (14) | 0.0036 (10) | 0.0080 (11) | 0.0003 (10) |
C4 | 0.0294 (13) | 0.0204 (11) | 0.0245 (12) | −0.0015 (10) | 0.0024 (10) | −0.0019 (9) |
C5 | 0.0380 (14) | 0.0262 (12) | 0.0284 (12) | −0.0024 (11) | 0.0104 (11) | 0.0008 (9) |
C6 | 0.096 (3) | 0.0296 (13) | 0.0501 (18) | −0.0041 (14) | 0.0375 (18) | 0.0044 (12) |
C7 | 0.0537 (19) | 0.0355 (15) | 0.0549 (18) | −0.0051 (13) | 0.0291 (16) | 0.0012 (12) |
C8 | 0.053 (2) | 0.0441 (18) | 0.072 (2) | −0.0113 (16) | 0.0244 (18) | 0.0159 (16) |
C9 | 0.055 (2) | 0.0264 (12) | 0.0639 (18) | 0.0060 (11) | 0.0084 (18) | −0.0039 (14) |
C10 | 0.0328 (13) | 0.0239 (10) | 0.0367 (14) | 0.0079 (14) | 0.0019 (10) | −0.0015 (13) |
C11 | 0.0321 (14) | 0.0296 (13) | 0.0293 (13) | 0.0109 (11) | 0.0021 (11) | −0.0053 (10) |
C12 | 0.055 (2) | 0.0380 (16) | 0.0482 (17) | 0.0155 (14) | 0.0098 (15) | −0.0156 (13) |
C13 | 0.0308 (15) | 0.0275 (12) | 0.0317 (13) | 0.0049 (10) | 0.0141 (12) | −0.0034 (9) |
Ni1—O1 | 2.103 (3) | N7—C13 | 1.143 (3) |
Ni1—N1 | 2.130 (2) | C1—C2 | 1.382 (4) |
Ni1—N3 | 2.049 (2) | C3—C4 | 1.391 (3) |
Ni1—N4 | 2.110 (2) | C4—C5 | 1.461 (4) |
Ni1—N6 | 2.032 (2) | C5—C6 | 1.492 (4) |
Ni1—N7 | 2.043 (3) | C7—C8 | 1.380 (4) |
S1—C13 | 1.627 (3) | C9—C10 | 1.403 (3) |
O2—N3 | 1.361 (3) | C10—C11 | 1.457 (4) |
O3—N6 | 1.336 (3) | C11—C12 | 1.503 (4) |
O1—H1W | 0.8200 | C1—H1 | 0.9300 |
O1—H2W | 0.887 (18) | C2—H2 | 0.9300 |
O2—H1O | 0.89 (4) | C3—H3 | 0.9300 |
N1—C1 | 1.327 (3) | C6—H6A | 0.9600 |
N1—C4 | 1.353 (3) | C6—H6B | 0.9600 |
N2—C2 | 1.325 (3) | C6—H6C | 0.9600 |
N2—C3 | 1.336 (3) | C7—H7 | 0.9300 |
N3—C5 | 1.276 (3) | C8—H8 | 0.9300 |
N4—C10 | 1.346 (4) | C9—H9 | 0.9300 |
N4—C7 | 1.322 (4) | C12—H12A | 0.9600 |
N5—C9 | 1.317 (5) | C12—H12B | 0.9600 |
N5—C8 | 1.309 (5) | C12—H12C | 0.9600 |
N6—C11 | 1.290 (3) | ||
O1—Ni1—N1 | 89.65 (8) | C3—C4—C5 | 123.5 (2) |
O1—Ni1—N3 | 92.91 (8) | C4—C5—C6 | 122.6 (2) |
O1—Ni1—N4 | 90.90 (7) | N3—C5—C4 | 114.0 (2) |
O1—Ni1—N6 | 89.43 (8) | N3—C5—C6 | 123.4 (2) |
O1—Ni1—N7 | 175.60 (9) | N4—C7—C8 | 122.2 (3) |
N1—Ni1—N3 | 76.64 (8) | N5—C8—C7 | 122.3 (3) |
N1—Ni1—N4 | 110.80 (8) | N5—C9—C10 | 123.9 (3) |
N1—Ni1—N6 | 170.52 (8) | N4—C10—C9 | 118.6 (3) |
N1—Ni1—N7 | 88.12 (9) | N4—C10—C11 | 118.0 (2) |
N3—Ni1—N4 | 171.68 (8) | C9—C10—C11 | 123.3 (3) |
N3—Ni1—N6 | 93.99 (8) | N6—C11—C12 | 123.7 (2) |
N3—Ni1—N7 | 90.26 (9) | C10—C11—C12 | 121.8 (2) |
N4—Ni1—N6 | 78.65 (8) | N6—C11—C10 | 114.5 (2) |
N4—Ni1—N7 | 86.36 (8) | S1—C13—N7 | 178.2 (2) |
N6—Ni1—N7 | 93.39 (9) | N1—C1—H1 | 119.00 |
Ni1—O1—H1W | 109.00 | C2—C1—H1 | 119.00 |
Ni1—O1—H2W | 112.0 (15) | N2—C2—H2 | 119.00 |
H1W—O1—H2W | 118.00 | C1—C2—H2 | 119.00 |
N3—O2—H1O | 107 (3) | N2—C3—H3 | 118.00 |
Ni1—N1—C4 | 111.85 (16) | C4—C3—H3 | 118.00 |
C1—N1—C4 | 117.1 (2) | C5—C6—H6A | 109.00 |
Ni1—N1—C1 | 130.46 (15) | C5—C6—H6B | 109.00 |
C2—N2—C3 | 115.8 (2) | C5—C6—H6C | 109.00 |
O2—N3—C5 | 117.4 (2) | H6A—C6—H6B | 110.00 |
Ni1—N3—C5 | 119.20 (18) | H6A—C6—H6C | 109.00 |
Ni1—N3—O2 | 122.62 (15) | H6B—C6—H6C | 109.00 |
Ni1—N4—C10 | 110.89 (18) | N4—C7—H7 | 119.00 |
C7—N4—C10 | 117.2 (2) | C8—C7—H7 | 119.00 |
Ni1—N4—C7 | 131.30 (17) | N5—C8—H8 | 119.00 |
C8—N5—C9 | 115.9 (3) | C7—C8—H8 | 119.00 |
Ni1—N6—O3 | 122.51 (14) | N5—C9—H9 | 118.00 |
Ni1—N6—C11 | 117.75 (17) | C10—C9—H9 | 118.00 |
O3—N6—C11 | 119.7 (2) | C11—C12—H12A | 109.00 |
Ni1—N7—C13 | 173.0 (2) | C11—C12—H12B | 109.00 |
N1—C1—C2 | 122.0 (2) | C11—C12—H12C | 110.00 |
N2—C2—C1 | 122.3 (2) | H12A—C12—H12B | 110.00 |
N2—C3—C4 | 123.2 (2) | H12A—C12—H12C | 110.00 |
N1—C4—C3 | 119.7 (2) | H12B—C12—H12C | 110.00 |
N1—C4—C5 | 116.9 (2) | ||
O1—Ni1—N1—C1 | −86.7 (2) | C1—N1—C4—C5 | 179.8 (2) |
N3—Ni1—N1—C1 | −179.7 (2) | Ni1—N1—C4—C3 | 171.17 (18) |
N4—Ni1—N1—C1 | 4.2 (2) | C1—N1—C4—C3 | −0.8 (3) |
N7—Ni1—N1—C1 | 89.6 (2) | C2—N2—C3—C4 | 1.0 (4) |
O1—Ni1—N1—C4 | 102.77 (17) | C3—N2—C2—C1 | 0.1 (4) |
N3—Ni1—N1—C4 | 9.69 (16) | Ni1—N3—C5—C6 | −168.53 (19) |
N4—Ni1—N1—C4 | −166.41 (16) | O2—N3—C5—C6 | 1.9 (4) |
N7—Ni1—N1—C4 | −81.03 (17) | Ni1—N3—C5—C4 | 9.5 (3) |
O1—Ni1—N3—O2 | 90.31 (19) | O2—N3—C5—C4 | 179.9 (2) |
N1—Ni1—N3—O2 | 179.3 (2) | C10—N4—C7—C8 | −0.5 (4) |
N6—Ni1—N3—O2 | 0.7 (2) | Ni1—N4—C10—C11 | 5.1 (3) |
N7—Ni1—N3—O2 | −92.7 (2) | C7—N4—C10—C11 | 176.8 (3) |
O1—Ni1—N3—C5 | −99.8 (2) | C7—N4—C10—C9 | −0.3 (4) |
N1—Ni1—N3—C5 | −10.86 (19) | Ni1—N4—C7—C8 | 169.3 (2) |
N6—Ni1—N3—C5 | 170.6 (2) | Ni1—N4—C10—C9 | −172.1 (3) |
N7—Ni1—N3—C5 | 77.2 (2) | C8—N5—C9—C10 | −0.1 (5) |
O1—Ni1—N4—C7 | 97.6 (2) | C9—N5—C8—C7 | −0.7 (5) |
N1—Ni1—N4—C7 | 7.7 (3) | Ni1—N6—C11—C12 | −177.9 (2) |
N6—Ni1—N4—C7 | −173.1 (2) | O3—N6—C11—C10 | −179.7 (2) |
N7—Ni1—N4—C7 | −78.9 (2) | O3—N6—C11—C12 | 0.2 (4) |
O1—Ni1—N4—C10 | −92.1 (2) | Ni1—N6—C11—C10 | 2.3 (3) |
N1—Ni1—N4—C10 | 177.9 (2) | N1—C1—C2—N2 | −1.6 (4) |
N6—Ni1—N4—C10 | −2.9 (2) | N2—C3—C4—N1 | −0.7 (4) |
N7—Ni1—N4—C10 | 91.3 (2) | N2—C3—C4—C5 | 178.7 (2) |
O1—Ni1—N6—O3 | −86.70 (18) | N1—C4—C5—N3 | −0.2 (3) |
N3—Ni1—N6—O3 | 6.18 (18) | N1—C4—C5—C6 | 177.9 (2) |
N4—Ni1—N6—O3 | −177.73 (19) | C3—C4—C5—C6 | −1.6 (4) |
N7—Ni1—N6—O3 | 96.68 (18) | C3—C4—C5—N3 | −179.7 (2) |
O1—Ni1—N6—C11 | 91.28 (18) | N4—C7—C8—N5 | 1.1 (5) |
N3—Ni1—N6—C11 | −175.84 (19) | N5—C9—C10—C11 | −176.4 (3) |
N4—Ni1—N6—C11 | 0.25 (18) | N5—C9—C10—N4 | 0.6 (5) |
N7—Ni1—N6—C11 | −85.35 (19) | N4—C10—C11—C12 | 175.1 (3) |
Ni1—N1—C1—C2 | −168.28 (18) | C9—C10—C11—N6 | 171.9 (3) |
C4—N1—C1—C2 | 1.9 (4) | C9—C10—C11—C12 | −7.9 (5) |
Ni1—N1—C4—C5 | −8.3 (3) | N4—C10—C11—N6 | −5.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O···O3 | 0.89 (4) | 1.63 (4) | 2.505 (3) | 167 (5) |
O1—H1W···N2i | 0.82 | 2.14 | 2.941 (4) | 166 |
O1—H2W···O3ii | 0.89 (2) | 1.84 (2) | 2.690 (3) | 161 (2) |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C6H6N3O)(NCS)(C6H7N3O)(H2O)] |
Mr | 408.09 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 296 |
a, b, c (Å) | 11.917 (8), 11.899 (8), 12.354 (8) |
β (°) | 108.220 (5) |
V (Å3) | 1664.1 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.32 |
Crystal size (mm) | 0.36 × 0.32 × 0.29 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.648, 0.701 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5816, 2809, 2700 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.045, 1.05 |
No. of reflections | 2809 |
No. of parameters | 238 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.16 |
Absolute structure | Flack (1983), 1258 Friedel pairs |
Absolute structure parameter | 0.079 (9) |
Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O···O3 | 0.89 (4) | 1.63 (4) | 2.505 (3) | 167 (5) |
O1—H1W···N2i | 0.82 | 2.14 | 2.941 (4) | 166 |
O1—H2W···O3ii | 0.887 (18) | 1.835 (17) | 2.690 (3) | 161 (2) |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x, −y, z+1/2. |
Acknowledgements
The authors thank the National Natural Science Foundation (No. 20871099) of China, the Natural Science Foundation of Gansu Province (No. 0710RJZA113), the NWNU-LKQN-10–14 Foundation and the Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest Normal University), Ministry of Education, for financial support.
References
Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Escuer, A., Cordero, B., Font-Bardia, M. & Calvet, T. (2010). Inorg. Chem. 49, 9752-9754. Web of Science CSD CrossRef CAS PubMed Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Radek, C., František, H., Tomáš, M., Jiří, M., Sonja, T. & František, L. (1999). Collect. Czech. Chem. Commun. 64, 1159–1179. Google Scholar
Radek, C., Ivana, C., Jan, O., František, L. & Jiří, L. (2001). Collect. Czech. Chem. Commun. 66, 170–184. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spini, G. (1973). Talanta, 20, 684-688. PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past decades, much attention has been paid to the design and synthesis of oximes complexes. Oximes can be feasibly synthesized by the Schiff base condensation of an aldehyde or ketone with hydroxylamine. To date, various oximate ligands as bridging ligands have been extensively explored for their great ability to form homo- and heterometallic polynuclear complexes, which can transmit magnetic exchange efficiently (Radek et al. 1999, 2001). Among oximate bridging ligands, R-substituted-pyridyloximes, (py)C(R)NOH, salycylaldoximes and R-saoH2 play an outstanding role to generate a great variety of polynuclear complexes which not only have aesthetically pleasing structures, but also possess interesting magnetic properties of single molecule magnet (SMM) and single chain magnet (SCM) behavior (Escuer et al., 2010; Spini, 1973).
The title compound, Fig. 1, is a new nickel complex obtained by the reaction of nickel chloride hexahydrate with mpkoH (methyl pyrazine-2-yl ketoxime) in CH3OH solution. The NiII cation is in a slightly distorted octahedral geometry. The equatorial plane is defined by four N atoms from two mpkoH ligands - one of which is deprotonated, while the axial positions are occupied by one N atom from a SCN- anion and one water O atom. There is an intramolecular O-H···O hydrogen bond (Table 1) involving the the oxime moieties of the two ligands.
In the crystal a three-dimensional supramolecular architecture is formed by O—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 1).