metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′,6,6′-Tetra­iodo-2,2′-[(2,2-di­methyl­propane-1,3-di­yl)bis­­(nitrilo­methanylyl­­idene)]diphenolato}nickel(II)

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cStructural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 29 May 2012; accepted 31 May 2012; online 16 June 2012)

The asymmetric unit of the title compound, [Ni(C19H16I4N2O2)], comprises half of a Schiff base complex. The NiII atom is located on a twofold rotation axis which also bis­ects the central C atom of the 2,2-dimethyl­propane group of the ligand. The geometry around the NiII atom is distorted square-planar, with a dihedral angle of 21.7 (3)° between the symmetry-related N/Ni/O coordination planes. The dihedral angle between the symmetry-related benzene rings is 27.9 (3)°. In the crystal, short inter­molecular I⋯I [3.8178 (9) and 3.9013 (10) Å] inter­actions are present.

Related literature

For applications of Schiff bases in coordination chemistry, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower et al. (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]). For the related structures studied by our group, see: Kargar et al. (2012a[Kargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012a). Acta Cryst. E68, m193.],b[Kargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012b). Acta Cryst. E68, m82.],c[Kargar, H., Kia, R., Shakarami, T. & Tahir, M. N. (2012c). Acta Cryst. E68, o564.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C19H16I4N2O2)]

  • Mr = 870.65

  • Orthorhombic, P b c n

  • a = 16.682 (2) Å

  • b = 15.9978 (19) Å

  • c = 8.7920 (9) Å

  • V = 2346.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.11 mm−1

  • T = 291 K

  • 0.21 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.360, Tmax = 0.553

  • 10345 measured reflections

  • 2582 independent reflections

  • 1615 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.096

  • S = 0.96

  • 2582 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012a,b), we report herein on the crystal structure of the title compound, the nickel(II) complex of the Schiff base ligand 6,6'-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2,4-diiodophenol). The structure of the Zwitterion form of this ligand has been reported by us (Kargar et al., 2012c).

The asymmetric unit of the title compound, Fig. 1, comprises half of a Schiff base complex. The NiII atom is located on a 2-fold rotation axis which also bisects the central C atom, C9, of the 2,2-dimethylpropane group in the ligand. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for the ligand (Kargar et al., 2012c) and related structures (Kargar et al., 2012a,b). The geometry around atom Ni1 is distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the benzene rings (C1-C6 and C1i-C6i; symmetry code: (i) -x+1, y, -z+1/2) is 27.9 (3)°, while that between the symmetry-related coordination planes, N1,Ni1,O1 and N1i,Ni1i,O1i is 21.7 (3)°.

In the crystal, short intermolecular I1···I2i [3.8178 (9)Å; symmetry code: (i) -x+3/2, -y-1/2, z+1/2] and I2···I2ii [3.9013 (10)Å; symmetry code: (ii) -x+2, y, -z-1/2] interactions are present (Fig. 2). These interactions are shorter than the sum of the van der Waals radius of I atoms [3.96Å; Bondi, 1964].

Related literature top

For applications of Schiff bases in coordination chemistry, see: Granovski et al. (1993); Blower et al. (1998). For the related structures studied by our group, see: Kargar et al. (2012a,b,c). For standard bond lengths, see: Allen et al. (1987). For van der Waals radii, see: Bondi (1964).

Experimental top

The title compound was synthesized by adding 2 mmol of 6,6'-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene)) bis(2,4-diiodophenol) to a solution of NiCl2. 6H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Dark-red block-like crystals of the title compound, suitable for X-ray structure analysis, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and = 1.2 for other H-atoms.

Structure description top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012a,b), we report herein on the crystal structure of the title compound, the nickel(II) complex of the Schiff base ligand 6,6'-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2,4-diiodophenol). The structure of the Zwitterion form of this ligand has been reported by us (Kargar et al., 2012c).

The asymmetric unit of the title compound, Fig. 1, comprises half of a Schiff base complex. The NiII atom is located on a 2-fold rotation axis which also bisects the central C atom, C9, of the 2,2-dimethylpropane group in the ligand. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for the ligand (Kargar et al., 2012c) and related structures (Kargar et al., 2012a,b). The geometry around atom Ni1 is distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the benzene rings (C1-C6 and C1i-C6i; symmetry code: (i) -x+1, y, -z+1/2) is 27.9 (3)°, while that between the symmetry-related coordination planes, N1,Ni1,O1 and N1i,Ni1i,O1i is 21.7 (3)°.

In the crystal, short intermolecular I1···I2i [3.8178 (9)Å; symmetry code: (i) -x+3/2, -y-1/2, z+1/2] and I2···I2ii [3.9013 (10)Å; symmetry code: (ii) -x+2, y, -z-1/2] interactions are present (Fig. 2). These interactions are shorter than the sum of the van der Waals radius of I atoms [3.96Å; Bondi, 1964].

For applications of Schiff bases in coordination chemistry, see: Granovski et al. (1993); Blower et al. (1998). For the related structures studied by our group, see: Kargar et al. (2012a,b,c). For standard bond lengths, see: Allen et al. (1987). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008)'; software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A: -x + 1, y, -z+ 1/2].
[Figure 2] Fig. 2. A view along the c axis of crystal packing of the title compound, showing the intermolecular I···I interactions (dashed lines).
{4,4',6,6'-Tetraiodo-2,2'-[(2,2-dimethylpropane-1,3- diyl)bis(nitrilomethanylylidene)]diphenolato}nickel(II) top
Crystal data top
[Ni(C19H16I4N2O2)]F(000) = 1600
Mr = 870.65Dx = 2.465 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2540 reflections
a = 16.682 (2) Åθ = 2.5–27.4°
b = 15.9978 (19) ŵ = 6.11 mm1
c = 8.7920 (9) ÅT = 291 K
V = 2346.4 (5) Å3Block, dark-red
Z = 40.21 × 0.15 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2582 independent reflections
Radiation source: fine-focus sealed tube1615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 27.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2121
Tmin = 0.360, Tmax = 0.553k = 2018
10345 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0314P)2]
where P = (Fo2 + 2Fc2)/3
2582 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Ni(C19H16I4N2O2)]V = 2346.4 (5) Å3
Mr = 870.65Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.682 (2) ŵ = 6.11 mm1
b = 15.9978 (19) ÅT = 291 K
c = 8.7920 (9) Å0.21 × 0.15 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2582 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1615 reflections with I > 2σ(I)
Tmin = 0.360, Tmax = 0.553Rint = 0.078
10345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.96Δρmax = 1.07 e Å3
2582 reflectionsΔρmin = 0.73 e Å3
129 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6358 (4)0.0602 (4)0.1174 (7)0.0299 (16)
C20.6886 (4)0.1295 (4)0.1037 (7)0.0362 (17)
C30.7615 (4)0.1247 (5)0.0316 (7)0.0397 (18)
H30.79380.17190.02520.048*
C40.7876 (5)0.0496 (4)0.0323 (8)0.0416 (18)
C50.7398 (5)0.0202 (5)0.0212 (8)0.0445 (19)
H50.75690.07060.06290.053*
C60.6647 (4)0.0157 (4)0.0534 (7)0.0319 (16)
C70.6152 (4)0.0890 (4)0.0576 (7)0.0356 (17)
H70.63200.13420.00090.043*
C80.5034 (5)0.1751 (4)0.1100 (7)0.0389 (17)
H8A0.44930.15980.08130.047*
H8B0.52650.20660.02650.047*
C90.50000.2309 (5)0.25000.038 (2)
C100.4250 (5)0.2865 (5)0.2380 (10)0.062 (2)
H10A0.37780.25220.24120.093*
H10B0.42630.31680.14380.093*
H10C0.42400.32520.32140.093*
I10.65256 (3)0.24569 (3)0.19386 (5)0.04569 (18)
I20.89983 (4)0.04176 (4)0.13554 (7)0.0658 (2)
Ni10.50000.01657 (7)0.25000.0310 (3)
N10.5506 (3)0.0986 (3)0.1332 (6)0.0339 (13)
O10.5668 (3)0.0689 (3)0.1835 (5)0.0363 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (4)0.027 (4)0.032 (4)0.006 (3)0.002 (3)0.000 (3)
C20.041 (4)0.028 (4)0.039 (4)0.007 (4)0.002 (3)0.002 (3)
C30.042 (5)0.035 (4)0.042 (4)0.009 (4)0.008 (4)0.006 (3)
C40.044 (5)0.032 (4)0.049 (4)0.003 (4)0.006 (4)0.005 (3)
C50.053 (5)0.042 (5)0.039 (4)0.006 (4)0.005 (4)0.001 (3)
C60.035 (4)0.023 (4)0.038 (4)0.002 (3)0.001 (3)0.007 (3)
C70.043 (5)0.023 (4)0.041 (4)0.002 (4)0.004 (4)0.007 (3)
C80.046 (5)0.026 (4)0.045 (4)0.005 (4)0.000 (4)0.006 (3)
C90.054 (7)0.012 (5)0.049 (6)0.0000.006 (5)0.000
C100.068 (6)0.053 (5)0.066 (5)0.019 (5)0.009 (5)0.004 (4)
I10.0588 (4)0.0285 (3)0.0498 (3)0.0072 (3)0.0027 (3)0.0056 (2)
I20.0448 (4)0.0558 (4)0.0967 (5)0.0031 (3)0.0273 (3)0.0059 (3)
Ni10.0323 (7)0.0229 (7)0.0378 (7)0.0000.0032 (6)0.000
N10.038 (4)0.021 (3)0.043 (3)0.008 (3)0.005 (3)0.001 (2)
O10.035 (3)0.025 (2)0.049 (3)0.005 (2)0.013 (2)0.002 (2)
Geometric parameters (Å, º) top
C1—O11.297 (8)C8—N11.469 (8)
C1—C21.422 (9)C8—C91.521 (8)
C1—C61.423 (8)C8—H8A0.9700
C2—C31.374 (9)C8—H8B0.9700
C2—I12.108 (7)C9—C8i1.521 (8)
C3—C41.396 (9)C9—C10i1.540 (9)
C3—H30.9300C9—C101.540 (9)
C4—C51.376 (10)C10—H10A0.9600
C4—I22.085 (8)C10—H10B0.9600
C5—C61.417 (10)C10—H10C0.9600
C5—H50.9300Ni1—O1i1.858 (4)
C6—C71.434 (9)Ni1—O11.858 (4)
C7—N11.275 (8)Ni1—N11.868 (5)
C7—H70.9300Ni1—N1i1.868 (5)
O1—C1—C2120.3 (6)C9—C8—H8B108.9
O1—C1—C6124.7 (6)H8A—C8—H8B107.7
C2—C1—C6115.0 (6)C8i—C9—C8108.2 (7)
C3—C2—C1123.0 (6)C8i—C9—C10i108.3 (4)
C3—C2—I1118.4 (5)C8—C9—C10i111.3 (4)
C1—C2—I1118.6 (5)C8i—C9—C10111.3 (4)
C2—C3—C4120.7 (7)C8—C9—C10108.3 (4)
C2—C3—H3119.7C10i—C9—C10109.4 (9)
C4—C3—H3119.7C9—C10—H10A109.5
C5—C4—C3119.4 (7)C9—C10—H10B109.5
C5—C4—I2120.2 (5)H10A—C10—H10B109.5
C3—C4—I2120.4 (5)C9—C10—H10C109.5
C4—C5—C6120.3 (7)H10A—C10—H10C109.5
C4—C5—H5119.9H10B—C10—H10C109.5
C6—C5—H5119.9O1i—Ni1—O185.2 (3)
C5—C6—C1121.8 (6)O1i—Ni1—N1163.9 (2)
C5—C6—C7118.6 (6)O1—Ni1—N194.2 (2)
C1—C6—C7119.5 (6)O1i—Ni1—N1i94.2 (2)
N1—C7—C6126.7 (6)O1—Ni1—N1i163.9 (2)
N1—C7—H7116.6N1—Ni1—N1i90.7 (3)
C6—C7—H7116.6C7—N1—C8118.7 (6)
N1—C8—C9113.3 (5)C7—N1—Ni1125.7 (5)
N1—C8—H8A108.9C8—N1—Ni1114.8 (4)
C9—C8—H8A108.9C1—O1—Ni1126.5 (4)
N1—C8—H8B108.9
O1—C1—C2—C3178.3 (6)N1—C8—C9—C8i36.1 (4)
C6—C1—C2—C31.2 (10)N1—C8—C9—C10i82.8 (7)
O1—C1—C2—I10.4 (8)N1—C8—C9—C10157.0 (6)
C6—C1—C2—I1179.9 (5)C6—C7—N1—C8173.4 (6)
C1—C2—C3—C40.3 (11)C6—C7—N1—Ni14.0 (10)
I1—C2—C3—C4178.9 (5)C9—C8—N1—C7114.5 (7)
C2—C3—C4—C50.6 (11)C9—C8—N1—Ni175.0 (6)
C2—C3—C4—I2178.1 (5)O1i—Ni1—N1—C795.4 (9)
C3—C4—C5—C60.4 (11)O1—Ni1—N1—C78.0 (6)
I2—C4—C5—C6177.9 (5)N1i—Ni1—N1—C7156.7 (7)
C4—C5—C6—C10.7 (11)O1i—Ni1—N1—C874.4 (9)
C4—C5—C6—C7177.7 (6)O1—Ni1—N1—C8161.7 (4)
O1—C1—C6—C5178.1 (6)N1i—Ni1—N1—C833.6 (3)
C2—C1—C6—C51.4 (9)C2—C1—O1—Ni1165.6 (5)
O1—C1—C6—C71.1 (10)C6—C1—O1—Ni114.9 (9)
C2—C1—C6—C7178.4 (6)O1i—Ni1—O1—C1178.8 (6)
C5—C6—C7—N1171.8 (7)N1—Ni1—O1—C117.2 (6)
C1—C6—C7—N111.1 (11)N1i—Ni1—O1—C190.2 (9)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C19H16I4N2O2)]
Mr870.65
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)291
a, b, c (Å)16.682 (2), 15.9978 (19), 8.7920 (9)
V3)2346.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)6.11
Crystal size (mm)0.21 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.360, 0.553
No. of measured, independent and
observed [I > 2σ(I)] reflections
10345, 2582, 1615
Rint0.078
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.096, 0.96
No. of reflections2582
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.73

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008)', SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

HK and TS thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–452.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012a). Acta Cryst. E68, m193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Shakarami, T. & Tahir, M. N. (2012c). Acta Cryst. E68, o564.  CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012b). Acta Cryst. E68, m82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds