organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-2-hy­dr­oxy­benzohydrazide

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I.R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 3 June 2012; accepted 9 June 2012; online 16 June 2012)

The asymmetric unit of the title compound, C7H9N3O2, comprises two crystallographically independent mol­ecules (A and B). In each mol­ecule there is an intra­molecular O—H⋯O hydrogen bond making an S(6) ring motif. In the crystal, a pair of N—H⋯N hydrogen bonds link the two mol­ecules (A and B) into a dimer with an R22(6) ring motif. The B mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif. The mol­ecules are further linked via other N—H⋯O hydrogen bonds, forming undulating two-dimensional networks lying parallel to the bc plane. These networks are finally linked via N—H⋯O hydrogen bonds, forming a three-dimensional structure.

Related literature

For background to Schiff bases derived from benzohydrazide, see: Xu (2012[Xu, S.-Q. (2012). Acta Cryst. E68, o1320.]); Bakir & Green (2002[Bakir, M. & Green, O. (2002). Acta Cryst. C58, o263-o265.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N3O2

  • Mr = 167.17

  • Monoclinic, P 21 /c

  • a = 5.6424 (3) Å

  • b = 18.3221 (12) Å

  • c = 14.7164 (9) Å

  • β = 94.087 (3)°

  • V = 1517.52 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 291 K

  • 0.32 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.985

  • 12530 measured reflections

  • 3366 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.133

  • S = 1.01

  • 3366 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.80 2.5297 (18) 147
O3—H3⋯O4 0.82 1.80 2.528 (2) 147
N2—H2⋯N6i 0.98 2.07 2.958 (2) 149
N5—H5⋯N3ii 0.99 2.04 2.934 (2) 150
N6—H1N6⋯O4iii 0.91 2.25 2.9424 (18) 133
N1—H1B⋯O1iv 0.86 2.24 3.0358 (19) 154
N4—H4B⋯O2v 0.86 2.30 2.974 (2) 136
N6—H2N6⋯O3ii 0.96 2.54 3.207 (2) 127
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+2; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])'; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Structures of Schiff bases derived from substituted 4-aminobenzohydrazide closely related to the title compound have been reported earlier (Xu, 2012; Bakir & Green, 2002). In order to explore new Schiff base compounds of hydroxy derivatives of 4-aminobenzohydrazide, the title compound was prepared and we report herein on its crystal structure.

The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molecules (A and B). The bond lengths (Allen et al., 1987) and angles are within normal ranges. In each molecule an intramolecular O—H···O hydrogen bond (Table 1) make an S(6) ring motif (Bernstein et al., 1995).

In the crystal, there are number of N-H···N and N-H..O hydrogen bonds linking the molecules (Table 1). A pair of N—H···N hydrogen bonds link the two molecules (A and B) to form dimers with an R22(6) ring motif. The B molecules are linked via pairs of N—H···O hydrogen bonds to form inversion dimers with an R22(10) ring motif. The molecules are further linked through other N—H···O hydrogen bonds forming undulating two-dimensional networks lying parallel to the bc plane. These networks are finally linked via an N-H···O hydrogen bond to form a three-dimensional structure (Fig. 2).

Related literature top

For background to Schiff bases derived from benzohydrazide, see: Xu (2012); Bakir & Green (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by adding 1 mmol of methyl 4-amino-2-hydroxybenzoate to a solution of hydrazine hydrate (80%) (1 mmol) in methanol (30 ml). The mixture was refluxed with stirring for 30 min and after cooling to room temperature a white precipitate was filtered off and washed with diethylether and dried in air. Colourless needle-like crystals of the title compound, suitable for X-ray structure analysis, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The N-bound H-atoms were located in a difference Fourier map and were constrained to ride on their parent N atoms with Uiso(H) = 1.2Ueq(N). The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93 Å, with Uiso(H) = k × Ueq(O,C) where k = 1.5 for OH H atoms and = 1.2 for other H atoms.

Structure description top

Structures of Schiff bases derived from substituted 4-aminobenzohydrazide closely related to the title compound have been reported earlier (Xu, 2012; Bakir & Green, 2002). In order to explore new Schiff base compounds of hydroxy derivatives of 4-aminobenzohydrazide, the title compound was prepared and we report herein on its crystal structure.

The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molecules (A and B). The bond lengths (Allen et al., 1987) and angles are within normal ranges. In each molecule an intramolecular O—H···O hydrogen bond (Table 1) make an S(6) ring motif (Bernstein et al., 1995).

In the crystal, there are number of N-H···N and N-H..O hydrogen bonds linking the molecules (Table 1). A pair of N—H···N hydrogen bonds link the two molecules (A and B) to form dimers with an R22(6) ring motif. The B molecules are linked via pairs of N—H···O hydrogen bonds to form inversion dimers with an R22(10) ring motif. The molecules are further linked through other N—H···O hydrogen bonds forming undulating two-dimensional networks lying parallel to the bc plane. These networks are finally linked via an N-H···O hydrogen bond to form a three-dimensional structure (Fig. 2).

For background to Schiff bases derived from benzohydrazide, see: Xu (2012); Bakir & Green (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008)'; software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed lines shows the intramolecular O-H···O hydrogen bonds (see Table 1 for details).
[Figure 2] Fig. 2. A view along the c axis of crystal packing of the title compound, showing the two-dimensional networks formed through N—H···O and N—H···N hydrogen bonds (dashed lines; see Table 1 for details). Only the H atoms involved in the interactions are shown.
4-Amino-2-hydroxybenzohydrazide top
Crystal data top
C7H9N3O2F(000) = 704
Mr = 167.17Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2540 reflections
a = 5.6424 (3) Åθ = 2.5–27.4°
b = 18.3221 (12) ŵ = 0.11 mm1
c = 14.7164 (9) ÅT = 291 K
β = 94.087 (3)°Needle, colourless
V = 1517.52 (16) Å30.32 × 0.16 × 0.14 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3366 independent reflections
Radiation source: fine-focus sealed tube2092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 27.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.965, Tmax = 0.985k = 2323
12530 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.2376P]
where P = (Fo2 + 2Fc2)/3
3366 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C7H9N3O2V = 1517.52 (16) Å3
Mr = 167.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 5.6424 (3) ŵ = 0.11 mm1
b = 18.3221 (12) ÅT = 291 K
c = 14.7164 (9) Å0.32 × 0.16 × 0.14 mm
β = 94.087 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3366 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2092 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.985Rint = 0.027
12530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
3366 reflectionsΔρmin = 0.21 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1395 (3)0.65395 (10)0.73974 (11)0.0391 (4)
C20.2934 (3)0.68029 (9)0.81762 (11)0.0364 (4)
C30.4957 (3)0.72159 (9)0.80167 (11)0.0369 (4)
C40.6503 (3)0.74457 (10)0.87301 (11)0.0398 (4)
H40.78470.77120.86080.048*
C50.6085 (3)0.72868 (9)0.96218 (11)0.0386 (4)
C60.4041 (3)0.68873 (10)0.97971 (11)0.0430 (4)
H60.37180.67811.03940.052*
C70.2524 (3)0.66546 (10)0.90872 (11)0.0414 (4)
H70.11790.63900.92130.050*
C80.3586 (3)0.46432 (10)0.83167 (11)0.0411 (4)
C90.2091 (3)0.44085 (9)0.75099 (11)0.0363 (4)
C100.0013 (3)0.40061 (10)0.76272 (11)0.0402 (4)
C110.1501 (3)0.38160 (10)0.68907 (12)0.0442 (5)
H110.28930.35640.69850.053*
C120.0989 (3)0.39927 (10)0.60123 (12)0.0428 (4)
C130.1119 (3)0.43658 (10)0.58807 (11)0.0415 (4)
H130.15200.44750.52940.050*
C140.2596 (3)0.45715 (10)0.66168 (11)0.0405 (4)
H140.39780.48270.65180.049*
N10.7591 (3)0.75402 (10)1.03293 (10)0.0567 (5)
H1A0.88060.78001.02180.068*
H1B0.73170.74381.08830.068*
N20.0459 (3)0.61215 (8)0.75474 (10)0.0445 (4)
H20.09350.59750.81510.053*
N30.2002 (3)0.58528 (9)0.68260 (10)0.0486 (4)
H1N30.11410.55890.63680.058*
H2N30.25030.62310.64080.058*
N40.2532 (3)0.38142 (11)0.52828 (11)0.0686 (6)
H4A0.38350.35900.53690.082*
H4B0.21950.39270.47400.082*
N50.5410 (3)0.50862 (9)0.81992 (9)0.0468 (4)
H50.58800.52390.75950.056*
N60.6986 (3)0.53248 (10)0.89273 (9)0.0519 (4)
H1N60.61260.54920.93810.062*
H2N60.76040.48920.92200.062*
O10.5463 (2)0.74076 (8)0.71656 (8)0.0523 (4)
H10.44100.72600.67990.078*
O20.1813 (2)0.66956 (8)0.65963 (8)0.0560 (4)
O30.0582 (2)0.37996 (8)0.84652 (8)0.0566 (4)
H30.04830.39160.88460.085*
O40.3139 (3)0.44440 (8)0.90981 (8)0.0619 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0420 (10)0.0386 (10)0.0370 (10)0.0033 (8)0.0057 (8)0.0009 (8)
C20.0371 (9)0.0374 (10)0.0347 (9)0.0031 (8)0.0033 (7)0.0009 (7)
C30.0398 (10)0.0382 (10)0.0335 (9)0.0054 (8)0.0086 (7)0.0005 (7)
C40.0356 (9)0.0423 (10)0.0420 (10)0.0012 (8)0.0076 (8)0.0012 (8)
C50.0393 (10)0.0406 (10)0.0358 (9)0.0065 (8)0.0012 (7)0.0061 (8)
C60.0486 (11)0.0490 (11)0.0319 (9)0.0020 (9)0.0069 (8)0.0009 (8)
C70.0402 (10)0.0440 (10)0.0409 (10)0.0023 (8)0.0085 (8)0.0026 (8)
C80.0438 (10)0.0449 (11)0.0349 (9)0.0046 (9)0.0038 (8)0.0002 (8)
C90.0392 (9)0.0370 (10)0.0328 (9)0.0022 (8)0.0043 (7)0.0016 (7)
C100.0474 (10)0.0355 (10)0.0389 (10)0.0015 (8)0.0111 (8)0.0040 (8)
C110.0444 (11)0.0407 (11)0.0485 (11)0.0104 (8)0.0091 (9)0.0032 (8)
C120.0458 (11)0.0386 (10)0.0437 (10)0.0017 (9)0.0018 (8)0.0082 (8)
C130.0454 (10)0.0464 (11)0.0333 (9)0.0019 (9)0.0068 (8)0.0013 (8)
C140.0385 (10)0.0448 (10)0.0383 (10)0.0038 (8)0.0040 (8)0.0028 (8)
N10.0553 (10)0.0755 (12)0.0390 (9)0.0105 (9)0.0000 (7)0.0084 (8)
N20.0430 (9)0.0514 (10)0.0387 (8)0.0073 (7)0.0012 (7)0.0050 (7)
N30.0503 (9)0.0544 (10)0.0401 (8)0.0057 (8)0.0036 (7)0.0062 (7)
N40.0645 (11)0.0898 (14)0.0508 (10)0.0334 (10)0.0001 (9)0.0121 (9)
N50.0470 (9)0.0578 (10)0.0352 (8)0.0085 (8)0.0004 (7)0.0034 (7)
N60.0514 (9)0.0648 (11)0.0386 (8)0.0061 (8)0.0030 (7)0.0081 (7)
O10.0553 (9)0.0687 (9)0.0332 (7)0.0120 (7)0.0064 (6)0.0044 (6)
O20.0613 (9)0.0737 (10)0.0329 (7)0.0143 (7)0.0018 (6)0.0007 (6)
O30.0632 (9)0.0657 (9)0.0424 (7)0.0113 (8)0.0128 (6)0.0108 (7)
O40.0692 (10)0.0838 (11)0.0324 (7)0.0133 (8)0.0014 (6)0.0080 (7)
Geometric parameters (Å, º) top
C1—O21.252 (2)C11—C121.383 (2)
C1—N21.328 (2)C11—H110.9300
C1—C21.469 (2)C12—N41.373 (2)
C2—C71.403 (2)C12—C131.397 (2)
C2—C31.403 (2)C13—C141.372 (2)
C3—O11.3506 (19)C13—H130.9300
C3—C41.382 (2)C14—H140.9300
C4—C51.381 (2)N1—H1A0.8600
C4—H40.9300N1—H1B0.8600
C5—N11.377 (2)N2—N31.4125 (19)
C5—C61.406 (2)N2—H20.9837
C6—C71.371 (2)N3—H1N30.9851
C6—H60.9300N3—H2N30.9568
C7—H70.9300N4—H4A0.8600
C8—O41.249 (2)N4—H4B0.8600
C8—N51.331 (2)N5—N61.4123 (19)
C8—C91.471 (2)N5—H50.9858
C9—C141.397 (2)N6—H1N60.9064
C9—C101.406 (2)N6—H2N60.9561
C10—O31.355 (2)O1—H10.8200
C10—C111.376 (2)O3—H30.8200
O2—C1—N2119.45 (16)C10—C11—H11119.4
O2—C1—C2121.28 (16)C12—C11—H11119.4
N2—C1—C2119.26 (15)N4—C12—C11120.81 (17)
C7—C2—C3117.12 (15)N4—C12—C13120.45 (17)
C7—C2—C1123.58 (16)C11—C12—C13118.74 (16)
C3—C2—C1119.29 (15)C14—C13—C12120.03 (16)
O1—C3—C4117.51 (16)C14—C13—H13120.0
O1—C3—C2121.56 (15)C12—C13—H13120.0
C4—C3—C2120.93 (15)C13—C14—C9122.08 (17)
C5—C4—C3121.11 (17)C13—C14—H14119.0
C5—C4—H4119.4C9—C14—H14119.0
C3—C4—H4119.4C5—N1—H1A120.0
N1—C5—C4120.65 (17)C5—N1—H1B120.0
N1—C5—C6120.48 (16)H1A—N1—H1B120.0
C4—C5—C6118.83 (15)C1—N2—N3121.79 (14)
C7—C6—C5119.88 (16)C1—N2—H2125.2
C7—C6—H6120.1N3—N2—H2113.0
C5—C6—H6120.1N2—N3—H1N3112.2
C6—C7—C2122.10 (17)N2—N3—H2N3111.6
C6—C7—H7118.9H1N3—N3—H2N393.0
C2—C7—H7118.9C12—N4—H4A120.0
O4—C8—N5120.42 (16)C12—N4—H4B120.0
O4—C8—C9121.05 (17)H4A—N4—H4B120.0
N5—C8—C9118.51 (15)C8—N5—N6122.74 (15)
C14—C9—C10117.09 (15)C8—N5—H5123.3
C14—C9—C8123.60 (16)N6—N5—H5113.7
C10—C9—C8119.31 (15)N5—N6—H1N6108.8
O3—C10—C11117.79 (16)N5—N6—H2N6105.9
O3—C10—C9121.39 (16)H1N6—N6—H2N698.4
C11—C10—C9120.82 (15)C3—O1—H1109.5
C10—C11—C12121.17 (17)C10—O3—H3109.5
O2—C1—C2—C7178.86 (16)O4—C8—C9—C105.5 (3)
N2—C1—C2—C71.8 (3)N5—C8—C9—C10173.19 (15)
O2—C1—C2—C32.3 (3)C14—C9—C10—O3177.62 (16)
N2—C1—C2—C3177.02 (16)C8—C9—C10—O33.2 (3)
C7—C2—C3—O1177.79 (15)C14—C9—C10—C113.1 (3)
C1—C2—C3—O13.3 (2)C8—C9—C10—C11176.03 (16)
C7—C2—C3—C41.8 (2)O3—C10—C11—C12178.52 (16)
C1—C2—C3—C4177.12 (16)C9—C10—C11—C122.2 (3)
O1—C3—C4—C5178.53 (16)C10—C11—C12—N4178.66 (17)
C2—C3—C4—C51.1 (3)C10—C11—C12—C130.5 (3)
C3—C4—C5—N1177.69 (16)N4—C12—C13—C14177.00 (17)
C3—C4—C5—C60.3 (3)C11—C12—C13—C142.2 (3)
N1—C5—C6—C7178.29 (16)C12—C13—C14—C91.2 (3)
C4—C5—C6—C70.9 (3)C10—C9—C14—C131.4 (3)
C5—C6—C7—C20.1 (3)C8—C9—C14—C13177.66 (16)
C3—C2—C7—C61.2 (3)O2—C1—N2—N30.7 (3)
C1—C2—C7—C6177.67 (16)C2—C1—N2—N3179.94 (15)
O4—C8—C9—C14175.39 (17)O4—C8—N5—N63.1 (3)
N5—C8—C9—C145.9 (3)C9—C8—N5—N6178.16 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.802.5297 (18)147
O3—H3···O40.821.802.528 (2)147
N2—H2···N6i0.982.072.958 (2)149
N5—H5···N3ii0.992.042.934 (2)150
N6—H1N6···O4iii0.912.252.9424 (18)133
N1—H1B···O1iv0.862.243.0358 (19)154
N4—H4B···O2v0.862.302.974 (2)136
N6—H2N6···O3ii0.962.543.207 (2)127
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H9N3O2
Mr167.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)5.6424 (3), 18.3221 (12), 14.7164 (9)
β (°) 94.087 (3)
V3)1517.52 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.965, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12530, 3366, 2092
Rint0.027
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.01
No. of reflections3366
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008)', SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.802.5297 (18)147
O3—H3···O40.821.802.528 (2)147
N2—H2···N6i0.982.072.958 (2)149
N5—H5···N3ii0.992.042.934 (2)150
N6—H1N6···O4iii0.912.252.9424 (18)133
N1—H1B···O1iv0.862.243.0358 (19)154
N4—H4B···O2v0.862.302.974 (2)136
N6—H2N6···O3ii0.962.543.207 (2)127
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z+1.
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBakir, M. & Green, O. (2002). Acta Cryst. C58, o263–o265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-Q. (2012). Acta Cryst. E68, o1320.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds