organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Amino-N′-(5-chloro-2-hy­dr­oxy­benzyl­­idene)benzohydrazide

aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 3 June 2012; accepted 7 June 2012; online 16 June 2012)

In the title hydrazide Schiff base compound, C14H12ClN3O2, the conformation around the C=N double bond is E. The dihedral angle between the benzene rings is 41.57 (14) Å. An intra­molecular O—H⋯N hydrogen bond makes an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O (bifurcated acceptor) and N—H⋯N hydrogen bonds, forming chains along the a axis. The inter­esting feature of the crystal structure is the short inter­molecular C⋯O [3.216 (3), 3.170 (3), and 2.992 (3) Å] contacts, one of which is significantly shorter than the sum of the van der Waals radii of these atoms [3.22 Å].

Related literature

For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For 4-amino­benzohydrazide-derived Schiff base structures, see: Xu (2012[Xu, S.-Q. (2012). Acta Cryst. E68, o1320.]); Shi & Li (2012[Shi, Z.-F. & Li, J.-M. (2012). Acta Cryst. E68, o1546-o1547.]); Bakir & Green (2002[Bakir, M. & Green, O. (2002). Acta Cryst. C58, o263-o265.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClN3O2

  • Mr = 289.72

  • Orthorhombic, P n a 21

  • a = 9.4243 (8) Å

  • b = 9.7975 (9) Å

  • c = 14.1924 (10) Å

  • V = 1310.45 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.938

  • 5390 measured reflections

  • 2157 independent reflections

  • 1871 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.04

  • 2157 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1661 Friedel pairs

  • Flack parameter: −0.02 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.584 (3) 145
N2—H2⋯O2i 0.98 1.98 2.951 (3) 169
N3—H3B⋯O2ii 0.96 2.09 3.004 (3) 159
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])'; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and magnetism, and supramolecular architectures (Karthikeyan et al., 2006; Kucukguzel et al., 2006). Structures of Schiff bases derived from substituted 4-aminobenzohydrazide have been reported earlier (Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). In order to explore the structure of new Schiff base derivatives, the title compound was prepared and characterized crystallographically.

The title molecule, Fig. 1, has an E conformation around CN double bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). The dihedral angle between the substituted phenyl rings is 41.57 (14)Å. An intramolecular O—H···N hydrogen bond makes an S(6) ring motif (Bernstein et al., 1995).

In the crystal, molecules are linked through N—H···O (bifurcated acceptor) and N—H···N hydrogen bonds forming one-dimensional chains along the a axis. An interesting feature of the crystal structure is the short intermolecular C1···O1iii [3.216 (3) Å; (iii) -1/2 + x, 3/2 - y, z], C6···O1iii [3.170 (3) Å], and C7···O1iii [2.992 (3) Å] contacts, in which one of them is significantly shorter than the sum of the van der Waals radii of these atoms [3.22Å; Bondi, 1964].

Related literature top

For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006); Karthikeyan et al. (2006). For 4-aminobenzohydrazide-derived Schiff base structures, see: Xu (2012); Shi & Li (2012); Bakir & Green (2002). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964).

Experimental top

The title compound was synthesized by adding 1 mmol of methyl 4-aminobenzoate to a solution of 5-chlorosalicylaldehyde (1 mmol) in methanol (30 ml). The mixture was refluxed with stirring for 30 min and after cooling to room temperature a light-yellow precipitate was filtered and washed with diethylether and dried in air. Light-yellow prismatic crystals of the title compound, suitable for X-ray structure analysis, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The N-bound H atoms were located in a difference Fourier map and were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(N). The OH H atom was positioned by a freely rotating OH group model: O-H = 0.82 Å with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and magnetism, and supramolecular architectures (Karthikeyan et al., 2006; Kucukguzel et al., 2006). Structures of Schiff bases derived from substituted 4-aminobenzohydrazide have been reported earlier (Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). In order to explore the structure of new Schiff base derivatives, the title compound was prepared and characterized crystallographically.

The title molecule, Fig. 1, has an E conformation around CN double bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). The dihedral angle between the substituted phenyl rings is 41.57 (14)Å. An intramolecular O—H···N hydrogen bond makes an S(6) ring motif (Bernstein et al., 1995).

In the crystal, molecules are linked through N—H···O (bifurcated acceptor) and N—H···N hydrogen bonds forming one-dimensional chains along the a axis. An interesting feature of the crystal structure is the short intermolecular C1···O1iii [3.216 (3) Å; (iii) -1/2 + x, 3/2 - y, z], C6···O1iii [3.170 (3) Å], and C7···O1iii [2.992 (3) Å] contacts, in which one of them is significantly shorter than the sum of the van der Waals radii of these atoms [3.22Å; Bondi, 1964].

For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006); Karthikeyan et al. (2006). For 4-aminobenzohydrazide-derived Schiff base structures, see: Xu (2012); Shi & Li (2012); Bakir & Green (2002). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008)'; software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom numbering. The dashed lines show the intramolecular O-H···N hydrogen bonds (see Table 1 for details).
[Figure 2] Fig. 2. A view along the a axis of crystal packing of the title compound, showing how the molecules are linked via N—H···O hydrogen bonds (dashed lines; see Table 1 for details). Only the H atoms involved in these interactions are shown.
(E)-4-Amino-N'-(5-chloro-2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H12ClN3O2F(000) = 600
Mr = 289.72Dx = 1.468 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1125 reflections
a = 9.4243 (8) Åθ = 2.5–27.4°
b = 9.7975 (9) ŵ = 0.30 mm1
c = 14.1924 (10) ÅT = 296 K
V = 1310.45 (19) Å3Prism, light-yellow
Z = 40.30 × 0.25 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2157 independent reflections
Radiation source: fine-focus sealed tube1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 27.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 812
Tmin = 0.916, Tmax = 0.938k = 129
5390 measured reflectionsl = 1417
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.1075P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2157 reflectionsΔρmax = 0.25 e Å3
182 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 1661 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C14H12ClN3O2V = 1310.45 (19) Å3
Mr = 289.72Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.4243 (8) ŵ = 0.30 mm1
b = 9.7975 (9) ÅT = 296 K
c = 14.1924 (10) Å0.30 × 0.25 × 0.22 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2157 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1871 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.938Rint = 0.023
5390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.25 e Å3
S = 1.04Δρmin = 0.28 e Å3
2157 reflectionsAbsolute structure: Flack (1983), 1661 Friedel pairs
182 parametersAbsolute structure parameter: 0.02 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25011 (8)0.53141 (8)0.12609 (6)0.0608 (2)
O10.18920 (19)0.6731 (2)0.14787 (13)0.0576 (6)
H10.15570.68900.20010.086*
O20.14326 (17)0.8456 (2)0.38803 (12)0.0433 (5)
N10.0101 (2)0.6912 (2)0.27231 (13)0.0357 (5)
N20.0530 (2)0.7181 (2)0.36316 (14)0.0348 (5)
H20.15010.69120.37910.042*
N30.1425 (3)0.8793 (3)0.79456 (16)0.0608 (7)
H3A0.19890.82660.83060.073*
H3B0.11850.96110.82840.073*
C10.0540 (3)0.6151 (3)0.11808 (16)0.0343 (6)
C20.0834 (3)0.6413 (3)0.08747 (18)0.0401 (6)
C30.1161 (3)0.6341 (3)0.00784 (18)0.0452 (7)
H30.20840.65160.02770.054*
C40.0146 (3)0.6016 (3)0.07299 (17)0.0436 (7)
H40.03680.59950.13680.052*
C50.1210 (3)0.5721 (3)0.04292 (18)0.0409 (6)
C60.1556 (3)0.5765 (3)0.05102 (18)0.0413 (6)
H60.24690.55380.07030.050*
C70.0965 (3)0.6349 (3)0.21540 (17)0.0371 (6)
H70.18560.60690.23590.045*
C80.0326 (3)0.7949 (3)0.41874 (17)0.0337 (6)
C90.0153 (2)0.8152 (3)0.51641 (17)0.0327 (6)
C100.1079 (3)0.7271 (3)0.56124 (18)0.0451 (7)
H100.14390.65260.52840.054*
C110.1479 (3)0.7471 (3)0.65323 (18)0.0492 (7)
H110.20870.68510.68200.059*
C120.0986 (3)0.8585 (3)0.70364 (17)0.0397 (6)
C130.0065 (3)0.9481 (3)0.65961 (18)0.0422 (6)
H130.02741.02370.69220.051*
C140.0354 (3)0.9260 (3)0.56763 (19)0.0408 (6)
H140.09870.98630.53940.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0686 (4)0.0770 (5)0.0367 (3)0.0182 (4)0.0054 (4)0.0052 (4)
O10.0410 (10)0.0937 (18)0.0380 (11)0.0132 (11)0.0035 (9)0.0045 (12)
O20.0346 (9)0.0579 (12)0.0375 (11)0.0050 (8)0.0085 (8)0.0032 (10)
N10.0394 (11)0.0443 (13)0.0233 (10)0.0043 (9)0.0059 (9)0.0007 (9)
N20.0343 (10)0.0477 (13)0.0223 (10)0.0009 (10)0.0055 (9)0.0001 (10)
N30.0859 (18)0.0627 (19)0.0338 (13)0.0048 (14)0.0158 (12)0.0128 (13)
C10.0382 (14)0.0355 (14)0.0291 (13)0.0005 (11)0.0069 (11)0.0009 (12)
C20.0394 (14)0.0466 (18)0.0342 (13)0.0009 (13)0.0055 (12)0.0016 (13)
C30.0443 (16)0.0535 (18)0.0377 (15)0.0016 (13)0.0122 (13)0.0011 (13)
C40.0592 (18)0.0452 (16)0.0265 (13)0.0014 (13)0.0117 (12)0.0025 (13)
C50.0526 (16)0.0383 (16)0.0317 (13)0.0027 (12)0.0010 (12)0.0010 (13)
C60.0414 (15)0.0480 (16)0.0345 (14)0.0057 (13)0.0091 (11)0.0008 (13)
C70.0324 (13)0.0469 (17)0.0320 (13)0.0001 (12)0.0075 (11)0.0028 (13)
C80.0327 (13)0.0370 (14)0.0313 (13)0.0053 (11)0.0050 (11)0.0045 (12)
C90.0303 (13)0.0398 (14)0.0279 (12)0.0013 (11)0.0008 (10)0.0000 (11)
C100.0593 (17)0.0438 (17)0.0323 (15)0.0127 (14)0.0052 (13)0.0053 (13)
C110.0669 (18)0.0450 (16)0.0357 (14)0.0155 (14)0.0133 (14)0.0005 (13)
C120.0451 (15)0.0457 (17)0.0283 (12)0.0045 (13)0.0010 (12)0.0025 (13)
C130.0424 (14)0.0446 (15)0.0395 (15)0.0015 (13)0.0030 (12)0.0095 (14)
C140.0367 (13)0.0452 (16)0.0406 (15)0.0060 (13)0.0019 (12)0.0021 (13)
Geometric parameters (Å, º) top
Cl1—C51.742 (3)C4—C51.378 (4)
O1—C21.351 (3)C4—H40.9300
O1—H10.8200C5—C61.373 (3)
O2—C81.235 (3)C6—H60.9300
N1—C71.272 (3)C7—H70.9300
N1—N21.377 (3)C8—C91.471 (3)
N2—C81.357 (3)C9—C101.382 (4)
N2—H20.9783C9—C141.392 (4)
N3—C121.370 (3)C10—C111.373 (4)
N3—H3A0.9001C10—H100.9300
N3—H3B0.9616C11—C121.385 (4)
C1—C21.390 (3)C11—H110.9300
C1—C61.402 (3)C12—C131.383 (4)
C1—C71.451 (3)C13—C141.381 (4)
C2—C31.389 (4)C13—H130.9300
C3—C41.368 (4)C14—H140.9300
C3—H30.9300
C2—O1—H1109.5C1—C6—H6119.8
C7—N1—N2119.3 (2)N1—C7—C1119.1 (2)
C8—N2—N1118.43 (19)N1—C7—H7120.5
C8—N2—H2124.8C1—C7—H7120.5
N1—N2—H2116.1O2—C8—N2121.4 (2)
C12—N3—H3A128.9O2—C8—C9122.5 (2)
C12—N3—H3B121.5N2—C8—C9116.1 (2)
H3A—N3—H3B109.5C10—C9—C14117.6 (2)
C2—C1—C6118.3 (2)C10—C9—C8122.9 (2)
C2—C1—C7122.0 (2)C14—C9—C8119.5 (2)
C6—C1—C7119.6 (2)C11—C10—C9121.5 (3)
O1—C2—C3117.8 (2)C11—C10—H10119.3
O1—C2—C1122.1 (2)C9—C10—H10119.3
C3—C2—C1120.1 (2)C10—C11—C12120.8 (3)
C4—C3—C2121.0 (2)C10—C11—H11119.6
C4—C3—H3119.5C12—C11—H11119.6
C2—C3—H3119.5N3—C12—C13121.4 (3)
C3—C4—C5119.2 (2)N3—C12—C11120.2 (3)
C3—C4—H4120.4C13—C12—C11118.5 (2)
C5—C4—H4120.4C14—C13—C12120.5 (3)
C6—C5—C4121.0 (2)C14—C13—H13119.8
C6—C5—Cl1119.9 (2)C12—C13—H13119.8
C4—C5—Cl1119.1 (2)C13—C14—C9121.2 (2)
C5—C6—C1120.4 (2)C13—C14—H14119.4
C5—C6—H6119.8C9—C14—H14119.4
C7—N1—N2—C8170.8 (2)N1—N2—C8—O23.4 (3)
C6—C1—C2—O1177.0 (3)N1—N2—C8—C9177.3 (2)
C7—C1—C2—O17.1 (4)O2—C8—C9—C10157.6 (3)
C6—C1—C2—C32.4 (4)N2—C8—C9—C1023.1 (3)
C7—C1—C2—C3173.6 (3)O2—C8—C9—C1421.3 (4)
O1—C2—C3—C4179.6 (3)N2—C8—C9—C14158.0 (2)
C1—C2—C3—C40.2 (5)C14—C9—C10—C110.5 (4)
C2—C3—C4—C51.8 (4)C8—C9—C10—C11178.4 (3)
C3—C4—C5—C60.8 (4)C9—C10—C11—C121.4 (5)
C3—C4—C5—Cl1179.8 (2)C10—C11—C12—N3178.2 (3)
C4—C5—C6—C11.8 (4)C10—C11—C12—C131.0 (4)
Cl1—C5—C6—C1177.2 (2)N3—C12—C13—C14179.4 (3)
C2—C1—C6—C53.4 (4)C11—C12—C13—C140.3 (4)
C7—C1—C6—C5172.7 (3)C12—C13—C14—C91.1 (4)
N2—N1—C7—C1175.9 (2)C10—C9—C14—C130.7 (4)
C2—C1—C7—N17.4 (4)C8—C9—C14—C13179.7 (2)
C6—C1—C7—N1168.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.584 (3)145
N2—H2···O2i0.981.982.951 (3)169
N3—H3B···O2ii0.962.093.004 (3)159
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12ClN3O2
Mr289.72
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)9.4243 (8), 9.7975 (9), 14.1924 (10)
V3)1310.45 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.916, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
5390, 2157, 1871
Rint0.023
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.04
No. of reflections2157
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28
Absolute structureFlack (1983), 1661 Friedel pairs
Absolute structure parameter0.02 (8)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008)', SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.584 (3)145
N2—H2···O2i0.981.982.951 (3)169
N3—H3B···O2ii0.962.093.004 (3)159
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+2, z+1/2.
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBakir, M. & Green, O. (2002). Acta Cryst. C58, o263–o265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441-452.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-F. & Li, J.-M. (2012). Acta Cryst. E68, o1546–o1547.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-Q. (2012). Acta Cryst. E68, o1320.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds