organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Hy­dr­oxy-2-{[(2-phenyl­eth­yl)iminium­yl]meth­yl}phenolate

aFacultad de Ciencias Químicas, Universidad de Colima, Carretera Coquimatlán-Colima, Coquimatlán Colima, México, CP 28400, bLaboratorio 26, Departamento de Química, Centro de Investigacion y de Estudios Avanzados del Instituto, Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, CP 07360, México, D.F., and cDepartamento de Ciencias-Básicas Químicas, Unidad Profesional Interdisciplinaria de Biotecnologia, del IPN, Avenida Acueducto s/n, Barrio la Laguna Ticoman, CP 07340, GAM, México, D.F.
*Correspondence e-mail: fjmartin@ucol.mx

(Received 2 June 2012; accepted 4 June 2012; online 13 June 2012)

The title Schiff base compound, C15H15NO2, crystallized as the iminium–phenolate zwitterion. The H atom is localized on the imine N atom, forming a strong intra­molecular hydrogen bond with the phenolate O atom, and giving rise to an S(6) ring motif. The mol­ecule has an E conformation about the C=N bond. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along [010]. There are also C—H⋯O inter­actions present.

Related literature

For general background to the characteristics of Schiff bases, see: Krause et al. (1995[Krause, M., Rouleau, A., Stark, H., Luger, P., Lipp, R., Garbarg, M., Schwartz, J. C. & Schunack, W. (1995). J. Med. Chem. 38, 4070-4079.]); Hadjoudis et al. (2004[Hadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162, 521-530.]). For related structures, see: Dominiak et al. (2006[Dominiak, P. M., Makal, A., Mallinson, P. R., Trzcinska, K., Eilmes, J., Grech, E., Chruszcz, M., Minor, W. & Wozniak, K. (2006). Chem. Eur. J. 12, 1941-1949.]); Santos-Contreras et al. (2009[Santos-Contreras, R. J., Ramos-Organillo, A., García-Báez, E. V., Padilla-Martínez, I. I. & Martínez-Martínez, F. J. (2009). Acta Cryst. C65, o8-o10.]); Ng (2008[Ng, S. W. (2008). Acta Cryst. E64, o2455.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO2

  • Mr = 241.28

  • Monoclinic, P 21 /c

  • a = 9.5010 (19) Å

  • b = 12.936 (3) Å

  • c = 12.551 (4) Å

  • β = 124.81 (2)°

  • V = 1266.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 170 K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: for a sphere(Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) Tmin = 0.861, Tmax = 0.862

  • 15718 measured reflections

  • 2773 independent reflections

  • 2367 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.02

  • 2773 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1 0.86 1.90 2.5884 (15) 137
O4—H4⋯O1i 0.82 1.87 2.6902 (15) 176
C6—H6⋯O4ii 0.95 2.59 3.2818 (18) 130
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff base compounds are highly versatile compounds widely applied in different study fields. They have been used as selective prodrugs for histamine (Krause et al., 1995). and as materials of interest because of their thermochromic and photochromic properties (Hadjoudis et al., 2004). When an OH functionality is also present in the same molecule, tautomeric N—H or O—H equilibrium can be performed, thus these compounds can exist as O—H···N (imines), O···H—N (enamines) and also as N+—H···O- zwitterionic forms (Dominiak et al., 2006, Ng, 2008, Santos-Contreras et al., 2009) Herein we demonstrate that the title compound exist as the N+—H···O- zwitterionic form, with the H atom closing a six membered ring.

The title compound, Fig. 1, exists as a zwitterion with the hydrogen atom being localized on the imine N atom N8. The C1O1 and N8C7 bond lengths [1.3206 (14) and 1.2985 (16) Å, respectively] reveal significant double-bond character. The phenolate ring shows a certain distortion in the C—C bond lengths, but nevertheless an alternating long-short pattern is observed, in agreement with delocalized bonding. The C2—C7 bond distance of 1.4407 (16) Å is in the range for a single bond character. The intramolecular N8-H8···O1 hydrogen bond gives rise to the formation of an S(6) ring motif (Table 1; Bernstein et al., 1995).

In the crystal, an O-H···O hydrogen bond links the molecules to form C(7) chains (Bernstein et al., 1995) that propagate along the b axis direction (Table 1 and Fig. 2). There are also C-H···O interactions present (Table 1).

The title structure closely resembles that of N,-bis(2,5-dihydroxybezyl idene)-1,2-diaminobenzene (Dominiak et al., 2006) and 4-chloro-2-[tris(hydroxymethyl)methyliminiomethyl]phenolate (Ng, 2008).

Related literature top

For general background to the characteristics of Schiff bases, see: Krause et al. (1995); Hadjoudis et al. (2004). For related structures, see: Dominiak et al. (2006); Santos-Contreras et al. (2009); Ng (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by condensation of 5-hydroxysalicylaldehyde (0.5 g, 3.62 mmol) with phenethylamine (0.438 g, 0.454 ml, 3.62 mmol) in toluene, at 298 K with stirring for 5 min. Orange crystals, suitable for X-ray analysis, were obtained by slow evaporation from a saturated dimethylsulfoxide solution [Yield of 0.78 g (90%); M.p. 396–397 K]. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

The amino and OH H atoms were located in a difference Fourier map. In the final cycles of refinement they and the C-bound H atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, N-H = 0.86 Å, C-H = 0.95 and 0.99 Å for CH and CH2 H atoms, respectively, with Uiso(H) = k × Ueq(O,N,C) where k = 1.5 for the OH H atom and = 1.2 for other H atoms.

Structure description top

Schiff base compounds are highly versatile compounds widely applied in different study fields. They have been used as selective prodrugs for histamine (Krause et al., 1995). and as materials of interest because of their thermochromic and photochromic properties (Hadjoudis et al., 2004). When an OH functionality is also present in the same molecule, tautomeric N—H or O—H equilibrium can be performed, thus these compounds can exist as O—H···N (imines), O···H—N (enamines) and also as N+—H···O- zwitterionic forms (Dominiak et al., 2006, Ng, 2008, Santos-Contreras et al., 2009) Herein we demonstrate that the title compound exist as the N+—H···O- zwitterionic form, with the H atom closing a six membered ring.

The title compound, Fig. 1, exists as a zwitterion with the hydrogen atom being localized on the imine N atom N8. The C1O1 and N8C7 bond lengths [1.3206 (14) and 1.2985 (16) Å, respectively] reveal significant double-bond character. The phenolate ring shows a certain distortion in the C—C bond lengths, but nevertheless an alternating long-short pattern is observed, in agreement with delocalized bonding. The C2—C7 bond distance of 1.4407 (16) Å is in the range for a single bond character. The intramolecular N8-H8···O1 hydrogen bond gives rise to the formation of an S(6) ring motif (Table 1; Bernstein et al., 1995).

In the crystal, an O-H···O hydrogen bond links the molecules to form C(7) chains (Bernstein et al., 1995) that propagate along the b axis direction (Table 1 and Fig. 2). There are also C-H···O interactions present (Table 1).

The title structure closely resembles that of N,-bis(2,5-dihydroxybezyl idene)-1,2-diaminobenzene (Dominiak et al., 2006) and 4-chloro-2-[tris(hydroxymethyl)methyliminiomethyl]phenolate (Ng, 2008).

For general background to the characteristics of Schiff bases, see: Krause et al. (1995); Hadjoudis et al. (2004). For related structures, see: Dominiak et al. (2006); Santos-Contreras et al. (2009); Ng (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N-H···O bond is shown as a dashed line.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound. The N-H···O and O-H..O hydrogen bonds are shown as dashed lines [symmetry code: (i) -x+2, y-1/2, -z+3/2].
(E)-4-Hydroxy-2-{[(2-phenylethyl)iminiumyl]methyl}phenolate top
Crystal data top
C15H15NO2F(000) = 512
Mr = 241.28Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14042 reflections
a = 9.5010 (19) Åθ = 2.9–27.5°
b = 12.936 (3) ŵ = 0.08 mm1
c = 12.551 (4) ÅT = 170 K
β = 124.81 (2)°Prism, orange
V = 1266.5 (6) Å30.50 × 0.20 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2773 independent reflections
Radiation source: Enraf Nonius FR5902367 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 4.1°
CCD rotation images, thick slices scansh = 1012
Absorption correction: for a sphere
(Dwiggins, 1975)
k = 1616
Tmin = 0.861, Tmax = 0.862l = 1313
15718 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.3688P]
where P = (Fo2 + 2Fc2)/3
2773 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H15NO2V = 1266.5 (6) Å3
Mr = 241.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5010 (19) ŵ = 0.08 mm1
b = 12.936 (3) ÅT = 170 K
c = 12.551 (4) Å0.50 × 0.20 × 0.20 mm
β = 124.81 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2773 independent reflections
Absorption correction: for a sphere
(Dwiggins, 1975)
2367 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.862Rint = 0.029
15718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
2773 reflectionsΔρmin = 0.22 e Å3
163 parameters
Special details top

Experimental. Spectroscopic data for the title compound: FT—IR by ATR (cm-1): 1643 (C N as intense band), 1496 (Asymmetrical C=C—O···H stretch), 3311 (free phenolic O—H intense broad band), 3059 (intramolecular hydrogen bonding N—H···O, as a weak broad band). LC/MS/TOF on HPLC-methanol solution, m/z (%) calculated: 242.1181 (100); found 242.1175 (100) [M+H]+, molecular formula C15H15NO2. 1H NMR (CDCl3, 300.1MHz): δ 6.83 (m, H5 and H6), 6.67 (s, H3), 8.12 (s, H7), 3.84 (t, H9), 3.00 (t, H10), 7.19–7.32 (m, H12—H16). 13C NMR (CDCl3, 75.4MHz): δ 147.5 (C1), 118.4 (C2), 116.6 (C3), 144.0 (C4), 119.9 (C5), 117.6 (C6), 164.5 (C7), 61.1 (C9), 37.3 (C10), 139.3 (C11), 128.9 (C13, C15), 128.5 (C12, C16), 126.4 (C14).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88467 (11)0.43206 (6)0.61806 (8)0.0320 (3)
O40.99566 (15)0.00918 (7)0.64559 (9)0.0460 (3)
N80.75925 (13)0.42202 (8)0.37321 (9)0.0284 (3)
C10.90916 (14)0.33115 (8)0.62390 (11)0.0245 (3)
C20.85954 (14)0.27185 (8)0.51050 (10)0.0241 (3)
C30.88858 (15)0.16354 (9)0.51983 (11)0.0272 (3)
C40.96636 (16)0.11344 (9)0.63837 (11)0.0290 (3)
C51.01496 (15)0.17148 (9)0.75028 (11)0.0288 (3)
C60.98611 (15)0.27637 (9)0.74326 (11)0.0276 (3)
C70.78312 (14)0.32274 (9)0.38709 (11)0.0256 (3)
C90.68816 (16)0.47659 (9)0.24949 (12)0.0325 (4)
C100.52322 (16)0.53653 (10)0.20739 (13)0.0364 (4)
C110.55332 (15)0.62068 (9)0.30222 (11)0.0314 (3)
C120.48187 (17)0.61459 (12)0.37397 (13)0.0408 (4)
C130.51032 (18)0.69276 (14)0.46060 (14)0.0495 (5)
C140.60966 (18)0.77808 (13)0.47683 (14)0.0470 (5)
C150.68349 (17)0.78487 (10)0.40787 (13)0.0399 (4)
C160.65511 (16)0.70707 (10)0.32130 (12)0.0332 (4)
H30.854450.125040.444210.0326*
H41.031900.011410.718790.0689*
H51.068410.137400.831620.0345*
H61.018190.312990.819630.0332*
H70.748850.282070.312970.0307*
H80.786530.457960.440090.0341*
H9A0.661980.425900.181370.0389*
H9B0.774720.525520.258900.0389*
H10A0.475190.568020.121230.0437*
H10B0.437340.487270.198470.0437*
H120.413530.556630.363300.0490*
H130.461620.687690.508730.0594*
H140.627240.831760.534910.0565*
H150.753080.842570.420000.0479*
H160.705300.712350.274240.0398*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0424 (5)0.0208 (4)0.0295 (4)0.0003 (3)0.0185 (4)0.0023 (3)
O40.0827 (8)0.0218 (4)0.0385 (5)0.0085 (5)0.0376 (5)0.0045 (4)
N80.0316 (5)0.0272 (5)0.0248 (5)0.0016 (4)0.0151 (4)0.0004 (4)
C10.0234 (5)0.0229 (5)0.0270 (6)0.0020 (4)0.0142 (5)0.0025 (4)
C20.0230 (5)0.0248 (6)0.0249 (6)0.0016 (4)0.0140 (5)0.0007 (4)
C30.0324 (6)0.0245 (6)0.0272 (6)0.0024 (4)0.0185 (5)0.0041 (4)
C40.0374 (6)0.0209 (5)0.0327 (6)0.0000 (5)0.0223 (5)0.0001 (4)
C50.0340 (6)0.0269 (6)0.0260 (6)0.0001 (5)0.0175 (5)0.0025 (4)
C60.0309 (6)0.0266 (6)0.0242 (6)0.0024 (5)0.0150 (5)0.0034 (4)
C70.0250 (5)0.0266 (6)0.0262 (6)0.0006 (4)0.0152 (5)0.0022 (4)
C90.0375 (7)0.0311 (6)0.0282 (6)0.0038 (5)0.0184 (5)0.0049 (5)
C100.0318 (6)0.0347 (7)0.0327 (7)0.0034 (5)0.0125 (5)0.0044 (5)
C110.0253 (6)0.0348 (6)0.0299 (6)0.0077 (5)0.0132 (5)0.0087 (5)
C120.0288 (6)0.0540 (8)0.0385 (7)0.0031 (6)0.0185 (6)0.0116 (6)
C130.0347 (7)0.0833 (12)0.0348 (7)0.0142 (7)0.0224 (6)0.0074 (7)
C140.0340 (7)0.0616 (10)0.0349 (8)0.0144 (7)0.0134 (6)0.0054 (6)
C150.0324 (7)0.0371 (7)0.0403 (7)0.0061 (5)0.0149 (6)0.0020 (5)
C160.0312 (6)0.0356 (7)0.0342 (7)0.0058 (5)0.0195 (5)0.0065 (5)
Geometric parameters (Å, º) top
O1—C11.3206 (14)C12—C131.394 (2)
O4—C41.3696 (16)C13—C141.390 (3)
O4—H40.8200C14—C151.394 (3)
N8—C71.2985 (16)C15—C161.3898 (19)
N8—C91.4725 (16)C3—H30.9500
N8—H80.8600C5—H50.9500
C1—C61.4250 (17)C6—H60.9500
C1—C21.4389 (16)C7—H70.9500
C2—C71.4407 (16)C9—H9A0.9900
C2—C31.4199 (16)C9—H9B0.9900
C3—C41.3872 (17)C10—H10A0.9900
C4—C51.4175 (17)C10—H10B0.9900
C5—C61.3771 (17)C12—H120.9500
C9—C101.546 (2)C13—H130.9500
C10—C111.5148 (19)C14—H140.9500
C11—C161.406 (2)C15—H150.9500
C11—C121.406 (2)C16—H160.9500
C4—O4—H4109.00C4—C3—H3120.00
C7—N8—C9123.74 (10)C4—C5—H5119.00
C9—N8—H8118.00C6—C5—H5119.00
C7—N8—H8118.00C1—C6—H6119.00
O1—C1—C2121.62 (10)C5—C6—H6119.00
O1—C1—C6121.22 (10)N8—C7—H7119.00
C2—C1—C6117.17 (10)C2—C7—H7119.00
C1—C2—C7119.95 (10)N8—C9—H9A109.00
C1—C2—C3120.40 (10)N8—C9—H9B109.00
C3—C2—C7119.64 (10)C10—C9—H9A109.00
C2—C3—C4120.59 (11)C10—C9—H9B109.00
O4—C4—C3119.65 (11)H9A—C9—H9B108.00
C3—C4—C5119.21 (11)C9—C10—H10A109.00
O4—C4—C5121.14 (10)C9—C10—H10B109.00
C4—C5—C6121.21 (11)C11—C10—H10A109.00
C1—C6—C5121.41 (11)C11—C10—H10B109.00
N8—C7—C2122.58 (11)H10A—C10—H10B108.00
N8—C9—C10111.47 (13)C11—C12—H12120.00
C9—C10—C11113.07 (12)C13—C12—H12120.00
C10—C11—C12121.30 (13)C12—C13—H13120.00
C10—C11—C16120.53 (14)C14—C13—H13120.00
C12—C11—C16118.18 (12)C13—C14—H14120.00
C11—C12—C13120.64 (15)C15—C14—H14120.00
C12—C13—C14120.24 (17)C14—C15—H15120.00
C13—C14—C15119.97 (15)C16—C15—H15120.00
C14—C15—C16119.87 (15)C11—C16—H16119.00
C11—C16—C15121.08 (15)C15—C16—H16119.00
C2—C3—H3120.00
C9—N8—C7—C2177.35 (15)O4—C4—C5—C6179.78 (16)
C7—N8—C9—C10121.46 (15)C3—C4—C5—C60.1 (3)
C6—C1—C2—C30.5 (2)C4—C5—C6—C11.1 (2)
C6—C1—C2—C7179.18 (14)N8—C9—C10—C1162.54 (15)
O1—C1—C6—C5178.71 (15)C9—C10—C11—C12113.64 (16)
C2—C1—C6—C51.3 (2)C9—C10—C11—C1665.94 (16)
O1—C1—C2—C70.8 (2)C10—C11—C12—C13179.82 (14)
O1—C1—C2—C3179.54 (14)C16—C11—C12—C130.6 (2)
C7—C2—C3—C4178.19 (15)C10—C11—C16—C15179.90 (13)
C1—C2—C3—C40.5 (2)C12—C11—C16—C150.5 (2)
C3—C2—C7—N8177.33 (15)C11—C12—C13—C140.2 (2)
C1—C2—C7—N81.4 (2)C12—C13—C14—C151.0 (2)
C2—C3—C4—C50.7 (2)C13—C14—C15—C161.1 (2)
C2—C3—C4—O4178.96 (15)C14—C15—C16—C110.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O10.861.902.5884 (15)137
O4—H4···O1i0.821.872.6902 (15)176
C6—H6···O4ii0.952.593.2818 (18)130
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H15NO2
Mr241.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)170
a, b, c (Å)9.5010 (19), 12.936 (3), 12.551 (4)
β (°) 124.81 (2)
V3)1266.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionFor a sphere
(Dwiggins, 1975)
Tmin, Tmax0.861, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
15718, 2773, 2367
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.02
No. of reflections2773
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O10.861.902.5884 (15)137
O4—H4···O1i0.821.872.6902 (15)176
C6—H6···O4ii0.952.593.2818 (18)130
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from FRABA-Universidad de Colima 764/11, CINVESTAV-IPN and SIP-IPN

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDominiak, P. M., Makal, A., Mallinson, P. R., Trzcinska, K., Eilmes, J., Grech, E., Chruszcz, M., Minor, W. & Wozniak, K. (2006). Chem. Eur. J. 12, 1941–1949.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Rontoyianni, A., Ambroziak, K., Dziembowska, T. & Mavridis, I. M. (2004). J. Photochem. Photobiol. A, 162, 521–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, M., Rouleau, A., Stark, H., Luger, P., Lipp, R., Garbarg, M., Schwartz, J. C. & Schunack, W. (1995). J. Med. Chem. 38, 4070–4079.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationNg, S. W. (2008). Acta Cryst. E64, o2455.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSantos-Contreras, R. J., Ramos-Organillo, A., García-Báez, E. V., Padilla-Martínez, I. I. & Martínez-Martínez, F. J. (2009). Acta Cryst. C65, o8–o10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds