metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[1-(pyrazin-2-yl)ethanone oximato-κ2N,N′][1-(pyrazin-2-yl)ethanone oxime-κ2N,N′](thio­cyanato-κN)nickel(II)

aKey Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jcliu8@163.com

(Received 28 May 2012; accepted 30 May 2012; online 13 June 2012)

In the title complex, [Ni(C6H6N3O)(NCS)(C6H7N3O)(H2O)] or [Ni(mpko)(SCN)(mpkoH)(H2O)] [where mpkoH = 1-(pyrazin-2-yl)ethanone oxime], the NiII cation is in a slightly distorted octa­hedral geometry, being coordinated in the equatorial plane by four N atoms from two different mpkoH ligands, one of which is deprotonated, and by one N atom from a thio­cyanate anion and one O atom from a water mol­ecule in the axial positions. There is an intra­molecular O—H⋯O hydrogen bond involving the oxime units of the two ligands. In the crystal, a three-dimensional supra­molecular architecture is formed by O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For magnetic properties of related oxime complexes, see: Escuer et al. (2010[Escuer, A., Cordero, B., Font-Bardia, M. & Calvet, T. (2010). Inorg. Chem. 49, 9752-9754.]); Radek et al. (1999[Radek, C., František, H., Tomáš, M., Jiří, M., Sonja, T. & František, L. (1999). Collect. Czech. Chem. Commun. 64, 1159-1179.], 2001[Radek, C., Ivana, C., Jan, O., František, L. & Jiří, L. (2001). Collect. Czech. Chem. Commun. 66, 170-184.]); Spini (1973[Spini, G. (1973). Talanta, 20, 684-688.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H6N3O)(NCS)(C6H7N3O)(H2O)]

  • Mr = 408.09

  • Monoclinic, C c

  • a = 11.917 (8) Å

  • b = 11.899 (8) Å

  • c = 12.354 (8) Å

  • β = 108.220 (5)°

  • V = 1664.1 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 296 K

  • 0.36 × 0.32 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.648, Tmax = 0.701

  • 5816 measured reflections

  • 2809 independent reflections

  • 2700 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.045

  • S = 1.05

  • 2809 reflections

  • 238 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1258 Friedel pairs

  • Flack parameter: 0.079 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O⋯O3 0.89 (4) 1.63 (4) 2.505 (3) 167 (5)
O1—H1W⋯N2i 0.82 2.14 2.941 (4) 166
O1—H2W⋯O3ii 0.89 (2) 1.84 (2) 2.690 (3) 161 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, much attention has been paid to the design and synthesis of oximes complexes. Oximes can be feasibly synthesized by the Schiff base condensation of an aldehyde or ketone with hydroxylamine. To date, various oximate ligands as bridging ligands have been extensively explored for their great ability to form homo- and heterometallic polynuclear complexes, which can transmit magnetic exchange efficiently (Radek et al. 1999, 2001). Among oximate bridging ligands, R-substituted-pyridyloximes, (py)C(R)NOH, salycylaldoximes and R-saoH2 play an outstanding role to generate a great variety of polynuclear complexes which not only have aesthetically pleasing structures, but also possess interesting magnetic properties of single molecule magnet (SMM) and single chain magnet (SCM) behavior (Escuer et al., 2010; Spini, 1973).

The title compound, Fig. 1, is a new nickel complex obtained by the reaction of nickel chloride hexahydrate with mpkoH (methyl pyrazine-2-yl ketoxime) in CH3OH solution. The NiII cation is in a slightly distorted octahedral geometry. The equatorial plane is defined by four N atoms from two mpkoH ligands - one of which is deprotonated, while the axial positions are occupied by one N atom from a SCN- anion and one water O atom. There is an intramolecular O-H···O hydrogen bond (Table 1) involving the the oxime moieties of the two ligands.

In the crystal a three-dimensional supramolecular architecture is formed by O—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For magnetic properties of related oxime complexes, see: Escuer et al. (2010); Radek et al. (1999, 2001); Spini (1973).

Experimental top

The title complex was prepared by the addition of nickel chloride hexahydrate (23.9 mg, 0.1 mmol) to a CH3OH solution of methyl pyrazine-2-yl ketoxime (28 mg, 0.2 mmol); the pH was adjusted to 8 with 1M KSCN. Slow evaporation of the solvent gave red block-like crystals of the title compound, suitable for X-ray analysis, after several days at room temperature [Yield 31 mg, 77%]. Anal. Calc. for C13H15N7NiO3S: C, 38.26; H, 3.71; N, 24.03. Found: C, 36.93; H, 3.4; N, 25.1%.

Refinement top

The OH and water H atoms were located in a difference Fourier map. All except one of the water H atoms [H1W; constrained to be 0.82 Å with Uiso(H) = 1.5Ueq(O)], were freely refined. The C-bound H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 and 0.96Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.

Structure description top

In the past decades, much attention has been paid to the design and synthesis of oximes complexes. Oximes can be feasibly synthesized by the Schiff base condensation of an aldehyde or ketone with hydroxylamine. To date, various oximate ligands as bridging ligands have been extensively explored for their great ability to form homo- and heterometallic polynuclear complexes, which can transmit magnetic exchange efficiently (Radek et al. 1999, 2001). Among oximate bridging ligands, R-substituted-pyridyloximes, (py)C(R)NOH, salycylaldoximes and R-saoH2 play an outstanding role to generate a great variety of polynuclear complexes which not only have aesthetically pleasing structures, but also possess interesting magnetic properties of single molecule magnet (SMM) and single chain magnet (SCM) behavior (Escuer et al., 2010; Spini, 1973).

The title compound, Fig. 1, is a new nickel complex obtained by the reaction of nickel chloride hexahydrate with mpkoH (methyl pyrazine-2-yl ketoxime) in CH3OH solution. The NiII cation is in a slightly distorted octahedral geometry. The equatorial plane is defined by four N atoms from two mpkoH ligands - one of which is deprotonated, while the axial positions are occupied by one N atom from a SCN- anion and one water O atom. There is an intramolecular O-H···O hydrogen bond (Table 1) involving the the oxime moieties of the two ligands.

In the crystal a three-dimensional supramolecular architecture is formed by O—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 1).

For magnetic properties of related oxime complexes, see: Escuer et al. (2010); Radek et al. (1999, 2001); Spini (1973).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. The O-H···O and O-H···N hydrogen bonds are shown as dashed lines (see Table 1 for details).
Aqua[1-(pyrazin-2-yl)ethanone oximato-κ2N,N'][1-(pyrazin-2-yl)ethanone oxime-κ2N,N'](thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(C6H6N3O)(NCS)(C6H7N3O)(H2O)]F(000) = 840
Mr = 408.09Dx = 1.629 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4663 reflections
a = 11.917 (8) Åθ = 2.5–28.9°
b = 11.899 (8) ŵ = 1.32 mm1
c = 12.354 (8) ÅT = 296 K
β = 108.220 (5)°Block, red
V = 1664.1 (19) Å30.36 × 0.32 × 0.29 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2809 independent reflections
Radiation source: fine-focus sealed tube2700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1314
Tmin = 0.648, Tmax = 0.701k = 1414
5816 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0195P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.22 e Å3
2809 reflectionsΔρmin = 0.16 e Å3
238 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.0035 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1258 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.079 (9)
Crystal data top
[Ni(C6H6N3O)(NCS)(C6H7N3O)(H2O)]V = 1664.1 (19) Å3
Mr = 408.09Z = 4
Monoclinic, CcMo Kα radiation
a = 11.917 (8) ŵ = 1.32 mm1
b = 11.899 (8) ÅT = 296 K
c = 12.354 (8) Å0.36 × 0.32 × 0.29 mm
β = 108.220 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2809 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2700 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.701Rint = 0.017
5816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.16 e Å3
2809 reflectionsAbsolute structure: Flack (1983), 1258 Friedel pairs
238 parametersAbsolute structure parameter: 0.079 (9)
5 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.06769 (2)0.04643 (2)0.79647 (2)0.0232 (1)
S10.29404 (7)0.01219 (7)0.48705 (6)0.0505 (3)
O10.22258 (19)0.04631 (13)0.93718 (17)0.0297 (6)
O20.1754 (2)0.19519 (17)0.65847 (17)0.0455 (7)
O30.21552 (17)0.01069 (15)0.64998 (15)0.0416 (6)
N10.00488 (18)0.17283 (15)0.87702 (17)0.0243 (6)
N20.12050 (19)0.35594 (17)0.93569 (18)0.0389 (7)
N30.11228 (18)0.19306 (17)0.73314 (18)0.0291 (7)
N40.02311 (18)0.11543 (16)0.83966 (17)0.0308 (7)
N50.0404 (2)0.33939 (18)0.8492 (3)0.0609 (10)
N60.14984 (18)0.05268 (16)0.71043 (16)0.0294 (6)
N70.0897 (2)0.04323 (17)0.6682 (2)0.0364 (9)
C10.0646 (2)0.1639 (2)0.9510 (2)0.0324 (8)
C20.1229 (2)0.2544 (2)0.9789 (2)0.0376 (8)
C30.0582 (2)0.36562 (18)0.8631 (2)0.0338 (8)
C40.0003 (2)0.27569 (18)0.83197 (19)0.0262 (7)
C50.0660 (2)0.28514 (19)0.7509 (2)0.0309 (7)
C60.0749 (3)0.3925 (2)0.6917 (2)0.0552 (12)
C70.0488 (3)0.1484 (2)0.8961 (2)0.0452 (10)
C80.0807 (3)0.2595 (3)0.8998 (3)0.0552 (11)
C90.0317 (3)0.3073 (2)0.7932 (3)0.0508 (10)
C100.0655 (3)0.19532 (16)0.7858 (3)0.0332 (7)
C110.1399 (2)0.1601 (2)0.7182 (2)0.0321 (8)
C120.1990 (3)0.2437 (2)0.6627 (3)0.0485 (10)
C130.1750 (2)0.03029 (18)0.5946 (2)0.0290 (8)
H10.067300.094700.985200.0390*
H1O0.200 (4)0.125 (3)0.654 (3)0.092 (14)*
H1W0.268700.000700.927300.0450*
H20.165400.243601.029600.0450*
H2W0.207 (2)0.0450 (19)1.0028 (13)0.053 (9)*
H30.053400.435900.831900.0410*
H6A0.137500.437500.740000.0830*
H6B0.001600.432700.674900.0830*
H6C0.091300.376300.622000.0830*
H70.078900.095000.934700.0540*
H80.132600.278200.939600.0660*
H90.061900.362100.756400.0610*
H12A0.140200.281700.602600.0730*
H12B0.241500.297500.718400.0730*
H12C0.252900.205300.631800.0730*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0290 (2)0.0193 (1)0.0225 (1)0.0021 (2)0.0098 (1)0.0009 (2)
S10.0319 (4)0.0722 (5)0.0404 (4)0.0037 (3)0.0012 (3)0.0099 (3)
O10.0305 (11)0.0341 (11)0.0258 (11)0.0046 (7)0.0106 (9)0.0009 (7)
O20.0666 (14)0.0386 (11)0.0455 (12)0.0003 (10)0.0382 (11)0.0025 (9)
O30.0520 (11)0.0481 (10)0.0342 (10)0.0031 (9)0.0270 (9)0.0049 (8)
N10.0280 (11)0.0209 (10)0.0245 (10)0.0003 (8)0.0089 (9)0.0004 (8)
N20.0336 (12)0.0374 (11)0.0453 (13)0.0056 (9)0.0119 (10)0.0114 (10)
N30.0369 (13)0.0269 (11)0.0259 (10)0.0019 (9)0.0135 (9)0.0008 (8)
N40.0342 (12)0.0252 (11)0.0340 (11)0.0011 (9)0.0122 (9)0.0011 (9)
N50.0601 (17)0.0271 (12)0.088 (2)0.0061 (12)0.0124 (16)0.0101 (13)
N60.0315 (11)0.0319 (10)0.0236 (10)0.0050 (9)0.0071 (9)0.0050 (8)
N70.0376 (18)0.0334 (14)0.0363 (16)0.0025 (9)0.0087 (13)0.0069 (9)
C10.0346 (14)0.0312 (13)0.0341 (14)0.0014 (11)0.0145 (12)0.0001 (11)
C20.0380 (15)0.0403 (14)0.0385 (14)0.0008 (11)0.0178 (12)0.0066 (11)
C30.0327 (14)0.0237 (12)0.0423 (14)0.0036 (10)0.0080 (11)0.0003 (10)
C40.0294 (13)0.0204 (11)0.0245 (12)0.0015 (10)0.0024 (10)0.0019 (9)
C50.0380 (14)0.0262 (12)0.0284 (12)0.0024 (11)0.0104 (11)0.0008 (9)
C60.096 (3)0.0296 (13)0.0501 (18)0.0041 (14)0.0375 (18)0.0044 (12)
C70.0537 (19)0.0355 (15)0.0549 (18)0.0051 (13)0.0291 (16)0.0012 (12)
C80.053 (2)0.0441 (18)0.072 (2)0.0113 (16)0.0244 (18)0.0159 (16)
C90.055 (2)0.0264 (12)0.0639 (18)0.0060 (11)0.0084 (18)0.0039 (14)
C100.0328 (13)0.0239 (10)0.0367 (14)0.0079 (14)0.0019 (10)0.0015 (13)
C110.0321 (14)0.0296 (13)0.0293 (13)0.0109 (11)0.0021 (11)0.0053 (10)
C120.055 (2)0.0380 (16)0.0482 (17)0.0155 (14)0.0098 (15)0.0156 (13)
C130.0308 (15)0.0275 (12)0.0317 (13)0.0049 (10)0.0141 (12)0.0034 (9)
Geometric parameters (Å, º) top
Ni1—O12.103 (3)N7—C131.143 (3)
Ni1—N12.130 (2)C1—C21.382 (4)
Ni1—N32.049 (2)C3—C41.391 (3)
Ni1—N42.110 (2)C4—C51.461 (4)
Ni1—N62.032 (2)C5—C61.492 (4)
Ni1—N72.043 (3)C7—C81.380 (4)
S1—C131.627 (3)C9—C101.403 (3)
O2—N31.361 (3)C10—C111.457 (4)
O3—N61.336 (3)C11—C121.503 (4)
O1—H1W0.8200C1—H10.9300
O1—H2W0.887 (18)C2—H20.9300
O2—H1O0.89 (4)C3—H30.9300
N1—C11.327 (3)C6—H6A0.9600
N1—C41.353 (3)C6—H6B0.9600
N2—C21.325 (3)C6—H6C0.9600
N2—C31.336 (3)C7—H70.9300
N3—C51.276 (3)C8—H80.9300
N4—C101.346 (4)C9—H90.9300
N4—C71.322 (4)C12—H12A0.9600
N5—C91.317 (5)C12—H12B0.9600
N5—C81.309 (5)C12—H12C0.9600
N6—C111.290 (3)
O1—Ni1—N189.65 (8)C3—C4—C5123.5 (2)
O1—Ni1—N392.91 (8)C4—C5—C6122.6 (2)
O1—Ni1—N490.90 (7)N3—C5—C4114.0 (2)
O1—Ni1—N689.43 (8)N3—C5—C6123.4 (2)
O1—Ni1—N7175.60 (9)N4—C7—C8122.2 (3)
N1—Ni1—N376.64 (8)N5—C8—C7122.3 (3)
N1—Ni1—N4110.80 (8)N5—C9—C10123.9 (3)
N1—Ni1—N6170.52 (8)N4—C10—C9118.6 (3)
N1—Ni1—N788.12 (9)N4—C10—C11118.0 (2)
N3—Ni1—N4171.68 (8)C9—C10—C11123.3 (3)
N3—Ni1—N693.99 (8)N6—C11—C12123.7 (2)
N3—Ni1—N790.26 (9)C10—C11—C12121.8 (2)
N4—Ni1—N678.65 (8)N6—C11—C10114.5 (2)
N4—Ni1—N786.36 (8)S1—C13—N7178.2 (2)
N6—Ni1—N793.39 (9)N1—C1—H1119.00
Ni1—O1—H1W109.00C2—C1—H1119.00
Ni1—O1—H2W112.0 (15)N2—C2—H2119.00
H1W—O1—H2W118.00C1—C2—H2119.00
N3—O2—H1O107 (3)N2—C3—H3118.00
Ni1—N1—C4111.85 (16)C4—C3—H3118.00
C1—N1—C4117.1 (2)C5—C6—H6A109.00
Ni1—N1—C1130.46 (15)C5—C6—H6B109.00
C2—N2—C3115.8 (2)C5—C6—H6C109.00
O2—N3—C5117.4 (2)H6A—C6—H6B110.00
Ni1—N3—C5119.20 (18)H6A—C6—H6C109.00
Ni1—N3—O2122.62 (15)H6B—C6—H6C109.00
Ni1—N4—C10110.89 (18)N4—C7—H7119.00
C7—N4—C10117.2 (2)C8—C7—H7119.00
Ni1—N4—C7131.30 (17)N5—C8—H8119.00
C8—N5—C9115.9 (3)C7—C8—H8119.00
Ni1—N6—O3122.51 (14)N5—C9—H9118.00
Ni1—N6—C11117.75 (17)C10—C9—H9118.00
O3—N6—C11119.7 (2)C11—C12—H12A109.00
Ni1—N7—C13173.0 (2)C11—C12—H12B109.00
N1—C1—C2122.0 (2)C11—C12—H12C110.00
N2—C2—C1122.3 (2)H12A—C12—H12B110.00
N2—C3—C4123.2 (2)H12A—C12—H12C110.00
N1—C4—C3119.7 (2)H12B—C12—H12C110.00
N1—C4—C5116.9 (2)
O1—Ni1—N1—C186.7 (2)C1—N1—C4—C5179.8 (2)
N3—Ni1—N1—C1179.7 (2)Ni1—N1—C4—C3171.17 (18)
N4—Ni1—N1—C14.2 (2)C1—N1—C4—C30.8 (3)
N7—Ni1—N1—C189.6 (2)C2—N2—C3—C41.0 (4)
O1—Ni1—N1—C4102.77 (17)C3—N2—C2—C10.1 (4)
N3—Ni1—N1—C49.69 (16)Ni1—N3—C5—C6168.53 (19)
N4—Ni1—N1—C4166.41 (16)O2—N3—C5—C61.9 (4)
N7—Ni1—N1—C481.03 (17)Ni1—N3—C5—C49.5 (3)
O1—Ni1—N3—O290.31 (19)O2—N3—C5—C4179.9 (2)
N1—Ni1—N3—O2179.3 (2)C10—N4—C7—C80.5 (4)
N6—Ni1—N3—O20.7 (2)Ni1—N4—C10—C115.1 (3)
N7—Ni1—N3—O292.7 (2)C7—N4—C10—C11176.8 (3)
O1—Ni1—N3—C599.8 (2)C7—N4—C10—C90.3 (4)
N1—Ni1—N3—C510.86 (19)Ni1—N4—C7—C8169.3 (2)
N6—Ni1—N3—C5170.6 (2)Ni1—N4—C10—C9172.1 (3)
N7—Ni1—N3—C577.2 (2)C8—N5—C9—C100.1 (5)
O1—Ni1—N4—C797.6 (2)C9—N5—C8—C70.7 (5)
N1—Ni1—N4—C77.7 (3)Ni1—N6—C11—C12177.9 (2)
N6—Ni1—N4—C7173.1 (2)O3—N6—C11—C10179.7 (2)
N7—Ni1—N4—C778.9 (2)O3—N6—C11—C120.2 (4)
O1—Ni1—N4—C1092.1 (2)Ni1—N6—C11—C102.3 (3)
N1—Ni1—N4—C10177.9 (2)N1—C1—C2—N21.6 (4)
N6—Ni1—N4—C102.9 (2)N2—C3—C4—N10.7 (4)
N7—Ni1—N4—C1091.3 (2)N2—C3—C4—C5178.7 (2)
O1—Ni1—N6—O386.70 (18)N1—C4—C5—N30.2 (3)
N3—Ni1—N6—O36.18 (18)N1—C4—C5—C6177.9 (2)
N4—Ni1—N6—O3177.73 (19)C3—C4—C5—C61.6 (4)
N7—Ni1—N6—O396.68 (18)C3—C4—C5—N3179.7 (2)
O1—Ni1—N6—C1191.28 (18)N4—C7—C8—N51.1 (5)
N3—Ni1—N6—C11175.84 (19)N5—C9—C10—C11176.4 (3)
N4—Ni1—N6—C110.25 (18)N5—C9—C10—N40.6 (5)
N7—Ni1—N6—C1185.35 (19)N4—C10—C11—C12175.1 (3)
Ni1—N1—C1—C2168.28 (18)C9—C10—C11—N6171.9 (3)
C4—N1—C1—C21.9 (4)C9—C10—C11—C127.9 (5)
Ni1—N1—C4—C58.3 (3)N4—C10—C11—N65.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···O30.89 (4)1.63 (4)2.505 (3)167 (5)
O1—H1W···N2i0.822.142.941 (4)166
O1—H2W···O3ii0.89 (2)1.84 (2)2.690 (3)161 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H6N3O)(NCS)(C6H7N3O)(H2O)]
Mr408.09
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)11.917 (8), 11.899 (8), 12.354 (8)
β (°) 108.220 (5)
V3)1664.1 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.36 × 0.32 × 0.29
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.648, 0.701
No. of measured, independent and
observed [I > 2σ(I)] reflections
5816, 2809, 2700
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.045, 1.05
No. of reflections2809
No. of parameters238
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.16
Absolute structureFlack (1983), 1258 Friedel pairs
Absolute structure parameter0.079 (9)

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···O30.89 (4)1.63 (4)2.505 (3)167 (5)
O1—H1W···N2i0.822.142.941 (4)166
O1—H2W···O3ii0.887 (18)1.835 (17)2.690 (3)161 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation (No. 20871099) of China, the Natural Science Foundation of Gansu Province (No. 0710RJZA113), the NWNU-LKQN-10–14 Foundation and the Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest Normal University), Ministry of Education, for financial support.

References

First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEscuer, A., Cordero, B., Font-Bardia, M. & Calvet, T. (2010). Inorg. Chem. 49, 9752-9754.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRadek, C., František, H., Tomáš, M., Jiří, M., Sonja, T. & František, L. (1999). Collect. Czech. Chem. Commun. 64, 1159–1179.  Google Scholar
First citationRadek, C., Ivana, C., Jan, O., František, L. & Jiří, L. (2001). Collect. Czech. Chem. Commun. 66, 170–184.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpini, G. (1973). Talanta, 20, 684-688.  PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds